| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package runtime_test |
| |
| import ( |
| "fmt" |
| "math/rand" |
| "os" |
| "reflect" |
| "runtime" |
| "runtime/debug" |
| "sort" |
| "strings" |
| "sync" |
| "sync/atomic" |
| "testing" |
| "time" |
| "unsafe" |
| ) |
| |
| func TestGcSys(t *testing.T) { |
| if os.Getenv("GOGC") == "off" { |
| t.Skip("skipping test; GOGC=off in environment") |
| } |
| got := runTestProg(t, "testprog", "GCSys") |
| want := "OK\n" |
| if got != want { |
| t.Fatalf("expected %q, but got %q", want, got) |
| } |
| } |
| |
| func TestGcDeepNesting(t *testing.T) { |
| type T [2][2][2][2][2][2][2][2][2][2]*int |
| a := new(T) |
| |
| // Prevent the compiler from applying escape analysis. |
| // This makes sure new(T) is allocated on heap, not on the stack. |
| t.Logf("%p", a) |
| |
| a[0][0][0][0][0][0][0][0][0][0] = new(int) |
| *a[0][0][0][0][0][0][0][0][0][0] = 13 |
| runtime.GC() |
| if *a[0][0][0][0][0][0][0][0][0][0] != 13 { |
| t.Fail() |
| } |
| } |
| |
| func TestGcMapIndirection(t *testing.T) { |
| defer debug.SetGCPercent(debug.SetGCPercent(1)) |
| runtime.GC() |
| type T struct { |
| a [256]int |
| } |
| m := make(map[T]T) |
| for i := 0; i < 2000; i++ { |
| var a T |
| a.a[0] = i |
| m[a] = T{} |
| } |
| } |
| |
| func TestGcArraySlice(t *testing.T) { |
| type X struct { |
| buf [1]byte |
| nextbuf []byte |
| next *X |
| } |
| var head *X |
| for i := 0; i < 10; i++ { |
| p := &X{} |
| p.buf[0] = 42 |
| p.next = head |
| if head != nil { |
| p.nextbuf = head.buf[:] |
| } |
| head = p |
| runtime.GC() |
| } |
| for p := head; p != nil; p = p.next { |
| if p.buf[0] != 42 { |
| t.Fatal("corrupted heap") |
| } |
| } |
| } |
| |
| func TestGcRescan(t *testing.T) { |
| type X struct { |
| c chan error |
| nextx *X |
| } |
| type Y struct { |
| X |
| nexty *Y |
| p *int |
| } |
| var head *Y |
| for i := 0; i < 10; i++ { |
| p := &Y{} |
| p.c = make(chan error) |
| if head != nil { |
| p.nextx = &head.X |
| } |
| p.nexty = head |
| p.p = new(int) |
| *p.p = 42 |
| head = p |
| runtime.GC() |
| } |
| for p := head; p != nil; p = p.nexty { |
| if *p.p != 42 { |
| t.Fatal("corrupted heap") |
| } |
| } |
| } |
| |
| func TestGcLastTime(t *testing.T) { |
| ms := new(runtime.MemStats) |
| t0 := time.Now().UnixNano() |
| runtime.GC() |
| t1 := time.Now().UnixNano() |
| runtime.ReadMemStats(ms) |
| last := int64(ms.LastGC) |
| if t0 > last || last > t1 { |
| t.Fatalf("bad last GC time: got %v, want [%v, %v]", last, t0, t1) |
| } |
| pause := ms.PauseNs[(ms.NumGC+255)%256] |
| // Due to timer granularity, pause can actually be 0 on windows |
| // or on virtualized environments. |
| if pause == 0 { |
| t.Logf("last GC pause was 0") |
| } else if pause > 10e9 { |
| t.Logf("bad last GC pause: got %v, want [0, 10e9]", pause) |
| } |
| } |
| |
| var hugeSink interface{} |
| |
| func TestHugeGCInfo(t *testing.T) { |
| // The test ensures that compiler can chew these huge types even on weakest machines. |
| // The types are not allocated at runtime. |
| if hugeSink != nil { |
| // 400MB on 32 bots, 4TB on 64-bits. |
| const n = (400 << 20) + (unsafe.Sizeof(uintptr(0))-4)<<40 |
