blob: d88e47170c3a676b3ffa83acebb82a27fbb0e5cf [file] [log] [blame]
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements typechecking of statements.
package types
import (
"go/ast"
"go/constant"
"go/token"
"sort"
)
func (check *Checker) funcBody(decl *declInfo, name string, sig *Signature, body *ast.BlockStmt, iota constant.Value) {
if trace {
check.trace(body.Pos(), "--- %s: %s", name, sig)
defer func() {
check.trace(body.End(), "--- <end>")
}()
}
// set function scope extent
sig.scope.pos = body.Pos()
sig.scope.end = body.End()
// save/restore current context and setup function context
// (and use 0 indentation at function start)
defer func(ctxt context, indent int) {
check.context = ctxt
check.indent = indent
}(check.context, check.indent)
check.context = context{
decl: decl,
scope: sig.scope,
iota: iota,
sig: sig,
}
check.indent = 0
check.stmtList(0, body.List)
if check.hasLabel {
check.labels(body)
}
if sig.results.Len() > 0 && !check.isTerminating(body, "") {
check.error(atPos(body.Rbrace), _MissingReturn, "missing return")
}
// spec: "Implementation restriction: A compiler may make it illegal to
// declare a variable inside a function body if the variable is never used."
check.usage(sig.scope)
}
func (check *Checker) usage(scope *Scope) {
var unused []*Var
for _, elem := range scope.elems {
if v, _ := elem.(*Var); v != nil && !v.used {
unused = append(unused, v)
}
}
sort.Slice(unused, func(i, j int) bool {
return unused[i].pos < unused[j].pos
})
for _, v := range unused {
check.softErrorf(v, _UnusedVar, "%s declared but not used", v.name)
}
for _, scope := range scope.children {
// Don't go inside function literal scopes a second time;
// they are handled explicitly by funcBody.
if !scope.isFunc {
check.usage(scope)
}
}
}
// stmtContext is a bitset describing which
// control-flow statements are permissible,
// and provides additional context information
// for better error messages.
type stmtContext uint
const (
// permissible control-flow statements
breakOk stmtContext = 1 << iota
continueOk
fallthroughOk
// additional context information
finalSwitchCase
)
func (check *Checker) simpleStmt(s ast.Stmt) {
if s != nil {
check.stmt(0, s)
}
}
func trimTrailingEmptyStmts(list []ast.Stmt) []ast.Stmt {
for i := len(list); i > 0; i-- {
if _, ok := list[i-1].(*ast.EmptyStmt); !ok {
return list[:i]
}
}
return nil
}
func (check *Checker) stmtList(ctxt stmtContext, list []ast.Stmt) {
ok := ctxt&fallthroughOk != 0
inner := ctxt &^ fallthroughOk
list = trimTrailingEmptyStmts(list) // trailing empty statements are "invisible" to fallthrough analysis
for i, s := range list {
inner := inner
if ok && i+1 == len(list) {
inner |= fallthroughOk
}
check.stmt(inner, s)
}
}
func (check *Checker) multipleDefaults(list []ast.Stmt) {
var first ast.Stmt
for _, s := range list {
var d ast.Stmt
switch c := s.(type) {
case *ast.CaseClause:
if len(c.List) == 0 {
d = s
}
case *ast.CommClause:
if c.Comm == nil {
d = s
}
default:
check.invalidAST(s, "case/communication clause expected")
}
if d != nil {
if first != nil {
check.errorf(d, _DuplicateDefault, "multiple defaults (first at %s)", check.fset.Position(first.Pos()))
} else {
first = d
}
}
}
}
func (check *Checker) openScope(s ast.Stmt, comment string) {
scope := NewScope(check.scope, s.Pos(), s.End(), comment)
check.recordScope(s, scope)
check.scope = scope
}
func (check *Checker) closeScope() {
check.scope = check.scope.Parent()
}
func assignOp(op token.Token) token.Token {
// token_test.go verifies the token ordering this function relies on
if token.ADD_ASSIGN <= op && op <= token.AND_NOT_ASSIGN {
return op + (token.ADD - token.ADD_ASSIGN)
}
return token.ILLEGAL
}
func (check *Checker) suspendedCall(keyword string, call *ast.CallExpr) {
var x operand
var msg string
var code errorCode
switch check.rawExpr(&x, call, nil) {
case conversion:
msg = "requires function call, not conversion"
code = _InvalidDefer
if keyword == "go" {
code = _InvalidGo
}
case expression:
msg = "discards result of"
code = _UnusedResults
case statement:
return
default:
unreachable()
}
check.errorf(&x, code, "%s %s %s", keyword, msg, &x)
}
// goVal returns the Go value for val, or nil.
