| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Garbage collector: marking and scanning |
| |
| package runtime |
| |
| import "unsafe" |
| |
| // Scan all of the stacks, greying (or graying if in America) the referents |
| // but not blackening them since the mark write barrier isn't installed. |
| //go:nowritebarrier |
| func gcscan_m() { |
| _g_ := getg() |
| |
| // Grab the g that called us and potentially allow rescheduling. |
| // This allows it to be scanned like other goroutines. |
| mastergp := _g_.m.curg |
| casgstatus(mastergp, _Grunning, _Gwaiting) |
| mastergp.waitreason = "garbage collection scan" |
| |
| // Span sweeping has been done by finishsweep_m. |
| // Long term we will want to make this goroutine runnable |
| // by placing it onto a scanenqueue state and then calling |
| // runtimeĀ·restartg(mastergp) to make it Grunnable. |
| // At the bottom we will want to return this p back to the scheduler. |
| |
| // Prepare flag indicating that the scan has not been completed. |
| local_allglen := gcResetGState() |
| |
| work.nwait = 0 |
| work.ndone = 0 |
| work.nproc = 1 |
| useOneP := uint32(1) // For now do not do this in parallel. |
| // ackgcphase is not needed since we are not scanning running goroutines. |
| parforsetup(work.markfor, useOneP, uint32(_RootCount+local_allglen), false, markroot) |
| parfordo(work.markfor) |
| |
| lock(&allglock) |
| // Check that gc work is done. |
| for i := 0; i < local_allglen; i++ { |
| gp := allgs[i] |
| if !gp.gcscandone { |
| throw("scan missed a g") |
| } |
| } |
| unlock(&allglock) |
| |
| casgstatus(mastergp, _Gwaiting, _Grunning) |
| // Let the g that called us continue to run. |
| } |
| |
| // ptrmask for an allocation containing a single pointer. |
| var oneptrmask = [...]uint8{1} |
| |
| //go:nowritebarrier |
| func markroot(desc *parfor, i uint32) { |
| // TODO: Consider using getg().m.p.ptr().gcw. |
| var gcw gcWork |
| |
| // Note: if you add a case here, please also update heapdump.go:dumproots. |
| switch i { |
| case _RootData: |
| for datap := &firstmoduledata; datap != nil; datap = datap.next { |
| scanblock(datap.data, datap.edata-datap.data, datap.gcdatamask.bytedata, &gcw) |
| } |
| |
| case _RootBss: |
| for datap := &firstmoduledata; datap != nil; datap = datap.next { |
| scanblock(datap.bss, datap.ebss-datap.bss, datap.gcbssmask.bytedata, &gcw) |
| } |
| |
| case _RootFinalizers: |
| for fb := allfin; fb != nil; fb = fb.alllink { |
| scanblock(uintptr(unsafe.Pointer(&fb.fin[0])), uintptr(fb.cnt)*unsafe.Sizeof(fb.fin[0]), &finptrmask[0], &gcw) |
| } |
| |
| case _RootSpans: |
| // mark MSpan.specials |
| sg := mheap_.sweepgen |
| for spanidx := uint32(0); spanidx < uint32(len(work.spans)); spanidx++ { |
| s := work.spans[spanidx] |
| if s.state != mSpanInUse { |
| continue |
| } |
| if !useCheckmark && s.sweepgen != sg { |
| // sweepgen was updated (+2) during non-checkmark GC pass |
| print("sweep ", s.sweepgen, " ", sg, "\n") |
| throw("gc: unswept span") |
| } |
| for sp := s.specials; sp != nil; sp = sp.next { |
| if sp.kind != _KindSpecialFinalizer { |
| continue |
| } |
| // don't mark finalized object, but scan it so we |
| // retain everything it points to. |
| spf := (*specialfinalizer)(unsafe.Pointer(sp)) |
| // A finalizer can be set for an inner byte of an object, find object beginning. |
| p := uintptr(s.start<<_PageShift) + uintptr(spf.special.offset)/s.elemsize*s.elemsize |
| if gcphase != _GCscan { |
| scanobject(p, &gcw) // scanned during mark termination |
| } |
| scanblock(uintptr(unsafe.Pointer(&spf.fn)), ptrSize, &oneptrmask[0], &gcw) |
| } |
| } |
| |
| case _RootFlushCaches: |
| if gcphase != _GCscan { // Do not flush mcaches during GCscan phase. |
| flushallmcaches() |
| } |
| |
| default: |
