| // Copyright 2020 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| import ( |
| "cmd/compile/internal/types" |
| "cmd/internal/src" |
| "fmt" |
| "sort" |
| ) |
| |
| type selKey struct { |
| from *Value |
| offset int64 |
| size int64 |
| typ *types.Type |
| } |
| |
| type offsetKey struct { |
| from *Value |
| offset int64 |
| pt *types.Type |
| } |
| |
| // expandCalls converts LE (Late Expansion) calls that act like they receive value args into a lower-level form |
| // that is more oriented to a platform's ABI. The SelectN operations that extract results are rewritten into |
| // more appropriate forms, and any StructMake or ArrayMake inputs are decomposed until non-struct values are |
| // reached. On the callee side, OpArg nodes are not decomposed until this phase is run. |
| // TODO results should not be lowered until this phase. |
| func expandCalls(f *Func) { |
| // Calls that need lowering have some number of inputs, including a memory input, |
| // and produce a tuple of (value1, value2, ..., mem) where valueK may or may not be SSA-able. |
| |
| // With the current ABI those inputs need to be converted into stores to memory, |
| // rethreading the call's memory input to the first, and the new call now receiving the last. |
| |
| // With the current ABI, the outputs need to be converted to loads, which will all use the call's |
| // memory output as their input. |
| if !LateCallExpansionEnabledWithin(f) { |
| return |
| } |
| debug := f.pass.debug > 0 |
| |
| if debug { |
| fmt.Printf("\nexpandsCalls(%s)\n", f.Name) |
| } |
| |
| canSSAType := f.fe.CanSSA |
| regSize := f.Config.RegSize |
| sp, _ := f.spSb() |
| typ := &f.Config.Types |
| ptrSize := f.Config.PtrSize |
| |
| // For 32-bit, need to deal with decomposition of 64-bit integers, which depends on endianness. |
| var hiOffset, lowOffset int64 |
| if f.Config.BigEndian { |
| lowOffset = 4 |
| } else { |
| hiOffset = 4 |
| } |
| |
| namedSelects := make(map[*Value][]namedVal) |
| |
| sdom := f.Sdom() |
| |
| common := make(map[selKey]*Value) |
| |
| // intPairTypes returns the pair of 32-bit int types needed to encode a 64-bit integer type on a target |
| // that has no 64-bit integer registers. |
| intPairTypes := func(et types.EType) (tHi, tLo *types.Type) { |
| tHi = typ.UInt32 |
| if et == types.TINT64 { |
| tHi = typ.Int32 |
| } |
| tLo = typ.UInt32 |
| return |
| } |
| |
| // isAlreadyExpandedAggregateType returns whether a type is an SSA-able "aggregate" (multiple register) type |
| // that was expanded in an earlier phase (currently, expand_calls is intended to run after decomposeBuiltin, |
| // so this is all aggregate types -- small struct and array, complex, interface, string, slice, and 64-bit |
| // integer on 32-bit). |
| isAlreadyExpandedAggregateType := func(t *types.Type) bool { |
| if !canSSAType(t) { |
| return false |
| } |
| return t.IsStruct() || t.IsArray() || t.IsComplex() || t.IsInterface() || t.IsString() || t.IsSlice() || |
| t.Size() > regSize && t.IsInteger() |
| } |
| |
| offsets := make(map[offsetKey]*Value) |
| |
| // offsetFrom creates an offset from a pointer, simplifying chained offsets and offsets from SP |
| // TODO should also optimize offsets from SB? |
| offsetFrom := func(from *Value, offset int64, pt *types.Type) *Value { |
| if offset == 0 && from.Type == pt { // this is not actually likely |
| return from |
| } |
| // Simplify, canonicalize |
| for from.Op == OpOffPtr { |
| offset += from.AuxInt |
| from = from.Args[0] |
| } |
| if from == sp { |
| return f.ConstOffPtrSP(pt, offset, sp) |
| } |
| key := offsetKey{from, offset, pt} |
| v := offsets[key] |
| if v != nil { |
| return v |
| } |
| v = from.Block.NewValue1I(from.Pos.WithNotStmt(), OpOffPtr, pt, offset, from) |
| offsets[key] = v |
| return v |
| } |
| |
| // splitSlots splits one "field" (specified by sfx, offset, and ty) out of the LocalSlots in ls and returns the new LocalSlots this generates. |
| splitSlots := func(ls []LocalSlot, sfx string, offset int64, ty *types.Type) []LocalSlot { |
| var locs []LocalSlot |
| for i := range ls { |
| locs = append(locs, f.fe.SplitSlot(&ls[i], sfx, offset, ty)) |
| } |
| return locs |
| } |
| |
| // removeTrivialWrapperTypes unwraps layers of |
| // struct { singleField SomeType } and [1]SomeType |
| // until a non-wrapper type is reached. This is useful |
| // for working with assignments to/from interface data |