func goVal(val constant.Value) interface{} {
// val should exist, but be conservative and check
if val == nil {
return nil
}
// Match implementation restriction of other compilers.
// gc only checks duplicates for integer, floating-point
// and string values, so only create Go values for these
// types.
switch val.Kind() {
case constant.Int:
if x, ok := constant.Int64Val(val); ok {
return x
}
if x, ok := constant.Uint64Val(val); ok {
return x
}
case constant.Float:
if x, ok := constant.Float64Val(val); ok {
return x
}
case constant.String:
return constant.StringVal(val)
}
return nil
}
// A valueMap maps a case value (of a basic Go type) to a list of positions
// where the same case value appeared, together with the corresponding case
// types.
// Since two case values may have the same "underlying" value but different
// types we need to also check the value's types (e.g., byte(1) vs myByte(1))
// when the switch expression is of interface type.
type (
valueMap map[interface{}][]valueType // underlying Go value -> valueType
valueType struct {
pos token.Pos
typ Type
}
)
func (check *Checker) caseValues(x *operand, values []ast.Expr, seen valueMap) {
L:
for _, e := range values {
var v operand
check.expr(&v, e)
if x.mode == invalid || v.mode == invalid {
continue L
}
check.convertUntyped(&v, x.typ)
if v.mode == invalid {
continue L
}
// Order matters: By comparing v against x, error positions are at the case values.
res := v // keep original v unchanged
check.comparison(&res, x, token.EQL)
if res.mode == invalid {
continue L
}
if v.mode != constant_ {
continue L // we're done
}
// look for duplicate values
if val := goVal(v.val); val != nil {
// look for duplicate types for a given value
// (quadratic algorithm, but these lists tend to be very short)
for _, vt := range seen[val] {
if check.identical(v.typ, vt.typ) {
check.errorf(&v, _DuplicateCase, "duplicate case %s in expression switch", &v)
check.error(atPos(vt.pos), _DuplicateCase, "\tprevious case") // secondary error, \t indented
continue L
}
}
seen[val] = append(seen[val], valueType{v.Pos(), v.typ})
}
}
}
func (check *Checker) caseTypes(x *operand, xtyp *Interface, types []ast.Expr, seen map[Type]ast.Expr) (T Type) {
L:
for _, e := range types {
T = check.typOrNil(e)
if T == Typ[Invalid] {
continue L
}
// look for duplicate types
// (quadratic algorithm, but type switches tend to be reasonably small)
for t, other := range seen {
if T == nil && t == nil || T != nil && t != nil && check.identical(T, t) {
// talk about "case" rather than "type" because of nil case
Ts := "nil"
if T != nil {
Ts = T.String()
}
check.errorf(e, _DuplicateCase, "duplicate case %s in type switch", Ts)
check.error(other, _DuplicateCase, "\tprevious case") // secondary error, \t indented
continue L
}
}
seen[T] = e
if T != nil {
check.typeAssertion(e, x, xtyp, T)
}
}
return
}
// stmt typechecks statement s.
func (check *Checker) stmt(ctxt stmtContext, s ast.Stmt) {
// statements must end with the same top scope as they started with
if debug {
defer func(scope *Scope) {
// don't check if code is panicking
if p := recover(); p != nil {
panic(p)
}
assert(scope == check.scope)
}(check.scope)
}
// process collected function literals before scope changes
defer check.processDelayed(len(check.delayed))
inner := ctxt &^ (fallthroughOk | finalSwitchCase)
switch s := s.(type) {
case *ast.BadStmt, *ast.EmptyStmt:
// ignore
case *ast.DeclStmt:
check.declStmt(s.Decl)
case *ast.LabeledStmt:
check.hasLabel = true
check.stmt(ctxt, s.Stmt)
case *ast.ExprStmt:
// spec: "With the exception of specific built-in functions,
// function and method calls and receive operations can appear
// in statement context. Such statements may be parenthesized."