| hugeSink = new([n]*byte) |
| hugeSink = new([n]uintptr) |
| hugeSink = new(struct { |
| x float64 |
| y [n]*byte |
| z []string |
| }) |
| hugeSink = new(struct { |
| x float64 |
| y [n]uintptr |
| z []string |
| }) |
| } |
| } |
| |
| func TestPeriodicGC(t *testing.T) { |
| if runtime.GOARCH == "wasm" { |
| t.Skip("no sysmon on wasm yet") |
| } |
| |
| // Make sure we're not in the middle of a GC. |
| runtime.GC() |
| |
| var ms1, ms2 runtime.MemStats |
| runtime.ReadMemStats(&ms1) |
| |
| // Make periodic GC run continuously. |
| orig := *runtime.ForceGCPeriod |
| *runtime.ForceGCPeriod = 0 |
| |
| // Let some periodic GCs happen. In a heavily loaded system, |
| // it's possible these will be delayed, so this is designed to |
| // succeed quickly if things are working, but to give it some |
| // slack if things are slow. |
| var numGCs uint32 |
| const want = 2 |
| for i := 0; i < 200 && numGCs < want; i++ { |
| time.Sleep(5 * time.Millisecond) |
| |
| // Test that periodic GC actually happened. |
| runtime.ReadMemStats(&ms2) |
| numGCs = ms2.NumGC - ms1.NumGC |
| } |
| *runtime.ForceGCPeriod = orig |
| |
| if numGCs < want { |
| t.Fatalf("no periodic GC: got %v GCs, want >= 2", numGCs) |
| } |
| } |
| |
| func TestGcZombieReporting(t *testing.T) { |
| // This test is somewhat sensitive to how the allocator works. |
| got := runTestProg(t, "testprog", "GCZombie") |
| want := "found pointer to free object" |
| if !strings.Contains(got, want) { |
| t.Fatalf("expected %q in output, but got %q", want, got) |
| } |
| } |
| |
| func BenchmarkSetTypePtr(b *testing.B) { |
| benchSetType(b, new(*byte)) |
| } |
| |
| func BenchmarkSetTypePtr8(b *testing.B) { |
| benchSetType(b, new([8]*byte)) |
| } |
| |
| func BenchmarkSetTypePtr16(b *testing.B) { |
| benchSetType(b, new([16]*byte)) |
| } |
| |
| func BenchmarkSetTypePtr32(b *testing.B) { |
| benchSetType(b, new([32]*byte)) |
| } |
| |
| func BenchmarkSetTypePtr64(b *testing.B) { |
| benchSetType(b, new([64]*byte)) |
| } |
| |
| func BenchmarkSetTypePtr126(b *testing.B) { |
| benchSetType(b, new([126]*byte)) |
| } |
| |
| func BenchmarkSetTypePtr128(b *testing.B) { |
| benchSetType(b, new([128]*byte)) |
| } |
| |
| func BenchmarkSetTypePtrSlice(b *testing.B) { |
| benchSetType(b, make([]*byte, 1<<10)) |
| } |
| |
| type Node1 struct { |
| Value [1]uintptr |
| Left, Right *byte |
| } |
| |
| func BenchmarkSetTypeNode1(b *testing.B) { |
| benchSetType(b, new(Node1)) |
| } |
| |
| func BenchmarkSetTypeNode1Slice(b *testing.B) { |
| benchSetType(b, make([]Node1, 32)) |
| } |
| |
| type Node8 struct { |
| Value [8]uintptr |
| Left, Right *byte |
| } |
| |
| func BenchmarkSetTypeNode8(b *testing.B) { |
| benchSetType(b, new(Node8)) |
| } |
| |
| func BenchmarkSetTypeNode8Slice(b *testing.B) { |
| benchSetType(b, make([]Node8, 32)) |
| } |
| |
| type Node64 struct { |
| Value [64]uintptr |
| Left, Right *byte |
| } |
| |
| func BenchmarkSetTypeNode64(b *testing.B) { |
| benchSetType(b, new(Node64)) |
| } |
| |
| func BenchmarkSetTypeNode64Slice(b *testing.B) { |
| benchSetType(b, make([]Node64, 32)) |
| } |
| |
| type Node64Dead struct { |
| Left, Right *byte |
| Value [64]uintptr |