| // fields (either second operand to OpIMake or OpIData) |
| // where the wrapping or type conversion can be elided |
| // because of type conversions/assertions in source code |
| // that do not appear in SSA. |
| removeTrivialWrapperTypes := func(t *types.Type) *types.Type { |
| for { |
| if t.IsStruct() && t.NumFields() == 1 { |
| t = t.Field(0).Type |
| continue |
| } |
| if t.IsArray() && t.NumElem() == 1 { |
| t = t.Elem() |
| continue |
| } |
| break |
| } |
| return t |
| } |
| |
| // Calls that need lowering have some number of inputs, including a memory input, |
| // and produce a tuple of (value1, value2, ..., mem) where valueK may or may not be SSA-able. |
| |
| // With the current ABI those inputs need to be converted into stores to memory, |
| // rethreading the call's memory input to the first, and the new call now receiving the last. |
| |
| // With the current ABI, the outputs need to be converted to loads, which will all use the call's |
| // memory output as their input. |
| |
| // rewriteSelect recursively walks from leaf selector to a root (OpSelectN, OpLoad, OpArg) |
| // through a chain of Struct/Array/builtin Select operations. If the chain of selectors does not |
| // end in an expected root, it does nothing (this can happen depending on compiler phase ordering). |
| // The "leaf" provides the type, the root supplies the container, and the leaf-to-root path |
| // accumulates the offset. |
| // It emits the code necessary to implement the leaf select operation that leads to the root. |
| // |
| // TODO when registers really arrive, must also decompose anything split across two registers or registers and memory. |
| var rewriteSelect func(leaf *Value, selector *Value, offset int64) []LocalSlot |
| rewriteSelect = func(leaf *Value, selector *Value, offset int64) []LocalSlot { |
| if debug { |
| fmt.Printf("rewriteSelect(%s, %s, %d)\n", leaf.LongString(), selector.LongString(), offset) |
| } |
| var locs []LocalSlot |
| leafType := leaf.Type |
| if len(selector.Args) > 0 { |
| w := selector.Args[0] |
| if w.Op == OpCopy { |
| for w.Op == OpCopy { |
| w = w.Args[0] |
| } |
| selector.SetArg(0, w) |
| } |
| } |
| switch selector.Op { |
| case OpArg: |
| if !isAlreadyExpandedAggregateType(selector.Type) { |
| if leafType == selector.Type { // OpIData leads us here, sometimes. |
| leaf.copyOf(selector) |
| } else { |
| f.Fatalf("Unexpected OpArg type, selector=%s, leaf=%s\n", selector.LongString(), leaf.LongString()) |
| } |
| if debug { |
| fmt.Printf("\tOpArg, break\n") |
| } |
| break |
| } |
| switch leaf.Op { |
| case OpIData, OpStructSelect, OpArraySelect: |
| leafType = removeTrivialWrapperTypes(leaf.Type) |
| } |
| aux := selector.Aux |
| auxInt := selector.AuxInt + offset |
| if leaf.Block == selector.Block { |
| leaf.reset(OpArg) |
| leaf.Aux = aux |
| leaf.AuxInt = auxInt |
| leaf.Type = leafType |
| } else { |
| w := selector.Block.NewValue0IA(leaf.Pos, OpArg, leafType, auxInt, aux) |
| leaf.copyOf(w) |
| if debug { |
| fmt.Printf("\tnew %s\n", w.LongString()) |
| } |
| } |
| for _, s := range namedSelects[selector] { |
| locs = append(locs, f.Names[s.locIndex]) |
| } |
| |
| case OpLoad: // We end up here because of IData of immediate structures. |
| // Failure case: |
| // (note the failure case is very rare; w/o this case, make.bash and run.bash both pass, as well as |
| // the hard cases of building {syscall,math,math/cmplx,math/bits,go/constant} on ppc64le and mips-softfloat). |
| // |
| // GOSSAFUNC='(*dumper).dump' go build -gcflags=-l -tags=math_big_pure_go cmd/compile/internal/gc |
| // cmd/compile/internal/gc/dump.go:136:14: internal compiler error: '(*dumper).dump': not lowered: v827, StructSelect PTR PTR |
| // b2: ← b1 |
| // v20 (+142) = StaticLECall <interface {},mem> {AuxCall{reflect.Value.Interface([reflect.Value,0])[interface {},24]}} [40] v8 v1 |
| // v21 (142) = SelectN <mem> [1] v20 |
| // v22 (142) = SelectN <interface {}> [0] v20 |
| // b15: ← b8 |
| // v71 (+143) = IData <Nodes> v22 (v[Nodes]) |
| // v73 (+146) = StaticLECall <[]*Node,mem> {AuxCall{"".Nodes.Slice([Nodes,0])[[]*Node,8]}} [32] v71 v21 |
| // |
| // translates (w/o the "case OpLoad:" above) to: |
| // |
| // b2: ← b1 |
| // v20 (+142) = StaticCall <mem> {AuxCall{reflect.Value.Interface([reflect.Value,0])[interface {},24]}} [40] v715 |
| // v23 (142) = Load <*uintptr> v19 v20 |
| // v823 (142) = IsNonNil <bool> v23 |