var x operand
kind := check.rawExpr(&x, s.X, nil)
var msg string
var code errorCode
switch x.mode {
default:
if kind == statement {
return
}
msg = "is not used"
code = _UnusedExpr
case builtin:
msg = "must be called"
code = _UncalledBuiltin
case typexpr:
msg = "is not an expression"
code = _NotAnExpr
}
check.errorf(&x, code, "%s %s", &x, msg)
case *ast.SendStmt:
var ch, x operand
check.expr(&ch, s.Chan)
check.expr(&x, s.Value)
if ch.mode == invalid || x.mode == invalid {
return
}
tch, ok := ch.typ.Underlying().(*Chan)
if !ok {
check.invalidOp(inNode(s, s.Arrow), _InvalidSend, "cannot send to non-chan type %s", ch.typ)
return
}
if tch.dir == RecvOnly {
check.invalidOp(inNode(s, s.Arrow), _InvalidSend, "cannot send to receive-only type %s", tch)
return
}
check.assignment(&x, tch.elem, "send")
case *ast.IncDecStmt:
var op token.Token
switch s.Tok {
case token.INC:
op = token.ADD
case token.DEC:
op = token.SUB
default:
check.invalidAST(inNode(s, s.TokPos), "unknown inc/dec operation %s", s.Tok)
return
}
var x operand
check.expr(&x, s.X)
if x.mode == invalid {
return
}
if !isNumeric(x.typ) {
check.invalidOp(s.X, _NonNumericIncDec, "%s%s (non-numeric type %s)", s.X, s.Tok, x.typ)
return
}
Y := &ast.BasicLit{ValuePos: s.X.Pos(), Kind: token.INT, Value: "1"} // use x's position
check.binary(&x, nil, s.X, Y, op, s.TokPos)
if x.mode == invalid {
return
}
check.assignVar(s.X, &x)
case *ast.AssignStmt:
switch s.Tok {
case token.ASSIGN, token.DEFINE:
if len(s.Lhs) == 0 {
check.invalidAST(s, "missing lhs in assignment")
return
}
if s.Tok == token.DEFINE {
check.shortVarDecl(inNode(s, s.TokPos), s.Lhs, s.Rhs)
} else {
// regular assignment
check.assignVars(s.Lhs, s.Rhs)
}
default:
// assignment operations
if len(s.Lhs) != 1 || len(s.Rhs) != 1 {
check.errorf(inNode(s, s.TokPos), _MultiValAssignOp, "assignment operation %s requires single-valued expressions", s.Tok)
return
}
op := assignOp(s.Tok)
if op == token.ILLEGAL {
check.invalidAST(atPos(s.TokPos), "unknown assignment operation %s", s.Tok)
return
}
var x operand
check.binary(&x, nil, s.Lhs[0], s.Rhs[0], op, s.TokPos)
if x.mode == invalid {
return
}
check.assignVar(s.Lhs[0], &x)
}
case *ast.GoStmt:
check.suspendedCall("go", s.Call)
case *ast.DeferStmt:
check.suspendedCall("defer", s.Call)
case *ast.ReturnStmt:
res := check.sig.results
if res.Len() > 0 {
// function returns results
// (if one, say the first, result parameter is named, all of them are named)
if len(s.Results) == 0 && res.vars[0].name != "" {
// spec: "Implementation restriction: A compiler may disallow an empty expression
// list in a "return" statement if a different entity (constant, type, or variable)
// with the same name as a result parameter is in scope at the place of the return."
for _, obj := range res.vars {
if alt := check.lookup(obj.name); alt != nil && alt != obj {
check.errorf(s, _OutOfScopeResult, "result parameter %s not in scope at return", obj.name)
check.errorf(alt, _OutOfScopeResult, "\tinner declaration of %s", obj)
// ok to continue
}
}
} else {
// return has results or result parameters are unnamed
check.initVars(res.vars, s.Results, s.Return)
}
} else if len(s.Results) > 0 {
check.error(s.Results[0], _WrongResultCount, "no result values expected")
check.use(s.Results...)