| } |
| |
| func BenchmarkSetTypeNode64Dead(b *testing.B) { |
| benchSetType(b, new(Node64Dead)) |
| } |
| |
| func BenchmarkSetTypeNode64DeadSlice(b *testing.B) { |
| benchSetType(b, make([]Node64Dead, 32)) |
| } |
| |
| type Node124 struct { |
| Value [124]uintptr |
| Left, Right *byte |
| } |
| |
| func BenchmarkSetTypeNode124(b *testing.B) { |
| benchSetType(b, new(Node124)) |
| } |
| |
| func BenchmarkSetTypeNode124Slice(b *testing.B) { |
| benchSetType(b, make([]Node124, 32)) |
| } |
| |
| type Node126 struct { |
| Value [126]uintptr |
| Left, Right *byte |
| } |
| |
| func BenchmarkSetTypeNode126(b *testing.B) { |
| benchSetType(b, new(Node126)) |
| } |
| |
| func BenchmarkSetTypeNode126Slice(b *testing.B) { |
| benchSetType(b, make([]Node126, 32)) |
| } |
| |
| type Node128 struct { |
| Value [128]uintptr |
| Left, Right *byte |
| } |
| |
| func BenchmarkSetTypeNode128(b *testing.B) { |
| benchSetType(b, new(Node128)) |
| } |
| |
| func BenchmarkSetTypeNode128Slice(b *testing.B) { |
| benchSetType(b, make([]Node128, 32)) |
| } |
| |
| type Node130 struct { |
| Value [130]uintptr |
| Left, Right *byte |
| } |
| |
| func BenchmarkSetTypeNode130(b *testing.B) { |
| benchSetType(b, new(Node130)) |
| } |
| |
| func BenchmarkSetTypeNode130Slice(b *testing.B) { |
| benchSetType(b, make([]Node130, 32)) |
| } |
| |
| type Node1024 struct { |
| Value [1024]uintptr |
| Left, Right *byte |
| } |
| |
| func BenchmarkSetTypeNode1024(b *testing.B) { |
| benchSetType(b, new(Node1024)) |
| } |
| |
| func BenchmarkSetTypeNode1024Slice(b *testing.B) { |
| benchSetType(b, make([]Node1024, 32)) |
| } |
| |
| func benchSetType(b *testing.B, x interface{}) { |
| v := reflect.ValueOf(x) |
| t := v.Type() |
| switch t.Kind() { |
| case reflect.Ptr: |
| b.SetBytes(int64(t.Elem().Size())) |
| case reflect.Slice: |
| b.SetBytes(int64(t.Elem().Size()) * int64(v.Len())) |
| } |
| b.ResetTimer() |
| runtime.BenchSetType(b.N, x) |
| } |
| |
| func BenchmarkAllocation(b *testing.B) { |
| type T struct { |
| x, y *byte |
| } |
| ngo := runtime.GOMAXPROCS(0) |
| work := make(chan bool, b.N+ngo) |
| result := make(chan *T) |
| for i := 0; i < b.N; i++ { |
| work <- true |
| } |
| for i := 0; i < ngo; i++ { |
| work <- false |
| } |
| for i := 0; i < ngo; i++ { |
| go func() { |
| var x *T |
| for <-work { |
| for i := 0; i < 1000; i++ { |
| x = &T{} |
| } |
| } |
| result <- x |
| }() |
| } |
| for i := 0; i < ngo; i++ { |
| <-result |
| } |
| } |
| |
| func TestPrintGC(t *testing.T) { |
| if testing.Short() { |
| t.Skip("Skipping in short mode") |
| } |
| defer runtime.GOMAXPROCS(runtime.GOMAXPROCS(2)) |
| done := make(chan bool) |
| go func() { |
| for { |
| select { |
| case <-done: |
| return |
| default: |
| runtime.GC() |
| } |
| } |
| }() |
| for i := 0; i < 1e4; i++ { |
| func() { |
| defer print("") |
| }() |
| } |
| close(done) |
| } |
| |
| func testTypeSwitch(x interface{}) error { |
| switch y := x.(type) { |
| case nil: |
| // ok |
| case error: |
| return y |
| } |
| return nil |
| } |
| |
| func testAssert(x interface{}) error { |
| if y, ok := x.(error); ok { |
| return y |
| } |
| return nil |
| } |
| |