| // v67 (+143) = Load <*[]*Node> v880 v20 |
| // b15: ← b8 |
| // v827 (146) = StructSelect <*[]*Node> [0] v67 |
| // v846 (146) = Store <mem> {*[]*Node} v769 v827 v20 |
| // v73 (+146) = StaticCall <mem> {AuxCall{"".Nodes.Slice([Nodes,0])[[]*Node,8]}} [32] v846 |
| // i.e., the struct select is generated and remains in because it is not applied to an actual structure. |
| // The OpLoad was created to load the single field of the IData |
| // This case removes that StructSelect. |
| if leafType != selector.Type { |
| f.Fatalf("Unexpected Load as selector, leaf=%s, selector=%s\n", leaf.LongString(), selector.LongString()) |
| } |
| leaf.copyOf(selector) |
| for _, s := range namedSelects[selector] { |
| locs = append(locs, f.Names[s.locIndex]) |
| } |
| |
| case OpSelectN: |
| // TODO these may be duplicated. Should memoize. Intermediate selectors will go dead, no worries there. |
| call := selector.Args[0] |
| aux := call.Aux.(*AuxCall) |
| which := selector.AuxInt |
| if which == aux.NResults() { // mem is after the results. |
| // rewrite v as a Copy of call -- the replacement call will produce a mem. |
| leaf.copyOf(call) |
| } else { |
| leafType := removeTrivialWrapperTypes(leaf.Type) |
| if canSSAType(leafType) { |
| pt := types.NewPtr(leafType) |
| off := offsetFrom(sp, offset+aux.OffsetOfResult(which), pt) |
| // Any selection right out of the arg area/registers has to be same Block as call, use call as mem input. |
| if leaf.Block == call.Block { |
| leaf.reset(OpLoad) |
| leaf.SetArgs2(off, call) |
| leaf.Type = leafType |
| } else { |
| w := call.Block.NewValue2(leaf.Pos, OpLoad, leafType, off, call) |
| leaf.copyOf(w) |
| if debug { |
| fmt.Printf("\tnew %s\n", w.LongString()) |
| } |
| } |
| for _, s := range namedSelects[selector] { |
| locs = append(locs, f.Names[s.locIndex]) |
| } |
| } else { |
| f.Fatalf("Should not have non-SSA-able OpSelectN, selector=%s", selector.LongString()) |
| } |
| } |
| |
| case OpStructSelect: |
| w := selector.Args[0] |
| var ls []LocalSlot |
| if w.Type.Etype != types.TSTRUCT { // IData artifact |
| ls = rewriteSelect(leaf, w, offset) |
| } else { |
| ls = rewriteSelect(leaf, w, offset+w.Type.FieldOff(int(selector.AuxInt))) |
| if w.Op != OpIData { |
| for _, l := range ls { |
| locs = append(locs, f.fe.SplitStruct(l, int(selector.AuxInt))) |
| } |
| } |
| } |
| |
| case OpArraySelect: |
| w := selector.Args[0] |
| rewriteSelect(leaf, w, offset+selector.Type.Size()*selector.AuxInt) |
| |
| case OpInt64Hi: |
| w := selector.Args[0] |
| ls := rewriteSelect(leaf, w, offset+hiOffset) |
| locs = splitSlots(ls, ".hi", hiOffset, leafType) |
| |
| case OpInt64Lo: |
| w := selector.Args[0] |
| ls := rewriteSelect(leaf, w, offset+lowOffset) |
| locs = splitSlots(ls, ".lo", lowOffset, leafType) |
| |
| case OpStringPtr: |
| ls := rewriteSelect(leaf, selector.Args[0], offset) |
| locs = splitSlots(ls, ".ptr", 0, typ.BytePtr) |
| |
| case OpSlicePtr: |
| w := selector.Args[0] |
| ls := rewriteSelect(leaf, w, offset) |
| locs = splitSlots(ls, ".ptr", 0, types.NewPtr(w.Type.Elem())) |
| |
| case OpITab: |
| w := selector.Args[0] |
| ls := rewriteSelect(leaf, w, offset) |
| sfx := ".itab" |
| if w.Type.IsEmptyInterface() { |
| sfx = ".type" |
| } |
| locs = splitSlots(ls, sfx, 0, typ.Uintptr) |
| |
| case OpComplexReal: |
| ls := rewriteSelect(leaf, selector.Args[0], offset) |
| locs = splitSlots(ls, ".real", 0, leafType) |
| |
| case OpComplexImag: |
| ls := rewriteSelect(leaf, selector.Args[0], offset+leafType.Width) // result is FloatNN, width of result is offset of imaginary part. |
| locs = splitSlots(ls, ".imag", leafType.Width, leafType) |
| |
| case OpStringLen, OpSliceLen: |
| ls := rewriteSelect(leaf, selector.Args[0], offset+ptrSize) |
| locs = splitSlots(ls, ".len", ptrSize, leafType) |
| |
| case OpIData: |
| ls := rewriteSelect(leaf, selector.Args[0], offset+ptrSize) |
| locs = splitSlots(ls, ".data", ptrSize, leafType) |
| |
| case OpSliceCap: |
| ls := rewriteSelect(leaf, selector.Args[0], offset+2*ptrSize) |
| locs = splitSlots(ls, ".cap", 2*ptrSize, leafType) |
| |
| case OpCopy: // If it's an intermediate result, recurse |
| locs = rewriteSelect(leaf, selector.Args[0], offset) |
| for _, s := range namedSelects[selector] { |
| // this copy may have had its own name, preserve that, too. |
| locs = append(locs, f.Names[s.locIndex]) |
| } |
| |
| default: |