}
case *ast.BranchStmt:
if s.Label != nil {
check.hasLabel = true
return // checked in 2nd pass (check.labels)
}
switch s.Tok {
case token.BREAK:
if ctxt&breakOk == 0 {
check.error(s, _MisplacedBreak, "break not in for, switch, or select statement")
}
case token.CONTINUE:
if ctxt&continueOk == 0 {
check.error(s, _MisplacedContinue, "continue not in for statement")
}
case token.FALLTHROUGH:
if ctxt&fallthroughOk == 0 {
msg := "fallthrough statement out of place"
code := _MisplacedFallthrough
if ctxt&finalSwitchCase != 0 {
msg = "cannot fallthrough final case in switch"
}
check.error(s, code, msg)
}
default:
check.invalidAST(s, "branch statement: %s", s.Tok)
}
case *ast.BlockStmt:
check.openScope(s, "block")
defer check.closeScope()
check.stmtList(inner, s.List)
case *ast.IfStmt:
check.openScope(s, "if")
defer check.closeScope()
check.simpleStmt(s.Init)
var x operand
check.expr(&x, s.Cond)
if x.mode != invalid && !isBoolean(x.typ) {
check.error(s.Cond, _InvalidCond, "non-boolean condition in if statement")
}
check.stmt(inner, s.Body)
// The parser produces a correct AST but if it was modified
// elsewhere the else branch may be invalid. Check again.
switch s.Else.(type) {
case nil, *ast.BadStmt:
// valid or error already reported
case *ast.IfStmt, *ast.BlockStmt:
check.stmt(inner, s.Else)
default:
check.invalidAST(s.Else, "invalid else branch in if statement")
}
case *ast.SwitchStmt:
inner |= breakOk
check.openScope(s, "switch")
defer check.closeScope()
check.simpleStmt(s.Init)
var x operand
if s.Tag != nil {
check.expr(&x, s.Tag)
// By checking assignment of x to an invisible temporary
// (as a compiler would), we get all the relevant checks.
check.assignment(&x, nil, "switch expression")
if x.mode != invalid && !Comparable(x.typ) && !hasNil(x.typ) {
check.errorf(&x, _InvalidExprSwitch, "cannot switch on %s (%s is not comparable)", &x, x.typ)
x.mode = invalid
}
} else {
// spec: "A missing switch expression is
// equivalent to the boolean value true."
x.mode = constant_
x.typ = Typ[Bool]
x.val = constant.MakeBool(true)
x.expr = &ast.Ident{NamePos: s.Body.Lbrace, Name: "true"}
}
check.multipleDefaults(s.Body.List)
seen := make(valueMap) // map of seen case values to positions and types
for i, c := range s.Body.List {
clause, _ := c.(*ast.CaseClause)
if clause == nil {
check.invalidAST(c, "incorrect expression switch case")
continue
}
check.caseValues(&x, clause.List, seen)
check.openScope(clause, "case")
inner := inner
if i+1 < len(s.Body.List) {
inner |= fallthroughOk
} else {
inner |= finalSwitchCase
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
case *ast.TypeSwitchStmt:
inner |= breakOk
check.openScope(s, "type switch")
defer check.closeScope()
check.simpleStmt(s.Init)
// A type switch guard must be of the form:
//
// TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
//
// The parser is checking syntactic correctness;
// remaining syntactic errors are considered AST errors here.