| // the rest is scanning goroutine stacks |
| if uintptr(i-_RootCount) >= allglen { |
| throw("markroot: bad index") |
| } |
| gp := allgs[i-_RootCount] |
| |
| // remember when we've first observed the G blocked |
| // needed only to output in traceback |
| status := readgstatus(gp) // We are not in a scan state |
| if (status == _Gwaiting || status == _Gsyscall) && gp.waitsince == 0 { |
| gp.waitsince = work.tstart |
| } |
| |
| // Shrink a stack if not much of it is being used but not in the scan phase. |
| if gcphase == _GCmarktermination { |
| // Shrink during STW GCmarktermination phase thus avoiding |
| // complications introduced by shrinking during |
| // non-STW phases. |
| shrinkstack(gp) |
| } |
| |
| scang(gp) |
| } |
| |
| gcw.dispose() |
| } |
| |
| // gcAssistAlloc records and allocation of size bytes and, if |
| // allowAssist is true, may assist GC scanning in proportion to the |
| // allocations performed by this mutator since the last assist. |
| // |
| // It should only be called if gcAssistAlloc != 0. |
| // |
| // This must be called with preemption disabled. |
| //go:nowritebarrier |
| func gcAssistAlloc(size uintptr, allowAssist bool) { |
| // Find the G responsible for this assist. |
| gp := getg() |
| if gp.m.curg != nil { |
| gp = gp.m.curg |
| } |
| |
| // Record allocation. |
| gp.gcalloc += size |
| |
| if !allowAssist { |
| return |
| } |
| |
| // Compute the amount of assist scan work we need to do. |
| scanWork := int64(gcController.assistRatio*float64(gp.gcalloc)) - gp.gcscanwork |
| // scanWork can be negative if the last assist scanned a large |
| // object and we're still ahead of our assist goal. |
| if scanWork <= 0 { |
| return |
| } |
| |
| // Steal as much credit as we can from the background GC's |
| // scan credit. This is racy and may drop the background |
| // credit below 0 if two mutators steal at the same time. This |
| // will just cause steals to fail until credit is accumulated |
| // again, so in the long run it doesn't really matter, but we |
| // do have to handle the negative credit case. |
| bgScanCredit := atomicloadint64(&gcController.bgScanCredit) |
| stolen := int64(0) |
| if bgScanCredit > 0 { |
| if bgScanCredit < scanWork { |
| stolen = bgScanCredit |
| } else { |
| stolen = scanWork |
| } |
| xaddint64(&gcController.bgScanCredit, -scanWork) |
| |
| scanWork -= stolen |
| gp.gcscanwork += stolen |
| |
| if scanWork == 0 { |
| return |
| } |
| } |
| |
| // Perform assist work |
| systemstack(func() { |
| if atomicload(&gcBlackenEnabled) == 0 { |
| // The gcBlackenEnabled check in malloc races with the |
| // store that clears it but an atomic check in every malloc |
| // would be a performance hit. |
| // Instead we recheck it here on the non-preemptable system |
| // stack to determine if we should preform an assist. |
| return |
| } |
| // Track time spent in this assist. Since we're on the |
| // system stack, this is non-preemptible, so we can |
| // just measure start and end time. |
| startTime := nanotime() |
| |
| decnwait := xadd(&work.nwait, -1) |
| if decnwait == work.nproc { |
| println("runtime: work.nwait =", decnwait, "work.nproc=", work.nproc) |
| throw("nwait > work.nprocs") |
| } |
| |
| // drain own cached work first in the hopes that it |
| // will be more cache friendly. |
| gcw := &getg().m.p.ptr().gcw |
| startScanWork := gcw.scanWork |
| gcDrainN(gcw, scanWork) |
| // Record that we did this much scan work. |
| gp.gcscanwork += gcw.scanWork - startScanWork |
| // If we are near the end of the mark phase |
| // dispose of the gcw. |
| if gcBlackenPromptly { |
| gcw.dispose() |
| } |
| // If this is the last worker and we ran out of work, |
| // signal a completion point. |
| incnwait := xadd(&work.nwait, +1) |
