| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package image |
| |
| import ( |
| "strconv" |
| ) |
| |
| // A Point is an X, Y coordinate pair. The axes increase right and down. |
| type Point struct { |
| X, Y int |
| } |
| |
| // String returns a string representation of p like "(3,4)". |
| func (p Point) String() string { |
| return "(" + strconv.Itoa(p.X) + "," + strconv.Itoa(p.Y) + ")" |
| } |
| |
| // Add returns the vector p+q. |
| func (p Point) Add(q Point) Point { |
| return Point{p.X + q.X, p.Y + q.Y} |
| } |
| |
| // Sub returns the vector p-q. |
| func (p Point) Sub(q Point) Point { |
| return Point{p.X - q.X, p.Y - q.Y} |
| } |
| |
| // Mul returns the vector p*k. |
| func (p Point) Mul(k int) Point { |
| return Point{p.X * k, p.Y * k} |
| } |
| |
| // Div returns the vector p/k. |
| func (p Point) Div(k int) Point { |
| return Point{p.X / k, p.Y / k} |
| } |
| |
| // In returns whether p is in r. |
| func (p Point) In(r Rectangle) bool { |
| return r.Min.X <= p.X && p.X < r.Max.X && |
| r.Min.Y <= p.Y && p.Y < r.Max.Y |
| } |
| |
| // Mod returns the point q in r such that p.X-q.X is a multiple of r's width |
| // and p.Y-q.Y is a multiple of r's height. |
| func (p Point) Mod(r Rectangle) Point { |
| w, h := r.Dx(), r.Dy() |
| p = p.Sub(r.Min) |
| p.X = p.X % w |
| if p.X < 0 { |
| p.X += w |
| } |
| p.Y = p.Y % h |
| if p.Y < 0 { |
| p.Y += h |
| } |
| return p.Add(r.Min) |
| } |
| |
| // Eq returns whether p and q are equal. |
| func (p Point) Eq(q Point) bool { |
| return p.X == q.X && p.Y == q.Y |
| } |
| |
| // ZP is the zero Point. |
| var ZP Point |
| |
| // Pt is shorthand for Point{X, Y}. |
| func Pt(X, Y int) Point { |
| return Point{X, Y} |
| } |
| |
| // A Rectangle contains the points with Min.X <= X < Max.X, Min.Y <= Y < Max.Y. |
| // It is well-formed if Min.X <= Max.X and likewise for Y. Points are always |
| // well-formed. A rectangle's methods always return well-formed outputs for |
| // well-formed inputs. |
| type Rectangle struct { |
| Min, Max Point |
| } |
| |
| // String returns a string representation of r like "(3,4)-(6,5)". |
| func (r Rectangle) String() string { |
| return r.Min.String() + "-" + r.Max.String() |
| } |
| |
| // Dx returns r's width. |
| func (r Rectangle) Dx() int { |
| return r.Max.X - r.Min.X |
| } |
| |
| // Dy returns r's height. |
| func (r Rectangle) Dy() int { |
| return r.Max.Y - r.Min.Y |
| } |
| |
| // Size returns r's width and height. |
| func (r Rectangle) Size() Point { |
| return Point{ |
| r.Max.X - r.Min.X, |
| r.Max.Y - r.Min.Y, |
| } |
| } |
| |
| // Add returns the rectangle r translated by p. |
| func (r Rectangle) Add(p Point) Rectangle { |
| return Rectangle{ |
| Point{r.Min.X + p.X, r.Min.Y + p.Y}, |
| Point{r.Max.X + p.X, r.Max.Y + p.Y}, |
| } |
| } |
| |
| // Sub returns the rectangle r translated by -p. |
| func (r Rectangle) Sub(p Point) Rectangle { |
| return Rectangle{ |
| Point{r.Min.X - p.X, r.Min.Y - p.Y}, |
| Point{r.Max.X - p.X, r.Max.Y - p.Y}, |
| } |
| } |
| |