// TODO(gri) better factoring of error handling (invalid ASTs)
//
var lhs *ast.Ident // lhs identifier or nil
var rhs ast.Expr
switch guard := s.Assign.(type) {
case *ast.ExprStmt:
rhs = guard.X
case *ast.AssignStmt:
if len(guard.Lhs) != 1 || guard.Tok != token.DEFINE || len(guard.Rhs) != 1 {
check.invalidAST(s, "incorrect form of type switch guard")
return
}
lhs, _ = guard.Lhs[0].(*ast.Ident)
if lhs == nil {
check.invalidAST(s, "incorrect form of type switch guard")
return
}
if lhs.Name == "_" {
// _ := x.(type) is an invalid short variable declaration
check.softErrorf(lhs, _NoNewVar, "no new variable on left side of :=")
lhs = nil // avoid declared but not used error below
} else {
check.recordDef(lhs, nil) // lhs variable is implicitly declared in each cause clause
}
rhs = guard.Rhs[0]
default:
check.invalidAST(s, "incorrect form of type switch guard")
return
}
// rhs must be of the form: expr.(type) and expr must be an interface
expr, _ := rhs.(*ast.TypeAssertExpr)
if expr == nil || expr.Type != nil {
check.invalidAST(s, "incorrect form of type switch guard")
return
}
var x operand
check.expr(&x, expr.X)
if x.mode == invalid {
return
}
xtyp, _ := x.typ.Underlying().(*Interface)
if xtyp == nil {
check.errorf(&x, _InvalidTypeSwitch, "%s is not an interface", &x)
return
}
check.multipleDefaults(s.Body.List)
var lhsVars []*Var // list of implicitly declared lhs variables
seen := make(map[Type]ast.Expr) // map of seen types to positions
for _, s := range s.Body.List {
clause, _ := s.(*ast.CaseClause)
if clause == nil {
check.invalidAST(s, "incorrect type switch case")
continue
}
// Check each type in this type switch case.
T := check.caseTypes(&x, xtyp, clause.List, seen)
check.openScope(clause, "case")
// If lhs exists, declare a corresponding variable in the case-local scope.
if lhs != nil {
// spec: "The TypeSwitchGuard may include a short variable declaration.
// When that form is used, the variable is declared at the beginning of
// the implicit block in each clause. In clauses with a case listing
// exactly one type, the variable has that type; otherwise, the variable
// has the type of the expression in the TypeSwitchGuard."
if len(clause.List) != 1 || T == nil {
T = x.typ
}
obj := NewVar(lhs.Pos(), check.pkg, lhs.Name, T)
scopePos := clause.Pos() + token.Pos(len("default")) // for default clause (len(List) == 0)
if n := len(clause.List); n > 0 {
scopePos = clause.List[n-1].End()
}
check.declare(check.scope, nil, obj, scopePos)
check.recordImplicit(clause, obj)
// For the "declared but not used" error, all lhs variables act as
// one; i.e., if any one of them is 'used', all of them are 'used'.
// Collect them for later analysis.
lhsVars = append(lhsVars, obj)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
// If lhs exists, we must have at least one lhs variable that was used.
if lhs != nil {
var used bool
for _, v := range lhsVars {
if v.used {
used = true
}
v.used = true // avoid usage error when checking entire function
}
if !used {
check.softErrorf(lhs, _UnusedVar, "%s declared but not used", lhs.Name)
}
}
case *ast.SelectStmt:
inner |= breakOk
check.multipleDefaults(s.Body.List)
for _, s := range s.Body.List {
clause, _ := s.(*ast.CommClause)
if clause == nil {
continue // error reported before
}
// clause.Comm must be a SendStmt, RecvStmt, or default case
valid := false
var rhs ast.Expr // rhs of RecvStmt, or nil
switch s := clause.Comm.(type) {
case nil, *ast.SendStmt:
valid = true
case *ast.AssignStmt:
if len(s.Rhs) == 1 {
rhs = s.Rhs[0]
}
case *ast.ExprStmt:
rhs = s.X
}
// if present, rhs must be a receive operation
if rhs != nil {
if x, _ := unparen(rhs).(*ast.UnaryExpr); x != nil && x.Op == token.ARROW {
valid = true
}
}
if !valid {
check.error(clause.Comm, _InvalidSelectCase, "select case must be send or receive (possibly with assignment)")
continue
}
check.openScope(s, "case")
if clause.Comm != nil {
check.stmt(inner, clause.Comm)
}
check.stmtList(inner, clause.Body)
check.closeScope()
}
case *ast.ForStmt:
inner |= breakOk | continueOk
check.openScope(s, "for")
defer check.closeScope()
check.simpleStmt(s.Init)
if s.Cond != nil {
var x operand
check.expr(&x, s.Cond)
if x.mode != invalid && !isBoolean(x.typ) {
check.error(s.Cond, _InvalidCond, "non-boolean condition in for statement")
}
}
check.simpleStmt(s.Post)
// spec: "The init statement may be a short variable
// declaration, but the post statement must not."