| if incnwait > work.nproc { |
| println("runtime: work.nwait=", incnwait, |
| "work.nproc=", work.nproc, |
| "gcBlackenPromptly=", gcBlackenPromptly) |
| throw("work.nwait > work.nproc") |
| } |
| |
| if incnwait == work.nproc && work.full == 0 && work.partial == 0 { |
| // This has reached a background completion |
| // point. |
| if gcBlackenPromptly { |
| if work.bgMark1.done == 0 { |
| throw("completing mark 2, but bgMark1.done == 0") |
| } |
| work.bgMark2.complete() |
| } else { |
| work.bgMark1.complete() |
| } |
| } |
| duration := nanotime() - startTime |
| _p_ := gp.m.p.ptr() |
| _p_.gcAssistTime += duration |
| if _p_.gcAssistTime > gcAssistTimeSlack { |
| xaddint64(&gcController.assistTime, _p_.gcAssistTime) |
| _p_.gcAssistTime = 0 |
| } |
| }) |
| } |
| |
| //go:nowritebarrier |
| func scanstack(gp *g) { |
| if gp.gcscanvalid { |
| if gcphase == _GCmarktermination { |
| gcRemoveStackBarriers(gp) |
| } |
| return |
| } |
| |
| if readgstatus(gp)&_Gscan == 0 { |
| print("runtime:scanstack: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", hex(readgstatus(gp)), "\n") |
| throw("scanstack - bad status") |
| } |
| |
| switch readgstatus(gp) &^ _Gscan { |
| default: |
| print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") |
| throw("mark - bad status") |
| case _Gdead: |
| return |
| case _Grunning: |
| print("runtime: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n") |
| throw("scanstack: goroutine not stopped") |
| case _Grunnable, _Gsyscall, _Gwaiting: |
| // ok |
| } |
| |
| if gp == getg() { |
| throw("can't scan our own stack") |
| } |
| mp := gp.m |
| if mp != nil && mp.helpgc != 0 { |
| throw("can't scan gchelper stack") |
| } |
| |
| var sp, barrierOffset, nextBarrier uintptr |
| if gp.syscallsp != 0 { |
| sp = gp.syscallsp |
| } else { |
| sp = gp.sched.sp |
| } |
| switch gcphase { |
| case _GCscan: |
| // Install stack barriers during stack scan. |
| barrierOffset = firstStackBarrierOffset |
| nextBarrier = sp + barrierOffset |
| |
| if debug.gcstackbarrieroff > 0 { |
| nextBarrier = ^uintptr(0) |
| } |
| |
| if gp.stkbarPos != 0 || len(gp.stkbar) != 0 { |
| // If this happens, it's probably because we |
| // scanned a stack twice in the same phase. |
| print("stkbarPos=", gp.stkbarPos, " len(stkbar)=", len(gp.stkbar), " goid=", gp.goid, " gcphase=", gcphase, "\n") |
| throw("g already has stack barriers") |
| } |
| |
| case _GCmarktermination: |
| if int(gp.stkbarPos) == len(gp.stkbar) { |
| // gp hit all of the stack barriers (or there |
| // were none). Re-scan the whole stack. |
| nextBarrier = ^uintptr(0) |
| } else { |
| // Only re-scan up to the lowest un-hit |
| // barrier. Any frames above this have not |
| // executed since the _GCscan scan of gp and |
| // any writes through up-pointers to above |
| // this barrier had write barriers. |
| nextBarrier = gp.stkbar[gp.stkbarPos].savedLRPtr |
| if debugStackBarrier { |
| print("rescan below ", hex(nextBarrier), " in [", hex(sp), ",", hex(gp.stack.hi), ") goid=", gp.goid, "\n") |
| } |
| } |
| |
| gcRemoveStackBarriers(gp) |
| |
| default: |
| throw("scanstack in wrong phase") |
| } |
| |
| gcw := &getg().m.p.ptr().gcw |
| n := 0 |
| scanframe := func(frame *stkframe, unused unsafe.Pointer) bool { |
| scanframeworker(frame, unused, gcw) |
| |
| if frame.fp > nextBarrier { |
| // We skip installing a barrier on bottom-most |
| // frame because on LR machines this LR is not |
| // on the stack. |
| if gcphase == _GCscan && n != 0 { |
| gcInstallStackBarrier(gp, frame) |
| barrierOffset *= 2 |
| nextBarrier = sp + barrierOffset |
| } else if gcphase == _GCmarktermination { |
| // We just scanned a frame containing |
| // a return to a stack barrier. Since |
| // this frame never returned, we can |
| // stop scanning. |