| // Ignore dead ends. These can occur if this phase is run before decompose builtin (which is not intended, but allowed). |
| } |
| |
| return locs |
| } |
| |
| // storeArgOrLoad converts stores of SSA-able aggregate arguments (passed to a call) into a series of primitive-typed |
| // stores of non-aggregate types. It recursively walks up a chain of selectors until it reaches a Load or an Arg. |
| // If it does not reach a Load or an Arg, nothing happens; this allows a little freedom in phase ordering. |
| var storeArgOrLoad func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offset int64) *Value |
| |
| // decomposeArgOrLoad is a helper for storeArgOrLoad. |
| // It decomposes a Load or an Arg into smaller parts, parameterized by the decomposeOne and decomposeTwo functions |
| // passed to it, and returns the new mem. If the type does not match one of the expected aggregate types, it returns nil instead. |
| decomposeArgOrLoad := func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offset int64, |
| decomposeOne func(pos src.XPos, b *Block, base, source, mem *Value, t1 *types.Type, offArg, offStore int64) *Value, |
| decomposeTwo func(pos src.XPos, b *Block, base, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64) *Value) *Value { |
| u := source.Type |
| switch u.Etype { |
| case types.TARRAY: |
| elem := u.Elem() |
| for i := int64(0); i < u.NumElem(); i++ { |
| elemOff := i * elem.Size() |
| mem = decomposeOne(pos, b, base, source, mem, elem, source.AuxInt+elemOff, offset+elemOff) |
| pos = pos.WithNotStmt() |
| } |
| return mem |
| case types.TSTRUCT: |
| for i := 0; i < u.NumFields(); i++ { |
| fld := u.Field(i) |
| mem = decomposeOne(pos, b, base, source, mem, fld.Type, source.AuxInt+fld.Offset, offset+fld.Offset) |
| pos = pos.WithNotStmt() |
| } |
| return mem |
| case types.TINT64, types.TUINT64: |
| if t.Width == regSize { |
| break |
| } |
| tHi, tLo := intPairTypes(t.Etype) |
| mem = decomposeOne(pos, b, base, source, mem, tHi, source.AuxInt+hiOffset, offset+hiOffset) |
| pos = pos.WithNotStmt() |
| return decomposeOne(pos, b, base, source, mem, tLo, source.AuxInt+lowOffset, offset+lowOffset) |
| case types.TINTER: |
| return decomposeTwo(pos, b, base, source, mem, typ.Uintptr, typ.BytePtr, source.AuxInt, offset) |
| case types.TSTRING: |
| return decomposeTwo(pos, b, base, source, mem, typ.BytePtr, typ.Int, source.AuxInt, offset) |
| case types.TCOMPLEX64: |
| return decomposeTwo(pos, b, base, source, mem, typ.Float32, typ.Float32, source.AuxInt, offset) |
| case types.TCOMPLEX128: |
| return decomposeTwo(pos, b, base, source, mem, typ.Float64, typ.Float64, source.AuxInt, offset) |
| case types.TSLICE: |
| mem = decomposeTwo(pos, b, base, source, mem, typ.BytePtr, typ.Int, source.AuxInt, offset) |
| return decomposeOne(pos, b, base, source, mem, typ.Int, source.AuxInt+2*ptrSize, offset+2*ptrSize) |
| } |
| return nil |
| } |
| |
| // storeOneArg creates a decomposed (one step) arg that is then stored. |
| // pos and b locate the store instruction, base is the base of the store target, source is the "base" of the value input, |
| // mem is the input mem, t is the type in question, and offArg and offStore are the offsets from the respective bases. |
| storeOneArg := func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offArg, offStore int64) *Value { |
| w := common[selKey{source, offArg, t.Width, t}] |
| if w == nil { |
| w = source.Block.NewValue0IA(source.Pos, OpArg, t, offArg, source.Aux) |
| common[selKey{source, offArg, t.Width, t}] = w |
| } |
| return storeArgOrLoad(pos, b, base, w, mem, t, offStore) |
| } |
| |
| // storeOneLoad creates a decomposed (one step) load that is then stored. |
| storeOneLoad := func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offArg, offStore int64) *Value { |
| from := offsetFrom(source.Args[0], offArg, types.NewPtr(t)) |
| w := source.Block.NewValue2(source.Pos, OpLoad, t, from, mem) |
| return storeArgOrLoad(pos, b, base, w, mem, t, offStore) |
| } |
| |
| storeTwoArg := func(pos src.XPos, b *Block, base, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64) *Value { |
| mem = storeOneArg(pos, b, base, source, mem, t1, offArg, offStore) |
| pos = pos.WithNotStmt() |
| t1Size := t1.Size() |
| return storeOneArg(pos, b, base, source, mem, t2, offArg+t1Size, offStore+t1Size) |
| } |
| |
| storeTwoLoad := func(pos src.XPos, b *Block, base, source, mem *Value, t1, t2 *types.Type, offArg, offStore int64) *Value { |
