| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gob |
| |
| import ( |
| "bytes" |
| "encoding" |
| "math" |
| "reflect" |
| "unsafe" |
| ) |
| |
| const uint64Size = int(unsafe.Sizeof(uint64(0))) |
| |
| // encoderState is the global execution state of an instance of the encoder. |
| // Field numbers are delta encoded and always increase. The field |
| // number is initialized to -1 so 0 comes out as delta(1). A delta of |
| // 0 terminates the structure. |
| type encoderState struct { |
| enc *Encoder |
| b *bytes.Buffer |
| sendZero bool // encoding an array element or map key/value pair; send zero values |
| fieldnum int // the last field number written. |
| buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. |
| next *encoderState // for free list |
| } |
| |
| func (enc *Encoder) newEncoderState(b *bytes.Buffer) *encoderState { |
| e := enc.freeList |
| if e == nil { |
| e = new(encoderState) |
| e.enc = enc |
| } else { |
| enc.freeList = e.next |
| } |
| e.sendZero = false |
| e.fieldnum = 0 |
| e.b = b |
| return e |
| } |
| |
| func (enc *Encoder) freeEncoderState(e *encoderState) { |
| e.next = enc.freeList |
| enc.freeList = e |
| } |
| |
| // Unsigned integers have a two-state encoding. If the number is less |
| // than 128 (0 through 0x7F), its value is written directly. |
| // Otherwise the value is written in big-endian byte order preceded |
| // by the byte length, negated. |
| |
| // encodeUint writes an encoded unsigned integer to state.b. |
| func (state *encoderState) encodeUint(x uint64) { |
| if x <= 0x7F { |
| err := state.b.WriteByte(uint8(x)) |
| if err != nil { |
| error_(err) |
| } |
| return |
| } |
| i := uint64Size |
| for x > 0 { |
| state.buf[i] = uint8(x) |
| x >>= 8 |
| i-- |
| } |
| state.buf[i] = uint8(i - uint64Size) // = loop count, negated |
| _, err := state.b.Write(state.buf[i : uint64Size+1]) |
| if err != nil { |
| error_(err) |
| } |
| } |
| |
| // encodeInt writes an encoded signed integer to state.w. |
| // The low bit of the encoding says whether to bit complement the (other bits of the) |
| // uint to recover the int. |
| func (state *encoderState) encodeInt(i int64) { |
| var x uint64 |
| if i < 0 { |
| x = uint64(^i<<1) | 1 |
| } else { |
| x = uint64(i << 1) |
| } |
| state.encodeUint(uint64(x)) |
| } |
| |
| // encOp is the signature of an encoding operator for a given type. |
| type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer) |
| |
| // The 'instructions' of the encoding machine |
| type encInstr struct { |
| op encOp |
| field int // field number |
| indir int // how many pointer indirections to reach the value in the struct |
| offset uintptr // offset in the structure of the field to encode |
| } |
| |
| // update emits a field number and updates the state to record its value for delta encoding. |
| // If the instruction pointer is nil, it does nothing |
| func (state *encoderState) update(instr *encInstr) { |
| if instr != nil { |
| state.encodeUint(uint64(instr.field - state.fieldnum)) |
| state.fieldnum = instr.field |
| } |
| } |
| |
| // Each encoder for a composite is responsible for handling any |
| // indirections associated with the elements of the data structure. |
| // If any pointer so reached is nil, no bytes are written. If the |
| // data item is zero, no bytes are written. Single values - ints, |
| // strings etc. - are indirected before calling their encoders. |
| // Otherwise, the output (for a scalar) is the field number, as an |
| // encoded integer, followed by the field data in its appropriate |
| // format. |
| |
| // encIndirect dereferences p indir times and returns the result. |
| func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer { |
| for ; indir > 0; indir-- { |
| p = *(*unsafe.Pointer)(p) |
| if p == nil { |
| return unsafe.Pointer(nil) |
| } |
| } |
| return p |
| } |
| |
| // encBool encodes the bool with address p as an unsigned 0 or 1. |