| return false |
| } |
| } |
| n++ |
| |
| return true |
| } |
| gentraceback(^uintptr(0), ^uintptr(0), 0, gp, 0, nil, 0x7fffffff, scanframe, nil, 0) |
| tracebackdefers(gp, scanframe, nil) |
| if gcphase == _GCmarktermination { |
| gcw.dispose() |
| } |
| gp.gcscanvalid = true |
| } |
| |
| // Scan a stack frame: local variables and function arguments/results. |
| //go:nowritebarrier |
| func scanframeworker(frame *stkframe, unused unsafe.Pointer, gcw *gcWork) { |
| |
| f := frame.fn |
| targetpc := frame.continpc |
| if targetpc == 0 { |
| // Frame is dead. |
| return |
| } |
| if _DebugGC > 1 { |
| print("scanframe ", funcname(f), "\n") |
| } |
| if targetpc != f.entry { |
| targetpc-- |
| } |
| pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc) |
| if pcdata == -1 { |
| // We do not have a valid pcdata value but there might be a |
| // stackmap for this function. It is likely that we are looking |
| // at the function prologue, assume so and hope for the best. |
| pcdata = 0 |
| } |
| |
| // Scan local variables if stack frame has been allocated. |
| size := frame.varp - frame.sp |
| var minsize uintptr |
| switch thechar { |
| case '6', '8': |
| minsize = 0 |
| case '7': |
| minsize = spAlign |
| default: |
| minsize = ptrSize |
| } |
| if size > minsize { |
| stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps)) |
| if stkmap == nil || stkmap.n <= 0 { |
| print("runtime: frame ", funcname(f), " untyped locals ", hex(frame.varp-size), "+", hex(size), "\n") |
| throw("missing stackmap") |
| } |
| |
| // Locals bitmap information, scan just the pointers in locals. |
| if pcdata < 0 || pcdata >= stkmap.n { |
| // don't know where we are |
| print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " locals stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n") |
| throw("scanframe: bad symbol table") |
| } |
| bv := stackmapdata(stkmap, pcdata) |
| size = uintptr(bv.n) * ptrSize |
| scanblock(frame.varp-size, size, bv.bytedata, gcw) |
| } |
| |
| // Scan arguments. |
| if frame.arglen > 0 { |
| var bv bitvector |
| if frame.argmap != nil { |
| bv = *frame.argmap |
| } else { |
| stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps)) |
| if stkmap == nil || stkmap.n <= 0 { |
| print("runtime: frame ", funcname(f), " untyped args ", hex(frame.argp), "+", hex(frame.arglen), "\n") |
| throw("missing stackmap") |
| } |
| if pcdata < 0 || pcdata >= stkmap.n { |
| // don't know where we are |
| print("runtime: pcdata is ", pcdata, " and ", stkmap.n, " args stack map entries for ", funcname(f), " (targetpc=", targetpc, ")\n") |
| throw("scanframe: bad symbol table") |
| } |
| bv = stackmapdata(stkmap, pcdata) |
| } |
| scanblock(frame.argp, uintptr(bv.n)*ptrSize, bv.bytedata, gcw) |
| } |
| } |
| |
| // gcMaxStackBarriers returns the maximum number of stack barriers |
| // that can be installed in a stack of stackSize bytes. |
| func gcMaxStackBarriers(stackSize int) (n int) { |
| if firstStackBarrierOffset == 0 { |
| // Special debugging case for inserting stack barriers |
| // at every frame. Steal half of the stack for the |
| // []stkbar. Technically, if the stack were to consist |
| // solely of return PCs we would need two thirds of |
| // the stack, but stealing that much breaks things and |
| // this doesn't happen in practice. |
| return stackSize / 2 / int(unsafe.Sizeof(stkbar{})) |
| } |
| |
| offset := firstStackBarrierOffset |
| for offset < stackSize { |
| n++ |
| offset *= 2 |
| } |
| return n + 1 |
| } |
| |
| // gcInstallStackBarrier installs a stack barrier over the return PC of frame. |
| //go:nowritebarrier |
| func gcInstallStackBarrier(gp *g, frame *stkframe) { |
| if frame.lr == 0 { |
| if debugStackBarrier { |
| print("not installing stack barrier with no LR, goid=", gp.goid, "\n") |