| mem = storeOneLoad(pos, b, base, source, mem, t1, offArg, offStore) |
| pos = pos.WithNotStmt() |
| t1Size := t1.Size() |
| return storeOneLoad(pos, b, base, source, mem, t2, offArg+t1Size, offStore+t1Size) |
| } |
| |
| storeArgOrLoad = func(pos src.XPos, b *Block, base, source, mem *Value, t *types.Type, offset int64) *Value { |
| if debug { |
| fmt.Printf("\tstoreArgOrLoad(%s; %s; %s; %s; %d)\n", base.LongString(), source.LongString(), mem.String(), t.String(), offset) |
| } |
| |
| switch source.Op { |
| case OpCopy: |
| return storeArgOrLoad(pos, b, base, source.Args[0], mem, t, offset) |
| |
| case OpLoad: |
| ret := decomposeArgOrLoad(pos, b, base, source, mem, t, offset, storeOneLoad, storeTwoLoad) |
| if ret != nil { |
| return ret |
| } |
| |
| case OpArg: |
| ret := decomposeArgOrLoad(pos, b, base, source, mem, t, offset, storeOneArg, storeTwoArg) |
| if ret != nil { |
| return ret |
| } |
| |
| case OpArrayMake0, OpStructMake0: |
| return mem |
| |
| case OpStructMake1, OpStructMake2, OpStructMake3, OpStructMake4: |
| for i := 0; i < t.NumFields(); i++ { |
| fld := t.Field(i) |
| mem = storeArgOrLoad(pos, b, base, source.Args[i], mem, fld.Type, offset+fld.Offset) |
| pos = pos.WithNotStmt() |
| } |
| return mem |
| |
| case OpArrayMake1: |
| return storeArgOrLoad(pos, b, base, source.Args[0], mem, t.Elem(), offset) |
| |
| case OpInt64Make: |
| tHi, tLo := intPairTypes(t.Etype) |
| mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, tHi, offset+hiOffset) |
| pos = pos.WithNotStmt() |
| return storeArgOrLoad(pos, b, base, source.Args[1], mem, tLo, offset+lowOffset) |
| |
| case OpComplexMake: |
| tPart := typ.Float32 |
| wPart := t.Width / 2 |
| if wPart == 8 { |
| tPart = typ.Float64 |
| } |
| mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, tPart, offset) |
| pos = pos.WithNotStmt() |
| return storeArgOrLoad(pos, b, base, source.Args[1], mem, tPart, offset+wPart) |
| |
| case OpIMake: |
| mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, typ.Uintptr, offset) |
| pos = pos.WithNotStmt() |
| return storeArgOrLoad(pos, b, base, source.Args[1], mem, typ.BytePtr, offset+ptrSize) |
| |
| case OpStringMake: |
| mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, typ.BytePtr, offset) |
| pos = pos.WithNotStmt() |
| return storeArgOrLoad(pos, b, base, source.Args[1], mem, typ.Int, offset+ptrSize) |
| |
| case OpSliceMake: |
| mem = storeArgOrLoad(pos, b, base, source.Args[0], mem, typ.BytePtr, offset) |
| pos = pos.WithNotStmt() |
| mem = storeArgOrLoad(pos, b, base, source.Args[1], mem, typ.Int, offset+ptrSize) |
| return storeArgOrLoad(pos, b, base, source.Args[2], mem, typ.Int, offset+2*ptrSize) |
| } |
| |
| // For nodes that cannot be taken apart -- OpSelectN, other structure selectors. |
| switch t.Etype { |
| case types.TARRAY: |
| elt := t.Elem() |
| if source.Type != t && t.NumElem() == 1 && elt.Width == t.Width && t.Width == regSize { |
| t = removeTrivialWrapperTypes(t) |
| // it could be a leaf type, but the "leaf" could be complex64 (for example) |
| return storeArgOrLoad(pos, b, base, source, mem, t, offset) |
| } |
| for i := int64(0); i < t.NumElem(); i++ { |
| sel := source.Block.NewValue1I(pos, OpArraySelect, elt, i, source) |
| mem = storeArgOrLoad(pos, b, base, sel, mem, elt, offset+i*elt.Width) |
| pos = pos.WithNotStmt() |
| } |
| return mem |
| |
| case types.TSTRUCT: |
| if source.Type != t && t.NumFields() == 1 && t.Field(0).Type.Width == t.Width && t.Width == regSize { |
| // This peculiar test deals with accesses to immediate interface data. |
| // It works okay because everything is the same size. |
| // Example code that triggers this can be found in go/constant/value.go, function ToComplex |
| // v119 (+881) = IData <intVal> v6 |
| // v121 (+882) = StaticLECall <floatVal,mem> {AuxCall{"".itof([intVal,0])[floatVal,8]}} [16] v119 v1 |
| // This corresponds to the generic rewrite rule "(StructSelect [0] (IData x)) => (IData x)" |
| // Guard against "struct{struct{*foo}}" |
| // Other rewriting phases create minor glitches when they transform IData, for instance the |
| // interface-typed Arg "x" of ToFloat in go/constant/value.go |
| // v6 (858) = Arg <Value> {x} (x[Value], x[Value]) |
| // is rewritten by decomposeArgs into |
| // v141 (858) = Arg <uintptr> {x} |
| // v139 (858) = Arg <*uint8> {x} [8] |
| // because of a type case clause on line 862 of go/constant/value.go |