| func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| b := *(*bool)(p) |
| if b || state.sendZero { |
| state.update(i) |
| if b { |
| state.encodeUint(1) |
| } else { |
| state.encodeUint(0) |
| } |
| } |
| } |
| |
| // encInt encodes the int with address p. |
| func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := int64(*(*int)(p)) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeInt(v) |
| } |
| } |
| |
| // encUint encodes the uint with address p. |
| func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := uint64(*(*uint)(p)) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(v) |
| } |
| } |
| |
| // encInt8 encodes the int8 with address p. |
| func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := int64(*(*int8)(p)) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeInt(v) |
| } |
| } |
| |
| // encUint8 encodes the uint8 with address p. |
| func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := uint64(*(*uint8)(p)) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(v) |
| } |
| } |
| |
| // encInt16 encodes the int16 with address p. |
| func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := int64(*(*int16)(p)) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeInt(v) |
| } |
| } |
| |
| // encUint16 encodes the uint16 with address p. |
| func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := uint64(*(*uint16)(p)) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(v) |
| } |
| } |
| |
| // encInt32 encodes the int32 with address p. |
| func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := int64(*(*int32)(p)) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeInt(v) |
| } |
| } |
| |
| // encUint encodes the uint32 with address p. |
| func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := uint64(*(*uint32)(p)) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(v) |
| } |
| } |
| |
| // encInt64 encodes the int64 with address p. |
| func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := *(*int64)(p) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeInt(v) |
| } |
| } |
| |
| // encInt64 encodes the uint64 with address p. |
| func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := *(*uint64)(p) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(v) |
| } |
| } |
| |
| // encUintptr encodes the uintptr with address p. |
| func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| v := uint64(*(*uintptr)(p)) |
| if v != 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(v) |
| } |
| } |
| |
| // floatBits returns a uint64 holding the bits of a floating-point number. |
| // Floating-point numbers are transmitted as uint64s holding the bits |
| // of the underlying representation. They are sent byte-reversed, with |
| // the exponent end coming out first, so integer floating point numbers |
| // (for example) transmit more compactly. This routine does the |
| // swizzling. |
| func floatBits(f float64) uint64 { |
| u := math.Float64bits(f) |
| var v uint64 |
| for i := 0; i < 8; i++ { |
| v <<= 8 |
| v |= u & 0xFF |
| u >>= 8 |
| } |
| return v |
| } |
| |
| // encFloat32 encodes the float32 with address p. |
| func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| f := *(*float32)(p) |
| if f != 0 || state.sendZero { |
| v := floatBits(float64(f)) |
| state.update(i) |
| state.encodeUint(v) |
| } |
| } |
| |
| // encFloat64 encodes the float64 with address p. |
| func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| f := *(*float64)(p) |
| if f != 0 || state.sendZero { |
| state.update(i) |
| v := floatBits(f) |
| state.encodeUint(v) |
| } |
| } |
| |
| // encComplex64 encodes the complex64 with address p. |
| // Complex numbers are just a pair of floating-point numbers, real part first. |
| func encComplex64(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| c := *(*complex64)(p) |
| if c != 0+0i || state.sendZero { |