| } |
| return |
| } |
| |
| // Save the return PC and overwrite it with stackBarrier. |
| var lrUintptr uintptr |
| if usesLR { |
| lrUintptr = frame.sp |
| } else { |
| lrUintptr = frame.fp - regSize |
| } |
| lrPtr := (*uintreg)(unsafe.Pointer(lrUintptr)) |
| if debugStackBarrier { |
| print("install stack barrier at ", hex(lrUintptr), " over ", hex(*lrPtr), ", goid=", gp.goid, "\n") |
| if uintptr(*lrPtr) != frame.lr { |
| print("frame.lr=", hex(frame.lr)) |
| throw("frame.lr differs from stack LR") |
| } |
| } |
| |
| gp.stkbar = gp.stkbar[:len(gp.stkbar)+1] |
| stkbar := &gp.stkbar[len(gp.stkbar)-1] |
| stkbar.savedLRPtr = lrUintptr |
| stkbar.savedLRVal = uintptr(*lrPtr) |
| *lrPtr = uintreg(stackBarrierPC) |
| } |
| |
| // gcRemoveStackBarriers removes all stack barriers installed in gp's stack. |
| //go:nowritebarrier |
| func gcRemoveStackBarriers(gp *g) { |
| if debugStackBarrier && gp.stkbarPos != 0 { |
| print("hit ", gp.stkbarPos, " stack barriers, goid=", gp.goid, "\n") |
| } |
| |
| // Remove stack barriers that we didn't hit. |
| for _, stkbar := range gp.stkbar[gp.stkbarPos:] { |
| gcRemoveStackBarrier(gp, stkbar) |
| } |
| |
| // Clear recorded stack barriers so copystack doesn't try to |
| // adjust them. |
| gp.stkbarPos = 0 |
| gp.stkbar = gp.stkbar[:0] |
| } |
| |
| // gcRemoveStackBarrier removes a single stack barrier. It is the |
| // inverse operation of gcInstallStackBarrier. |
| // |
| // This is nosplit to ensure gp's stack does not move. |
| // |
| //go:nowritebarrier |
| //go:nosplit |
| func gcRemoveStackBarrier(gp *g, stkbar stkbar) { |
| if debugStackBarrier { |
| print("remove stack barrier at ", hex(stkbar.savedLRPtr), " with ", hex(stkbar.savedLRVal), ", goid=", gp.goid, "\n") |
| } |
| lrPtr := (*uintreg)(unsafe.Pointer(stkbar.savedLRPtr)) |
| if val := *lrPtr; val != uintreg(stackBarrierPC) { |
| printlock() |
| print("at *", hex(stkbar.savedLRPtr), " expected stack barrier PC ", hex(stackBarrierPC), ", found ", hex(val), ", goid=", gp.goid, "\n") |
| print("gp.stkbar=") |
| gcPrintStkbars(gp.stkbar) |
| print(", gp.stkbarPos=", gp.stkbarPos, ", gp.stack=[", hex(gp.stack.lo), ",", hex(gp.stack.hi), ")\n") |
| throw("stack barrier lost") |
| } |
| *lrPtr = uintreg(stkbar.savedLRVal) |
| } |
| |
| // gcPrintStkbars prints a []stkbar for debugging. |
| func gcPrintStkbars(stkbar []stkbar) { |
| print("[") |
| for i, s := range stkbar { |
| if i > 0 { |
| print(" ") |
| } |
| print("*", hex(s.savedLRPtr), "=", hex(s.savedLRVal)) |
| } |
| print("]") |
| } |
| |
| // gcUnwindBarriers marks all stack barriers up the frame containing |
| // sp as hit and removes them. This is used during stack unwinding for |
| // panic/recover and by heapBitsBulkBarrier to force stack re-scanning |
| // when its destination is on the stack. |
| // |
| // This is nosplit to ensure gp's stack does not move. |
| // |
| //go:nosplit |
| func gcUnwindBarriers(gp *g, sp uintptr) { |
| // On LR machines, if there is a stack barrier on the return |
| // from the frame containing sp, this will mark it as hit even |
| // though it isn't, but it's okay to be conservative. |
| before := gp.stkbarPos |
| for int(gp.stkbarPos) < len(gp.stkbar) && gp.stkbar[gp.stkbarPos].savedLRPtr < sp { |
| gcRemoveStackBarrier(gp, gp.stkbar[gp.stkbarPos]) |
| gp.stkbarPos++ |
| } |
| if debugStackBarrier && gp.stkbarPos != before { |
| print("skip barriers below ", hex(sp), " in goid=", gp.goid, ": ") |
| gcPrintStkbars(gp.stkbar[before:gp.stkbarPos]) |
| print("\n") |
| } |
| } |
| |
| // nextBarrierPC returns the original return PC of the next stack barrier. |
| // Used by getcallerpc, so it must be nosplit. |
| //go:nosplit |
| func nextBarrierPC() uintptr { |
| gp := getg() |