| // case intVal: |
| // return itof(x) |
| // v139 is later stored as an intVal == struct{val *big.Int} which naively requires the fields of |
| // of a *uint8, which does not succeed. |
| t = removeTrivialWrapperTypes(t) |
| // it could be a leaf type, but the "leaf" could be complex64 (for example) |
| return storeArgOrLoad(pos, b, base, source, mem, t, offset) |
| } |
| |
| for i := 0; i < t.NumFields(); i++ { |
| fld := t.Field(i) |
| sel := source.Block.NewValue1I(pos, OpStructSelect, fld.Type, int64(i), source) |
| mem = storeArgOrLoad(pos, b, base, sel, mem, fld.Type, offset+fld.Offset) |
| pos = pos.WithNotStmt() |
| } |
| return mem |
| |
| case types.TINT64, types.TUINT64: |
| if t.Width == regSize { |
| break |
| } |
| tHi, tLo := intPairTypes(t.Etype) |
| sel := source.Block.NewValue1(pos, OpInt64Hi, tHi, source) |
| mem = storeArgOrLoad(pos, b, base, sel, mem, tHi, offset+hiOffset) |
| pos = pos.WithNotStmt() |
| sel = source.Block.NewValue1(pos, OpInt64Lo, tLo, source) |
| return storeArgOrLoad(pos, b, base, sel, mem, tLo, offset+lowOffset) |
| |
| case types.TINTER: |
| sel := source.Block.NewValue1(pos, OpITab, typ.BytePtr, source) |
| mem = storeArgOrLoad(pos, b, base, sel, mem, typ.BytePtr, offset) |
| pos = pos.WithNotStmt() |
| sel = source.Block.NewValue1(pos, OpIData, typ.BytePtr, source) |
| return storeArgOrLoad(pos, b, base, sel, mem, typ.BytePtr, offset+ptrSize) |
| |
| case types.TSTRING: |
| sel := source.Block.NewValue1(pos, OpStringPtr, typ.BytePtr, source) |
| mem = storeArgOrLoad(pos, b, base, sel, mem, typ.BytePtr, offset) |
| pos = pos.WithNotStmt() |
| sel = source.Block.NewValue1(pos, OpStringLen, typ.Int, source) |
| return storeArgOrLoad(pos, b, base, sel, mem, typ.Int, offset+ptrSize) |
| |
| case types.TSLICE: |
| et := types.NewPtr(t.Elem()) |
| sel := source.Block.NewValue1(pos, OpSlicePtr, et, source) |
| mem = storeArgOrLoad(pos, b, base, sel, mem, et, offset) |
| pos = pos.WithNotStmt() |
| sel = source.Block.NewValue1(pos, OpSliceLen, typ.Int, source) |
| mem = storeArgOrLoad(pos, b, base, sel, mem, typ.Int, offset+ptrSize) |
| sel = source.Block.NewValue1(pos, OpSliceCap, typ.Int, source) |
| return storeArgOrLoad(pos, b, base, sel, mem, typ.Int, offset+2*ptrSize) |
| |
| case types.TCOMPLEX64: |
| sel := source.Block.NewValue1(pos, OpComplexReal, typ.Float32, source) |
| mem = storeArgOrLoad(pos, b, base, sel, mem, typ.Float32, offset) |
| pos = pos.WithNotStmt() |
| sel = source.Block.NewValue1(pos, OpComplexImag, typ.Float32, source) |
| return storeArgOrLoad(pos, b, base, sel, mem, typ.Float32, offset+4) |
| |
| case types.TCOMPLEX128: |
| sel := source.Block.NewValue1(pos, OpComplexReal, typ.Float64, source) |
| mem = storeArgOrLoad(pos, b, base, sel, mem, typ.Float64, offset) |
| pos = pos.WithNotStmt() |
| sel = source.Block.NewValue1(pos, OpComplexImag, typ.Float64, source) |
| return storeArgOrLoad(pos, b, base, sel, mem, typ.Float64, offset+8) |
| } |
| |
| dst := offsetFrom(base, offset, types.NewPtr(t)) |
| x := b.NewValue3A(pos, OpStore, types.TypeMem, t, dst, source, mem) |
| if debug { |
| fmt.Printf("\t\tstoreArg returns %s\n", x.LongString()) |
| } |
| return x |
| } |
| |
| // rewriteArgs removes all the Args from a call and converts the call args into appropriate |
| // stores (or later, register movement). Extra args for interface and closure calls are ignored, |
| // but removed. |
| rewriteArgs := func(v *Value, firstArg int) *Value { |
| // Thread the stores on the memory arg |
| aux := v.Aux.(*AuxCall) |
| pos := v.Pos.WithNotStmt() |
| m0 := v.Args[len(v.Args)-1] |
| mem := m0 |
| for i, a := range v.Args { |
| if i < firstArg { |
| continue |
| } |
| if a == m0 { // mem is last. |
| break |
| } |
| auxI := int64(i - firstArg) |
| if a.Op == OpDereference { |
| if a.MemoryArg() != m0 { |
| f.Fatalf("Op...LECall and OpDereference have mismatched mem, %s and %s", v.LongString(), a.LongString()) |
| } |
| // "Dereference" of addressed (probably not-SSA-eligible) value becomes Move |
| // TODO this will be more complicated with registers in the picture. |
| source := a.Args[0] |
| dst := f.ConstOffPtrSP(source.Type, aux.OffsetOfArg(auxI), sp) |
| if a.Uses == 1 && a.Block == v.Block { |
| a.reset(OpMove) |
| a.Pos = pos |
| a.Type = types.TypeMem |
| a.Aux = aux.TypeOfArg(auxI) |
| a.AuxInt = aux.SizeOfArg(auxI) |
| a.SetArgs3(dst, source, mem) |