| rpart := floatBits(float64(real(c))) |
| ipart := floatBits(float64(imag(c))) |
| state.update(i) |
| state.encodeUint(rpart) |
| state.encodeUint(ipart) |
| } |
| } |
| |
| // encComplex128 encodes the complex128 with address p. |
| func encComplex128(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| c := *(*complex128)(p) |
| if c != 0+0i || state.sendZero { |
| rpart := floatBits(real(c)) |
| ipart := floatBits(imag(c)) |
| state.update(i) |
| state.encodeUint(rpart) |
| state.encodeUint(ipart) |
| } |
| } |
| |
| // encUint8Array encodes the byte slice whose header has address p. |
| // Byte arrays are encoded as an unsigned count followed by the raw bytes. |
| func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| b := *(*[]byte)(p) |
| if len(b) > 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(uint64(len(b))) |
| state.b.Write(b) |
| } |
| } |
| |
| // encString encodes the string whose header has address p. |
| // Strings are encoded as an unsigned count followed by the raw bytes. |
| func encString(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| s := *(*string)(p) |
| if len(s) > 0 || state.sendZero { |
| state.update(i) |
| state.encodeUint(uint64(len(s))) |
| state.b.WriteString(s) |
| } |
| } |
| |
| // encStructTerminator encodes the end of an encoded struct |
| // as delta field number of 0. |
| func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| state.encodeUint(0) |
| } |
| |
| // Execution engine |
| |
| // encEngine an array of instructions indexed by field number of the encoding |
| // data, typically a struct. It is executed top to bottom, walking the struct. |
| type encEngine struct { |
| instr []encInstr |
| } |
| |
| const singletonField = 0 |
| |
| // encodeSingle encodes a single top-level non-struct value. |
| func (enc *Encoder) encodeSingle(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) { |
| state := enc.newEncoderState(b) |
| state.fieldnum = singletonField |
| // There is no surrounding struct to frame the transmission, so we must |
| // generate data even if the item is zero. To do this, set sendZero. |
| state.sendZero = true |
| instr := &engine.instr[singletonField] |
| p := basep // offset will be zero |
| if instr.indir > 0 { |
| if p = encIndirect(p, instr.indir); p == nil { |
| return |
| } |
| } |
| instr.op(instr, state, p) |
| enc.freeEncoderState(state) |
| } |
| |
| // encodeStruct encodes a single struct value. |
| func (enc *Encoder) encodeStruct(b *bytes.Buffer, engine *encEngine, basep unsafe.Pointer) { |
| state := enc.newEncoderState(b) |
| state.fieldnum = -1 |
| for i := 0; i < len(engine.instr); i++ { |
| instr := &engine.instr[i] |
| p := unsafe.Pointer(uintptr(basep) + instr.offset) |
| if instr.indir > 0 { |
| if p = encIndirect(p, instr.indir); p == nil { |
| continue |
| } |
| } |
| instr.op(instr, state, p) |
| } |
| enc.freeEncoderState(state) |
| } |
| |
| // encodeArray encodes the array whose 0th element is at p. |
| func (enc *Encoder) encodeArray(b *bytes.Buffer, p unsafe.Pointer, op encOp, elemWid uintptr, elemIndir int, length int) { |
| state := enc.newEncoderState(b) |
| state.fieldnum = -1 |
| state.sendZero = true |
| state.encodeUint(uint64(length)) |
| for i := 0; i < length; i++ { |
| elemp := p |
| if elemIndir > 0 { |
| up := encIndirect(elemp, elemIndir) |
| if up == nil { |
| errorf("encodeArray: nil element") |
| } |
| elemp = up |
| } |
| op(nil, state, elemp) |
| p = unsafe.Pointer(uintptr(p) + elemWid) |
| } |
| enc.freeEncoderState(state) |
| } |
| |
| // encodeReflectValue is a helper for maps. It encodes the value v. |
| func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { |
| for i := 0; i < indir && v.IsValid(); i++ { |
| v = reflect.Indirect(v) |
| } |
| if !v.IsValid() { |
| errorf("encodeReflectValue: nil element") |
| } |
| op(nil, state, unsafeAddr(v)) |
| } |
| |
| // encodeMap encodes a map as unsigned count followed by key:value pairs. |