| return gp.stkbar[gp.stkbarPos].savedLRVal |
| } |
| |
| // setNextBarrierPC sets the return PC of the next stack barrier. |
| // Used by setcallerpc, so it must be nosplit. |
| //go:nosplit |
| func setNextBarrierPC(pc uintptr) { |
| gp := getg() |
| gp.stkbar[gp.stkbarPos].savedLRVal = pc |
| } |
| |
| // TODO(austin): Can we consolidate the gcDrain* functions? |
| |
| // gcDrain scans objects in work buffers, blackening grey |
| // objects until all work buffers have been drained. |
| // If flushScanCredit != -1, gcDrain flushes accumulated scan work |
| // credit to gcController.bgScanCredit whenever gcw's local scan work |
| // credit exceeds flushScanCredit. |
| //go:nowritebarrier |
| func gcDrain(gcw *gcWork, flushScanCredit int64) { |
| if gcphase != _GCmark && gcphase != _GCmarktermination { |
| throw("scanblock phase incorrect") |
| } |
| |
| var lastScanFlush, nextScanFlush int64 |
| if flushScanCredit != -1 { |
| lastScanFlush = gcw.scanWork |
| nextScanFlush = lastScanFlush + flushScanCredit |
| } else { |
| nextScanFlush = int64(^uint64(0) >> 1) |
| } |
| |
| for { |
| // If another proc wants a pointer, give it some. |
| if work.nwait > 0 && work.full == 0 { |
| gcw.balance() |
| } |
| |
| b := gcw.get() |
| if b == 0 { |
| // work barrier reached |
| break |
| } |
| // If the current wbuf is filled by the scan a new wbuf might be |
| // returned that could possibly hold only a single object. This |
| // could result in each iteration draining only a single object |
| // out of the wbuf passed in + a single object placed |
| // into an empty wbuf in scanobject so there could be |
| // a performance hit as we keep fetching fresh wbufs. |
| scanobject(b, gcw) |
| |
| // Flush background scan work credit to the global |
| // account if we've accumulated enough locally so |
| // mutator assists can draw on it. |
| if gcw.scanWork >= nextScanFlush { |
| credit := gcw.scanWork - lastScanFlush |
| xaddint64(&gcController.bgScanCredit, credit) |
| lastScanFlush = gcw.scanWork |
| nextScanFlush = lastScanFlush + flushScanCredit |
| } |
| } |
| if flushScanCredit != -1 { |
| credit := gcw.scanWork - lastScanFlush |
| xaddint64(&gcController.bgScanCredit, credit) |
| } |
| } |
| |
| // gcDrainUntilPreempt blackens grey objects until g.preempt is set. |
| // This is best-effort, so it will return as soon as it is unable to |
| // get work, even though there may be more work in the system. |
| //go:nowritebarrier |
| func gcDrainUntilPreempt(gcw *gcWork, flushScanCredit int64) { |
| if gcphase != _GCmark { |
| println("gcphase =", gcphase) |
| throw("gcDrainUntilPreempt phase incorrect") |
| } |
| |
| var lastScanFlush, nextScanFlush int64 |
| if flushScanCredit != -1 { |
| lastScanFlush = gcw.scanWork |
| nextScanFlush = lastScanFlush + flushScanCredit |
| } else { |
| nextScanFlush = int64(^uint64(0) >> 1) |
| } |
| |
| gp := getg() |
| for !gp.preempt { |
| // If the work queue is empty, balance. During |
| // concurrent mark we don't really know if anyone else |
| // can make use of this work, but even if we're the |
| // only worker, the total cost of this per cycle is |
| // only O(_WorkbufSize) pointer copies. |
| if work.full == 0 && work.partial == 0 { |
| gcw.balance() |
| } |
| |
| b := gcw.tryGet() |
| if b == 0 { |
| // No more work |
| break |
| } |
| scanobject(b, gcw) |
| |
| // Flush background scan work credit to the global |
| // account if we've accumulated enough locally so |
| // mutator assists can draw on it. |
| if gcw.scanWork >= nextScanFlush { |
| credit := gcw.scanWork - lastScanFlush |
| xaddint64(&gcController.bgScanCredit, credit) |
| lastScanFlush = gcw.scanWork |
| nextScanFlush = lastScanFlush + flushScanCredit |
| } |
| } |
| if flushScanCredit != -1 { |