| mem = a |
| } else { |
| mem = v.Block.NewValue3A(pos, OpMove, types.TypeMem, aux.TypeOfArg(auxI), dst, source, mem) |
| mem.AuxInt = aux.SizeOfArg(auxI) |
| } |
| } else { |
| if debug { |
| fmt.Printf("storeArg %s, %v, %d\n", a.LongString(), aux.TypeOfArg(auxI), aux.OffsetOfArg(auxI)) |
| } |
| mem = storeArgOrLoad(pos, v.Block, sp, a, mem, aux.TypeOfArg(auxI), aux.OffsetOfArg(auxI)) |
| } |
| } |
| v.resetArgs() |
| return mem |
| } |
| |
| // TODO if too slow, whole program iteration can be replaced w/ slices of appropriate values, accumulated in first loop here. |
| |
| // Step 0: rewrite the calls to convert incoming args to stores. |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| switch v.Op { |
| case OpStaticLECall: |
| mem := rewriteArgs(v, 0) |
| v.SetArgs1(mem) |
| case OpClosureLECall: |
| code := v.Args[0] |
| context := v.Args[1] |
| mem := rewriteArgs(v, 2) |
| v.SetArgs3(code, context, mem) |
| case OpInterLECall: |
| code := v.Args[0] |
| mem := rewriteArgs(v, 1) |
| v.SetArgs2(code, mem) |
| } |
| } |
| } |
| |
| for i, name := range f.Names { |
| t := name.Type |
| if isAlreadyExpandedAggregateType(t) { |
| for j, v := range f.NamedValues[name] { |
| if v.Op == OpSelectN || v.Op == OpArg && isAlreadyExpandedAggregateType(v.Type) { |
| ns := namedSelects[v] |
| namedSelects[v] = append(ns, namedVal{locIndex: i, valIndex: j}) |
| } |
| } |
| } |
| } |
| |
| // Step 1: any stores of aggregates remaining are believed to be sourced from call results or args. |
| // Decompose those stores into a series of smaller stores, adding selection ops as necessary. |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| if v.Op == OpStore { |
| t := v.Aux.(*types.Type) |
| source := v.Args[1] |
| tSrc := source.Type |
| iAEATt := isAlreadyExpandedAggregateType(t) |
| |
| if !iAEATt { |
| // guarding against store immediate struct into interface data field -- store type is *uint8 |
| // TODO can this happen recursively? |
| iAEATt = isAlreadyExpandedAggregateType(tSrc) |
| if iAEATt { |
| t = tSrc |
| } |
| } |
| if iAEATt { |
| if debug { |
| fmt.Printf("Splitting store %s\n", v.LongString()) |
| } |
| dst, mem := v.Args[0], v.Args[2] |
| mem = storeArgOrLoad(v.Pos, b, dst, source, mem, t, 0) |
| v.copyOf(mem) |
| } |
| } |
| } |
| } |
| |
| val2Preds := make(map[*Value]int32) // Used to accumulate dependency graph of selection operations for topological ordering. |
| |
| // Step 2: transform or accumulate selection operations for rewrite in topological order. |
| // |
| // Aggregate types that have already (in earlier phases) been transformed must be lowered comprehensively to finish |
| // the transformation (user-defined structs and arrays, slices, strings, interfaces, complex, 64-bit on 32-bit architectures), |
| // |
| // Any select-for-addressing applied to call results can be transformed directly. |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| // Accumulate chains of selectors for processing in topological order |
| switch v.Op { |
| case OpStructSelect, OpArraySelect, |
| OpIData, OpITab, |
| OpStringPtr, OpStringLen, |
| OpSlicePtr, OpSliceLen, OpSliceCap, |
| OpComplexReal, OpComplexImag, |
| OpInt64Hi, OpInt64Lo: |
| w := v.Args[0] |
| switch w.Op { |
| case OpStructSelect, OpArraySelect, OpSelectN, OpArg: |
| val2Preds[w] += 1 |
| if debug { |
| fmt.Printf("v2p[%s] = %d\n", w.LongString(), val2Preds[w]) |
| } |
| } |
| fallthrough |
| |
| case OpSelectN: |
| if _, ok := val2Preds[v]; !ok { |
| val2Preds[v] = 0 |
| if debug { |
| fmt.Printf("v2p[%s] = %d\n", v.LongString(), val2Preds[v]) |
| } |
| } |
| |
| case OpArg: |
| if !isAlreadyExpandedAggregateType(v.Type) { |
| continue |
| } |
| if _, ok := val2Preds[v]; !ok { |
| val2Preds[v] = 0 |
| if debug { |
| fmt.Printf("v2p[%s] = %d\n", v.LongString(), val2Preds[v]) |
| } |
| } |
| |
| case OpSelectNAddr: |
| // Do these directly, there are no chains of selectors. |
| call := v.Args[0] |
| which := v.AuxInt |
| aux := call.Aux.(*AuxCall) |
| pt := v.Type |
| off := offsetFrom(sp, aux.OffsetOfResult(which), pt) |
| v.copyOf(off) |
| } |
| } |
| } |
| |
| // Step 3: Compute topological order of selectors, |
| // then process it in reverse to eliminate duplicates, |
| // then forwards to rewrite selectors. |
| // |
| // All chains of selectors end up in same block as the call. |
| |
| // Compilation must be deterministic, so sort after extracting first zeroes from map. |