| // Because map internals are not exposed, we must use reflection rather than |
| // addresses. |
| func (enc *Encoder) encodeMap(b *bytes.Buffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { |
| state := enc.newEncoderState(b) |
| state.fieldnum = -1 |
| state.sendZero = true |
| keys := mv.MapKeys() |
| state.encodeUint(uint64(len(keys))) |
| for _, key := range keys { |
| encodeReflectValue(state, key, keyOp, keyIndir) |
| encodeReflectValue(state, mv.MapIndex(key), elemOp, elemIndir) |
| } |
| enc.freeEncoderState(state) |
| } |
| |
| // encodeInterface encodes the interface value iv. |
| // To send an interface, we send a string identifying the concrete type, followed |
| // by the type identifier (which might require defining that type right now), followed |
| // by the concrete value. A nil value gets sent as the empty string for the name, |
| // followed by no value. |
| func (enc *Encoder) encodeInterface(b *bytes.Buffer, iv reflect.Value) { |
| // Gobs can encode nil interface values but not typed interface |
| // values holding nil pointers, since nil pointers point to no value. |
| elem := iv.Elem() |
| if elem.Kind() == reflect.Ptr && elem.IsNil() { |
| errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type()) |
| } |
| state := enc.newEncoderState(b) |
| state.fieldnum = -1 |
| state.sendZero = true |
| if iv.IsNil() { |
| state.encodeUint(0) |
| return |
| } |
| |
| ut := userType(iv.Elem().Type()) |
| registerLock.RLock() |
| name, ok := concreteTypeToName[ut.base] |
| registerLock.RUnlock() |
| if !ok { |
| errorf("type not registered for interface: %s", ut.base) |
| } |
| // Send the name. |
| state.encodeUint(uint64(len(name))) |
| _, err := state.b.WriteString(name) |
| if err != nil { |
| error_(err) |
| } |
| // Define the type id if necessary. |
| enc.sendTypeDescriptor(enc.writer(), state, ut) |
| // Send the type id. |
| enc.sendTypeId(state, ut) |
| // Encode the value into a new buffer. Any nested type definitions |
| // should be written to b, before the encoded value. |
| enc.pushWriter(b) |
| data := new(bytes.Buffer) |
| data.Write(spaceForLength) |
| enc.encode(data, elem, ut) |
| if enc.err != nil { |
| error_(enc.err) |
| } |
| enc.popWriter() |
| enc.writeMessage(b, data) |
| if enc.err != nil { |
| error_(err) |
| } |
| enc.freeEncoderState(state) |
| } |
| |
| // isZero reports whether the value is the zero of its type. |
| func isZero(val reflect.Value) bool { |
| switch val.Kind() { |
| case reflect.Array: |
| for i := 0; i < val.Len(); i++ { |
| if !isZero(val.Index(i)) { |
| return false |
| } |
| } |
| return true |
| case reflect.Map, reflect.Slice, reflect.String: |
| return val.Len() == 0 |
| case reflect.Bool: |
| return !val.Bool() |
| case reflect.Complex64, reflect.Complex128: |
| return val.Complex() == 0 |
| case reflect.Chan, reflect.Func, reflect.Ptr: |
| return val.IsNil() |
| case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: |
| return val.Int() == 0 |
| case reflect.Float32, reflect.Float64: |
| return val.Float() == 0 |
| case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr: |
| return val.Uint() == 0 |
| case reflect.Struct: |
| for i := 0; i < val.NumField(); i++ { |
| if !isZero(val.Field(i)) { |
| return false |
| } |
| } |
| return true |
| } |
| panic("unknown type in isZero " + val.Type().String()) |
| } |
| |
| // encGobEncoder encodes a value that implements the GobEncoder interface. |
| // The data is sent as a byte array. |
| func (enc *Encoder) encodeGobEncoder(b *bytes.Buffer, ut *userTypeInfo, v reflect.Value) { |
| // TODO: should we catch panics from the called method? |
| |
| var data []byte |
| var err error |
| // We know it's one of these. |
| switch ut.externalEnc { |
| case xGob: |
| data, err = v.Interface().(GobEncoder).GobEncode() |
| case xBinary: |
| data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary() |