| func testAssertVar(x interface{}) error { |
| var y, ok = x.(error) |
| if ok { |
| return y |
| } |
| return nil |
| } |
| |
| var a bool |
| |
| //go:noinline |
| func testIfaceEqual(x interface{}) { |
| if x == "abc" { |
| a = true |
| } |
| } |
| |
| func TestPageAccounting(t *testing.T) { |
| // Grow the heap in small increments. This used to drop the |
| // pages-in-use count below zero because of a rounding |
| // mismatch (golang.org/issue/15022). |
| const blockSize = 64 << 10 |
| blocks := make([]*[blockSize]byte, (64<<20)/blockSize) |
| for i := range blocks { |
| blocks[i] = new([blockSize]byte) |
| } |
| |
| // Check that the running page count matches reality. |
| pagesInUse, counted := runtime.CountPagesInUse() |
| if pagesInUse != counted { |
| t.Fatalf("mheap_.pagesInUse is %d, but direct count is %d", pagesInUse, counted) |
| } |
| } |
| |
| func TestReadMemStats(t *testing.T) { |
| base, slow := runtime.ReadMemStatsSlow() |
| if base != slow { |
| logDiff(t, "MemStats", reflect.ValueOf(base), reflect.ValueOf(slow)) |
| t.Fatal("memstats mismatch") |
| } |
| } |
| |
| func logDiff(t *testing.T, prefix string, got, want reflect.Value) { |
| typ := got.Type() |
| switch typ.Kind() { |
| case reflect.Array, reflect.Slice: |
| if got.Len() != want.Len() { |
| t.Logf("len(%s): got %v, want %v", prefix, got, want) |
| return |
| } |
| for i := 0; i < got.Len(); i++ { |
| logDiff(t, fmt.Sprintf("%s[%d]", prefix, i), got.Index(i), want.Index(i)) |
| } |
| case reflect.Struct: |
| for i := 0; i < typ.NumField(); i++ { |
| gf, wf := got.Field(i), want.Field(i) |
| logDiff(t, prefix+"."+typ.Field(i).Name, gf, wf) |
| } |
| case reflect.Map: |
| t.Fatal("not implemented: logDiff for map") |
| default: |
| if got.Interface() != want.Interface() { |
| t.Logf("%s: got %v, want %v", prefix, got, want) |
| } |
| } |
| } |
| |
| func BenchmarkReadMemStats(b *testing.B) { |
| var ms runtime.MemStats |
| const heapSize = 100 << 20 |
| x := make([]*[1024]byte, heapSize/1024) |
| for i := range x { |
| x[i] = new([1024]byte) |
| } |
| hugeSink = x |
| |
| b.ResetTimer() |
| for i := 0; i < b.N; i++ { |
| runtime.ReadMemStats(&ms) |
| } |
| |
| hugeSink = nil |
| } |
| |
| func applyGCLoad(b *testing.B) func() { |
| // We’ll apply load to the runtime with maxProcs-1 goroutines |
| // and use one more to actually benchmark. It doesn't make sense |
| // to try to run this test with only 1 P (that's what |
| // BenchmarkReadMemStats is for). |
| maxProcs := runtime.GOMAXPROCS(-1) |
| if maxProcs == 1 { |
| b.Skip("This benchmark can only be run with GOMAXPROCS > 1") |
| } |
| |
| // Code to build a big tree with lots of pointers. |
| type node struct { |
| children [16]*node |
| } |
| var buildTree func(depth int) *node |
| buildTree = func(depth int) *node { |
| tree := new(node) |
| if depth != 0 { |
| for i := range tree.children { |
| tree.children[i] = buildTree(depth - 1) |
| } |
| } |
| return tree |
| } |
| |
| // Keep the GC busy by continuously generating large trees. |
| done := make(chan struct{}) |
| var wg sync.WaitGroup |
| for i := 0; i < maxProcs-1; i++ { |
| wg.Add(1) |
| go func() { |
| defer wg.Done() |