| // Sorting allows dominators-last order within each batch, |
| // so that the backwards scan for duplicates will most often find copies from dominating blocks (it is best-effort). |
| var toProcess []*Value |
| less := func(i, j int) bool { |
| vi, vj := toProcess[i], toProcess[j] |
| bi, bj := vi.Block, vj.Block |
| if bi == bj { |
| return vi.ID < vj.ID |
| } |
| return sdom.domorder(bi) > sdom.domorder(bj) // reverse the order to put dominators last. |
| } |
| |
| // Accumulate order in allOrdered |
| var allOrdered []*Value |
| for v, n := range val2Preds { |
| if n == 0 { |
| allOrdered = append(allOrdered, v) |
| } |
| } |
| last := 0 // allOrdered[0:last] has been top-sorted and processed |
| for len(val2Preds) > 0 { |
| toProcess = allOrdered[last:] |
| last = len(allOrdered) |
| sort.SliceStable(toProcess, less) |
| for _, v := range toProcess { |
| delete(val2Preds, v) |
| if v.Op == OpArg { |
| continue // no Args[0], hence done. |
| } |
| w := v.Args[0] |
| n, ok := val2Preds[w] |
| if !ok { |
| continue |
| } |
| if n == 1 { |
| allOrdered = append(allOrdered, w) |
| delete(val2Preds, w) |
| continue |
| } |
| val2Preds[w] = n - 1 |
| } |
| } |
| |
| common = make(map[selKey]*Value) |
| // Rewrite duplicate selectors as copies where possible. |
| for i := len(allOrdered) - 1; i >= 0; i-- { |
| v := allOrdered[i] |
| if v.Op == OpArg { |
| continue |
| } |
| w := v.Args[0] |
| if w.Op == OpCopy { |
| for w.Op == OpCopy { |
| w = w.Args[0] |
| } |
| v.SetArg(0, w) |
| } |
| typ := v.Type |
| if typ.IsMemory() { |
| continue // handled elsewhere, not an indexable result |
| } |
| size := typ.Width |
| offset := int64(0) |
| switch v.Op { |
| case OpStructSelect: |
| if w.Type.Etype == types.TSTRUCT { |
| offset = w.Type.FieldOff(int(v.AuxInt)) |
| } else { // Immediate interface data artifact, offset is zero. |
| f.Fatalf("Expand calls interface data problem, func %s, v=%s, w=%s\n", f.Name, v.LongString(), w.LongString()) |
| } |
| case OpArraySelect: |
| offset = size * v.AuxInt |
| case OpSelectN: |
| offset = w.Aux.(*AuxCall).OffsetOfResult(v.AuxInt) |
| case OpInt64Hi: |
| offset = hiOffset |
| case OpInt64Lo: |
| offset = lowOffset |
| case OpStringLen, OpSliceLen, OpIData: |
| offset = ptrSize |
| case OpSliceCap: |
| offset = 2 * ptrSize |
| case OpComplexImag: |
| offset = size |
| } |
| sk := selKey{from: w, size: size, offset: offset, typ: typ} |
| dupe := common[sk] |
| if dupe == nil { |
| common[sk] = v |
| } else if sdom.IsAncestorEq(dupe.Block, v.Block) { |
| v.copyOf(dupe) |
| } else { |
| // Because values are processed in dominator order, the old common[s] will never dominate after a miss is seen. |
| // Installing the new value might match some future values. |
| common[sk] = v |
| } |
| } |
| |
| // Indices of entries in f.Names that need to be deleted. |
| var toDelete []namedVal |
| |
| // Rewrite selectors. |
| for i, v := range allOrdered { |
| if debug { |
| b := v.Block |
| fmt.Printf("allOrdered[%d] = b%d, %s, uses=%d\n", i, b.ID, v.LongString(), v.Uses) |
| } |
| if v.Uses == 0 { |
| v.reset(OpInvalid) |
| continue |
| } |
| if v.Op == OpCopy { |
| continue |
| } |
| locs := rewriteSelect(v, v, 0) |
| // Install new names. |
| if v.Type.IsMemory() { |
| continue |
| } |
| // Leaf types may have debug locations |
| if !isAlreadyExpandedAggregateType(v.Type) { |
| for _, l := range locs { |
| f.NamedValues[l] = append(f.NamedValues[l], v) |
| } |
| f.Names = append(f.Names, locs...) |
| continue |
| } |
| // Not-leaf types that had debug locations need to lose them. |
| if ns, ok := namedSelects[v]; ok { |
| toDelete = append(toDelete, ns...) |
| } |
| } |
| |
| deleteNamedVals(f, toDelete) |
| |
| // Step 4: rewrite the calls themselves, correcting the type |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| switch v.Op { |
| case OpStaticLECall: |
| v.Op = OpStaticCall |
| v.Type = types.TypeMem |
| case OpClosureLECall: |
| v.Op = OpClosureCall |
| v.Type = types.TypeMem |
| case OpInterLECall: |
| v.Op = OpInterCall |
| v.Type = types.TypeMem |
| } |
| } |
| } |
| |
| // Step 5: elide any copies introduced. |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| for i, a := range v.Args { |
| if a.Op != OpCopy { |
| continue |
| } |
| aa := copySource(a) |
| v.SetArg(i, aa) |
| for a.Uses == 0 { |
| b := a.Args[0] |
| a.reset(OpInvalid) |
| a = b |
| } |
| } |
| } |
| } |
| } |