| // Inset returns the rectangle r inset by n, which may be negative. If either |
| // of r's dimensions is less than 2*n then an empty rectangle near the center |
| // of r will be returned. |
| func (r Rectangle) Inset(n int) Rectangle { |
| if r.Dx() < 2*n { |
| r.Min.X = (r.Min.X + r.Max.X) / 2 |
| r.Max.X = r.Min.X |
| } else { |
| r.Min.X += n |
| r.Max.X -= n |
| } |
| if r.Dy() < 2*n { |
| r.Min.Y = (r.Min.Y + r.Max.Y) / 2 |
| r.Max.Y = r.Min.Y |
| } else { |
| r.Min.Y += n |
| r.Max.Y -= n |
| } |
| return r |
| } |
| |
| // Intersect returns the largest rectangle contained by both r and s. If the |
| // two rectangles do not overlap then the zero rectangle will be returned. |
| func (r Rectangle) Intersect(s Rectangle) Rectangle { |
| if r.Min.X < s.Min.X { |
| r.Min.X = s.Min.X |
| } |
| if r.Min.Y < s.Min.Y { |
| r.Min.Y = s.Min.Y |
| } |
| if r.Max.X > s.Max.X { |
| r.Max.X = s.Max.X |
| } |
| if r.Max.Y > s.Max.Y { |
| r.Max.Y = s.Max.Y |
| } |
| if r.Min.X > r.Max.X || r.Min.Y > r.Max.Y { |
| return ZR |
| } |
| return r |
| } |
| |
| // Union returns the smallest rectangle that contains both r and s. |
| func (r Rectangle) Union(s Rectangle) Rectangle { |
| if r.Min.X > s.Min.X { |
| r.Min.X = s.Min.X |
| } |
| if r.Min.Y > s.Min.Y { |
| r.Min.Y = s.Min.Y |
| } |
| if r.Max.X < s.Max.X { |
| r.Max.X = s.Max.X |
| } |
| if r.Max.Y < s.Max.Y { |
| r.Max.Y = s.Max.Y |
| } |
| return r |
| } |
| |
| // Empty returns whether the rectangle contains no points. |
| func (r Rectangle) Empty() bool { |
| return r.Min.X >= r.Max.X || r.Min.Y >= r.Max.Y |
| } |
| |
| // Eq returns whether r and s are equal. |
| func (r Rectangle) Eq(s Rectangle) bool { |
| return r.Min.X == s.Min.X && r.Min.Y == s.Min.Y && |
| r.Max.X == s.Max.X && r.Max.Y == s.Max.Y |
| } |
| |
| // Overlaps returns whether r and s have a non-empty intersection. |
| func (r Rectangle) Overlaps(s Rectangle) bool { |
| return r.Min.X < s.Max.X && s.Min.X < r.Max.X && |
| r.Min.Y < s.Max.Y && s.Min.Y < r.Max.Y |
| } |
| |
| // In returns whether every point in r is in s. |
| func (r Rectangle) In(s Rectangle) bool { |
| if r.Empty() { |
| return true |
| } |
| // Note that r.Max is an exclusive bound for r, so that r.In(s) |
| // does not require that r.Max.In(s). |
| return s.Min.X <= r.Min.X && r.Max.X <= s.Max.X && |
| s.Min.Y <= r.Min.Y && r.Max.Y <= s.Max.Y |
| } |
| |
| // Canon returns the canonical version of r. The returned rectangle has minimum |
| // and maximum coordinates swapped if necessary so that it is well-formed. |
| func (r Rectangle) Canon() Rectangle { |
| if r.Max.X < r.Min.X { |
| r.Min.X, r.Max.X = r.Max.X, r.Min.X |
| } |
| if r.Max.Y < r.Min.Y { |
| r.Min.Y, r.Max.Y = r.Max.Y, r.Min.Y |
| } |
| return r |
| } |
| |
| // ZR is the zero Rectangle. |
| var ZR Rectangle |
| |
| // Rect is shorthand for Rectangle{Pt(x0, y0), Pt(x1, y1)}. |
| func Rect(x0, y0, x1, y1 int) Rectangle { |
| if x0 > x1 { |
| x0, x1 = x1, x0 |
| } |
| if y0 > y1 { |
| y0, y1 = y1, y0 |
| } |
| return Rectangle{Point{x0, y0}, Point{x1, y1}} |
| } |