| var hold *node |
| loop: |
| for { |
| hold = buildTree(5) |
| select { |
| case <-done: |
| break loop |
| default: |
| } |
| } |
| runtime.KeepAlive(hold) |
| }() |
| } |
| return func() { |
| close(done) |
| wg.Wait() |
| } |
| } |
| |
| func BenchmarkReadMemStatsLatency(b *testing.B) { |
| stop := applyGCLoad(b) |
| |
| // Spend this much time measuring latencies. |
| latencies := make([]time.Duration, 0, 1024) |
| |
| // Run for timeToBench hitting ReadMemStats continuously |
| // and measuring the latency. |
| b.ResetTimer() |
| var ms runtime.MemStats |
| for i := 0; i < b.N; i++ { |
| // Sleep for a bit, otherwise we're just going to keep |
| // stopping the world and no one will get to do anything. |
| time.Sleep(100 * time.Millisecond) |
| start := time.Now() |
| runtime.ReadMemStats(&ms) |
| latencies = append(latencies, time.Now().Sub(start)) |
| } |
| // Make sure to stop the timer before we wait! The load created above |
| // is very heavy-weight and not easy to stop, so we could end up |
| // confusing the benchmarking framework for small b.N. |
| b.StopTimer() |
| stop() |
| |
| // Disable the default */op metrics. |
| // ns/op doesn't mean anything because it's an average, but we |
| // have a sleep in our b.N loop above which skews this significantly. |
| b.ReportMetric(0, "ns/op") |
| b.ReportMetric(0, "B/op") |
| b.ReportMetric(0, "allocs/op") |
| |
| // Sort latencies then report percentiles. |
| sort.Slice(latencies, func(i, j int) bool { |
| return latencies[i] < latencies[j] |
| }) |
| b.ReportMetric(float64(latencies[len(latencies)*50/100]), "p50-ns") |
| b.ReportMetric(float64(latencies[len(latencies)*90/100]), "p90-ns") |
| b.ReportMetric(float64(latencies[len(latencies)*99/100]), "p99-ns") |
| } |
| |
| func TestUserForcedGC(t *testing.T) { |
| // Test that runtime.GC() triggers a GC even if GOGC=off. |
| defer debug.SetGCPercent(debug.SetGCPercent(-1)) |
| |
| var ms1, ms2 runtime.MemStats |
| runtime.ReadMemStats(&ms1) |
| runtime.GC() |
| runtime.ReadMemStats(&ms2) |
| if ms1.NumGC == ms2.NumGC { |
| t.Fatalf("runtime.GC() did not trigger GC") |
| } |
| if ms1.NumForcedGC == ms2.NumForcedGC { |
| t.Fatalf("runtime.GC() was not accounted in NumForcedGC") |
| } |
| } |
| |
| func writeBarrierBenchmark(b *testing.B, f func()) { |
| runtime.GC() |
| var ms runtime.MemStats |
| runtime.ReadMemStats(&ms) |
| //b.Logf("heap size: %d MB", ms.HeapAlloc>>20) |
| |
| // Keep GC running continuously during the benchmark, which in |
| // turn keeps the write barrier on continuously. |
| var stop uint32 |
| done := make(chan bool) |
| go func() { |
| for atomic.LoadUint32(&stop) == 0 { |
| runtime.GC() |
| } |
| close(done) |
| }() |
| defer func() { |
| atomic.StoreUint32(&stop, 1) |
| <-done |
| }() |
| |
| b.ResetTimer() |
| f() |
| b.StopTimer() |
| } |
| |
| func BenchmarkWriteBarrier(b *testing.B) { |
| if runtime.GOMAXPROCS(-1) < 2 { |
| // We don't want GC to take our time. |
| b.Skip("need GOMAXPROCS >= 2") |
| } |
| |
| // Construct a large tree both so the GC runs for a while and |
| // so we have a data structure to manipulate the pointers of. |
| type node struct { |