if s, _ := s.Post.(*ast.AssignStmt); s != nil && s.Tok == token.DEFINE {
check.softErrorf(s, _InvalidPostDecl, "cannot declare in post statement")
// Don't call useLHS here because we want to use the lhs in
// this erroneous statement so that we don't get errors about
// these lhs variables being declared but not used.
check.use(s.Lhs...) // avoid follow-up errors
}
check.stmt(inner, s.Body)
case *ast.RangeStmt:
inner |= breakOk | continueOk
check.openScope(s, "for")
defer check.closeScope()
// check expression to iterate over
var x operand
check.expr(&x, s.X)
// determine key/value types
var key, val Type
if x.mode != invalid {
switch typ := x.typ.Underlying().(type) {
case *Basic:
if isString(typ) {
key = Typ[Int]
val = universeRune // use 'rune' name
}
case *Array:
key = Typ[Int]
val = typ.elem
case *Slice:
key = Typ[Int]
val = typ.elem
case *Pointer:
if typ, _ := typ.base.Underlying().(*Array); typ != nil {
key = Typ[Int]
val = typ.elem
}
case *Map:
key = typ.key
val = typ.elem
case *Chan:
key = typ.elem
val = Typ[Invalid]
if typ.dir == SendOnly {
check.errorf(&x, _InvalidChanRange, "cannot range over send-only channel %s", &x)
// ok to continue
}
if s.Value != nil {
check.errorf(atPos(s.Value.Pos()), _InvalidIterVar, "iteration over %s permits only one iteration variable", &x)
// ok to continue
}
}
}
if key == nil {
check.errorf(&x, _InvalidRangeExpr, "cannot range over %s", &x)
// ok to continue
}
// check assignment to/declaration of iteration variables
// (irregular assignment, cannot easily map to existing assignment checks)
// lhs expressions and initialization value (rhs) types
lhs := [2]ast.Expr{s.Key, s.Value}
rhs := [2]Type{key, val} // key, val may be nil
if s.Tok == token.DEFINE {
// short variable declaration; variable scope starts after the range clause
// (the for loop opens a new scope, so variables on the lhs never redeclare
// previously declared variables)
var vars []*Var
for i, lhs := range lhs {
if lhs == nil {
continue
}
// determine lhs variable
var obj *Var
if ident, _ := lhs.(*ast.Ident); ident != nil {
// declare new variable
name := ident.Name
obj = NewVar(ident.Pos(), check.pkg, name, nil)
check.recordDef(ident, obj)
// _ variables don't count as new variables
if name != "_" {
vars = append(vars, obj)
}
} else {
check.invalidAST(lhs, "cannot declare %s", lhs)
obj = NewVar(lhs.Pos(), check.pkg, "_", nil) // dummy variable
}
// initialize lhs variable
if typ := rhs[i]; typ != nil {
x.mode = value
x.expr = lhs // we don't have a better rhs expression to use here
x.typ = typ
check.initVar(obj, &x, "range clause")
} else {
obj.typ = Typ[Invalid]
obj.used = true // don't complain about unused variable
}
}
// declare variables
if len(vars) > 0 {
scopePos := s.X.End()
for _, obj := range vars {
// spec: "The scope of a constant or variable identifier declared inside
// a function begins at the end of the ConstSpec or VarSpec (ShortVarDecl
// for short variable declarations) and ends at the end of the innermost
// containing block."
check.declare(check.scope, nil /* recordDef already called */, obj, scopePos)
}
} else {
check.error(inNode(s, s.TokPos), _NoNewVar, "no new variables on left side of :=")
}
} else {
// ordinary assignment
for i, lhs := range lhs {
if lhs == nil {
continue
}
if typ := rhs[i]; typ != nil {
x.mode = value
x.expr = lhs // we don't have a better rhs expression to use here
x.typ = typ
check.assignVar(lhs, &x)
}
}
}
check.stmt(inner, s.Body)
default:
check.invalidAST(s, "invalid statement")
}
}