| case xText: |
| data, err = v.Interface().(encoding.TextMarshaler).MarshalText() |
| } |
| if err != nil { |
| error_(err) |
| } |
| state := enc.newEncoderState(b) |
| state.fieldnum = -1 |
| state.encodeUint(uint64(len(data))) |
| state.b.Write(data) |
| enc.freeEncoderState(state) |
| } |
| |
| var encOpTable = [...]encOp{ |
| reflect.Bool: encBool, |
| reflect.Int: encInt, |
| reflect.Int8: encInt8, |
| reflect.Int16: encInt16, |
| reflect.Int32: encInt32, |
| reflect.Int64: encInt64, |
| reflect.Uint: encUint, |
| reflect.Uint8: encUint8, |
| reflect.Uint16: encUint16, |
| reflect.Uint32: encUint32, |
| reflect.Uint64: encUint64, |
| reflect.Uintptr: encUintptr, |
| reflect.Float32: encFloat32, |
| reflect.Float64: encFloat64, |
| reflect.Complex64: encComplex64, |
| reflect.Complex128: encComplex128, |
| reflect.String: encString, |
| } |
| |
| // encOpFor returns (a pointer to) the encoding op for the base type under rt and |
| // the indirection count to reach it. |
| func (enc *Encoder) encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp) (*encOp, int) { |
| ut := userType(rt) |
| // If the type implements GobEncoder, we handle it without further processing. |
| if ut.externalEnc != 0 { |
| return enc.gobEncodeOpFor(ut) |
| } |
| // If this type is already in progress, it's a recursive type (e.g. map[string]*T). |
| // Return the pointer to the op we're already building. |
| if opPtr := inProgress[rt]; opPtr != nil { |
| return opPtr, ut.indir |
| } |
| typ := ut.base |
| indir := ut.indir |
| k := typ.Kind() |
| var op encOp |
| if int(k) < len(encOpTable) { |
| op = encOpTable[k] |
| } |
| if op == nil { |
| inProgress[rt] = &op |
| // Special cases |
| switch t := typ; t.Kind() { |
| case reflect.Slice: |
| if t.Elem().Kind() == reflect.Uint8 { |
| op = encUint8Array |
| break |
| } |
| // Slices have a header; we decode it to find the underlying array. |
| elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) |
| op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| slice := (*reflect.SliceHeader)(p) |
| if !state.sendZero && slice.Len == 0 { |
| return |
| } |
| state.update(i) |
| state.enc.encodeArray(state.b, unsafe.Pointer(slice.Data), *elemOp, t.Elem().Size(), elemIndir, int(slice.Len)) |
| } |
| case reflect.Array: |
| // True arrays have size in the type. |
| elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) |
| op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| state.update(i) |
| state.enc.encodeArray(state.b, p, *elemOp, t.Elem().Size(), elemIndir, t.Len()) |
| } |
| case reflect.Map: |
| keyOp, keyIndir := enc.encOpFor(t.Key(), inProgress) |
| elemOp, elemIndir := enc.encOpFor(t.Elem(), inProgress) |
| op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| // Maps cannot be accessed by moving addresses around the way |
| // that slices etc. can. We must recover a full reflection value for |
| // the iteration. |
| v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() |
| mv := reflect.Indirect(v) |
| // We send zero-length (but non-nil) maps because the |
| // receiver might want to use the map. (Maps don't use append.) |
| if !state.sendZero && mv.IsNil() { |
| return |
| } |
| state.update(i) |
| state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir) |
| } |
| case reflect.Struct: |
| // Generate a closure that calls out to the engine for the nested type. |
| enc.getEncEngine(userType(typ)) |
| info := mustGetTypeInfo(typ) |
| op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| state.update(i) |
| // indirect through info to delay evaluation for recursive structs |
| state.enc.encodeStruct(state.b, info.encoder, p) |
| } |
| case reflect.Interface: |
| op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| // Interfaces transmit the name and contents of the concrete |
| // value they contain. |
| v := reflect.NewAt(t, unsafe.Pointer(p)).Elem() |
| iv := reflect.Indirect(v) |