| l, r *node |
| } |
| var wbRoots []*node |
| var mkTree func(level int) *node |
| mkTree = func(level int) *node { |
| if level == 0 { |
| return nil |
| } |
| n := &node{mkTree(level - 1), mkTree(level - 1)} |
| if level == 10 { |
| // Seed GC with enough early pointers so it |
| // doesn't start termination barriers when it |
| // only has the top of the tree. |
| wbRoots = append(wbRoots, n) |
| } |
| return n |
| } |
| const depth = 22 // 64 MB |
| root := mkTree(22) |
| |
| writeBarrierBenchmark(b, func() { |
| var stack [depth]*node |
| tos := -1 |
| |
| // There are two write barriers per iteration, so i+=2. |
| for i := 0; i < b.N; i += 2 { |
| if tos == -1 { |
| stack[0] = root |
| tos = 0 |
| } |
| |
| // Perform one step of reversing the tree. |
| n := stack[tos] |
| if n.l == nil { |
| tos-- |
| } else { |
| n.l, n.r = n.r, n.l |
| stack[tos] = n.l |
| stack[tos+1] = n.r |
| tos++ |
| } |
| |
| if i%(1<<12) == 0 { |
| // Avoid non-preemptible loops (see issue #10958). |
| runtime.Gosched() |
| } |
| } |
| }) |
| |
| runtime.KeepAlive(wbRoots) |
| } |
| |
| func BenchmarkBulkWriteBarrier(b *testing.B) { |
| if runtime.GOMAXPROCS(-1) < 2 { |
| // We don't want GC to take our time. |
| b.Skip("need GOMAXPROCS >= 2") |
| } |
| |
| // Construct a large set of objects we can copy around. |
| const heapSize = 64 << 20 |
| type obj [16]*byte |
| ptrs := make([]*obj, heapSize/unsafe.Sizeof(obj{})) |
| for i := range ptrs { |
| ptrs[i] = new(obj) |
| } |
| |
| writeBarrierBenchmark(b, func() { |
| const blockSize = 1024 |
| var pos int |
| for i := 0; i < b.N; i += blockSize { |
| // Rotate block. |
| block := ptrs[pos : pos+blockSize] |
| first := block[0] |
| copy(block, block[1:]) |
| block[blockSize-1] = first |
| |
| pos += blockSize |
| if pos+blockSize > len(ptrs) { |
| pos = 0 |
| } |
| |
| runtime.Gosched() |
| } |
| }) |
| |
| runtime.KeepAlive(ptrs) |
| } |
| |
| func BenchmarkScanStackNoLocals(b *testing.B) { |
| var ready sync.WaitGroup |
| teardown := make(chan bool) |
| for j := 0; j < 10; j++ { |
| ready.Add(1) |
| go func() { |
| x := 100000 |
| countpwg(&x, &ready, teardown) |
| }() |
| } |
| ready.Wait() |
| b.ResetTimer() |
| for i := 0; i < b.N; i++ { |
| b.StartTimer() |
| runtime.GC() |
| runtime.GC() |
| b.StopTimer() |
| } |
| close(teardown) |
| } |
| |
| func BenchmarkMSpanCountAlloc(b *testing.B) { |
| // Allocate one dummy mspan for the whole benchmark. |
| s := runtime.AllocMSpan() |
| defer runtime.FreeMSpan(s) |
| |
| // n is the number of bytes to benchmark against. |
| // n must always be a multiple of 8, since gcBits is |
| // always rounded up 8 bytes. |
| for _, n := range []int{8, 16, 32, 64, 128} { |
| b.Run(fmt.Sprintf("bits=%d", n*8), func(b *testing.B) { |
| // Initialize a new byte slice with pseduo-random data. |
| bits := make([]byte, n) |
| rand.Read(bits) |
| |
| b.ResetTimer() |
| for i := 0; i < b.N; i++ { |
| runtime.MSpanCountAlloc(s, bits) |
| } |
| }) |
| } |
| } |
| |
| func countpwg(n *int, ready *sync.WaitGroup, teardown chan bool) { |
| if *n == 0 { |
| ready.Done() |
| <-teardown |
| return |
| } |
| *n-- |
| countpwg(n, ready, teardown) |
| } |