| if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { |
| return |
| } |
| state.update(i) |
| state.enc.encodeInterface(state.b, iv) |
| } |
| } |
| } |
| if op == nil { |
| errorf("can't happen: encode type %s", rt) |
| } |
| return &op, indir |
| } |
| |
| // gobEncodeOpFor returns the op for a type that is known to implement |
| // GobEncoder. |
| func (enc *Encoder) gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { |
| rt := ut.user |
| if ut.encIndir == -1 { |
| rt = reflect.PtrTo(rt) |
| } else if ut.encIndir > 0 { |
| for i := int8(0); i < ut.encIndir; i++ { |
| rt = rt.Elem() |
| } |
| } |
| var op encOp |
| op = func(i *encInstr, state *encoderState, p unsafe.Pointer) { |
| var v reflect.Value |
| if ut.encIndir == -1 { |
| // Need to climb up one level to turn value into pointer. |
| v = reflect.NewAt(rt, unsafe.Pointer(&p)).Elem() |
| } else { |
| v = reflect.NewAt(rt, p).Elem() |
| } |
| if !state.sendZero && isZero(v) { |
| return |
| } |
| state.update(i) |
| state.enc.encodeGobEncoder(state.b, ut, v) |
| } |
| return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver. |
| } |
| |
| // compileEnc returns the engine to compile the type. |
| func (enc *Encoder) compileEnc(ut *userTypeInfo) *encEngine { |
| srt := ut.base |
| engine := new(encEngine) |
| seen := make(map[reflect.Type]*encOp) |
| rt := ut.base |
| if ut.externalEnc != 0 { |
| rt = ut.user |
| } |
| if ut.externalEnc == 0 && srt.Kind() == reflect.Struct { |
| for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ { |
| f := srt.Field(fieldNum) |
| if !isSent(&f) { |
| continue |
| } |
| op, indir := enc.encOpFor(f.Type, seen) |
| engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, indir, uintptr(f.Offset)}) |
| wireFieldNum++ |
| } |
| if srt.NumField() > 0 && len(engine.instr) == 0 { |
| errorf("type %s has no exported fields", rt) |
| } |
| engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, 0, 0}) |
| } else { |
| engine.instr = make([]encInstr, 1) |
| op, indir := enc.encOpFor(rt, seen) |
| engine.instr[0] = encInstr{*op, singletonField, indir, 0} // offset is zero |
| } |
| return engine |
| } |
| |
| // getEncEngine returns the engine to compile the type. |
| // typeLock must be held (or we're in initialization and guaranteed single-threaded). |
| func (enc *Encoder) getEncEngine(ut *userTypeInfo) *encEngine { |
| info, err1 := getTypeInfo(ut) |
| if err1 != nil { |
| error_(err1) |
| } |
| if info.encoder == nil { |
| // Assign the encEngine now, so recursive types work correctly. But... |
| info.encoder = new(encEngine) |
| // ... if we fail to complete building the engine, don't cache the half-built machine. |
| // Doing this here means we won't cache a type that is itself OK but |
| // that contains a nested type that won't compile. The result is consistent |
| // error behavior when Encode is called multiple times on the top-level type. |
| ok := false |
| defer func() { |
| if !ok { |
| info.encoder = nil |
| } |
| }() |
| info.encoder = enc.compileEnc(ut) |
| ok = true |
| } |
| return info.encoder |
| } |
| |
| // lockAndGetEncEngine is a function that locks and compiles. |
| // This lets us hold the lock only while compiling, not when encoding. |
| func (enc *Encoder) lockAndGetEncEngine(ut *userTypeInfo) *encEngine { |
| typeLock.Lock() |
| defer typeLock.Unlock() |
| return enc.getEncEngine(ut) |
| } |
| |
| func (enc *Encoder) encode(b *bytes.Buffer, value reflect.Value, ut *userTypeInfo) { |
| defer catchError(&enc.err) |
| engine := enc.lockAndGetEncEngine(ut) |
| indir := ut.indir |
| if ut.externalEnc != 0 { |
| indir = int(ut.encIndir) |
| } |
| for i := 0; i < indir; i++ { |
| value = reflect.Indirect(value) |
| } |
| if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct { |
| enc.encodeStruct(b, engine, unsafeAddr(value)) |
| } else { |
| enc.encodeSingle(b, engine, unsafeAddr(value)) |
| } |
| } |