| credit := gcw.scanWork - lastScanFlush |
| xaddint64(&gcController.bgScanCredit, credit) |
| } |
| } |
| |
| // gcDrainN blackens grey objects until it has performed roughly |
| // scanWork units of scan work. This is best-effort, so it may perform |
| // less work if it fails to get a work buffer. Otherwise, it will |
| // perform at least n units of work, but may perform more because |
| // scanning is always done in whole object increments. |
| //go:nowritebarrier |
| func gcDrainN(gcw *gcWork, scanWork int64) { |
| targetScanWork := gcw.scanWork + scanWork |
| for gcw.scanWork < targetScanWork { |
| // This might be a good place to add prefetch code... |
| // if(wbuf.nobj > 4) { |
| // PREFETCH(wbuf->obj[wbuf.nobj - 3]; |
| // } |
| b := gcw.tryGet() |
| if b == 0 { |
| return |
| } |
| scanobject(b, gcw) |
| } |
| } |
| |
| // scanblock scans b as scanobject would, but using an explicit |
| // pointer bitmap instead of the heap bitmap. |
| // |
| // This is used to scan non-heap roots, so it does not update |
| // gcw.bytesMarked or gcw.scanWork. |
| // |
| //go:nowritebarrier |
| func scanblock(b0, n0 uintptr, ptrmask *uint8, gcw *gcWork) { |
| // Use local copies of original parameters, so that a stack trace |
| // due to one of the throws below shows the original block |
| // base and extent. |
| b := b0 |
| n := n0 |
| |
| arena_start := mheap_.arena_start |
| arena_used := mheap_.arena_used |
| |
| for i := uintptr(0); i < n; { |
| // Find bits for the next word. |
| bits := uint32(*addb(ptrmask, i/(ptrSize*8))) |
| if bits == 0 { |
| i += ptrSize * 8 |
| continue |
| } |
| for j := 0; j < 8 && i < n; j++ { |
| if bits&1 != 0 { |
| // Same work as in scanobject; see comments there. |
| obj := *(*uintptr)(unsafe.Pointer(b + i)) |
| if obj != 0 && arena_start <= obj && obj < arena_used { |
| if obj, hbits, span := heapBitsForObject(obj); obj != 0 { |
| greyobject(obj, b, i, hbits, span, gcw) |
| } |
| } |
| } |
| bits >>= 1 |
| i += ptrSize |
| } |
| } |
| } |
| |
| // scanobject scans the object starting at b, adding pointers to gcw. |
| // b must point to the beginning of a heap object; scanobject consults |
| // the GC bitmap for the pointer mask and the spans for the size of the |
| // object (it ignores n). |
| //go:nowritebarrier |
| func scanobject(b uintptr, gcw *gcWork) { |
| // Note that arena_used may change concurrently during |
| // scanobject and hence scanobject may encounter a pointer to |
| // a newly allocated heap object that is *not* in |
| // [start,used). It will not mark this object; however, we |
| // know that it was just installed by a mutator, which means |
| // that mutator will execute a write barrier and take care of |
| // marking it. This is even more pronounced on relaxed memory |
| // architectures since we access arena_used without barriers |
| // or synchronization, but the same logic applies. |
| arena_start := mheap_.arena_start |
| arena_used := mheap_.arena_used |
| |
| // Find bits of the beginning of the object. |
| // b must point to the beginning of a heap object, so |
| // we can get its bits and span directly. |
| hbits := heapBitsForAddr(b) |
| s := spanOfUnchecked(b) |
| n := s.elemsize |
| if n == 0 { |
| throw("scanobject n == 0") |
| } |
| |
| var i uintptr |
| for i = 0; i < n; i += ptrSize { |
| // Find bits for this word. |
| if i != 0 { |
| // Avoid needless hbits.next() on last iteration. |
| hbits = hbits.next() |
| } |
| // During checkmarking, 1-word objects store the checkmark |
| // in the type bit for the one word. The only one-word objects |
| // are pointers, or else they'd be merged with other non-pointer |
| // data into larger allocations. |
| bits := hbits.bits() |
| if i >= 2*ptrSize && bits&bitMarked == 0 { |
| break // no more pointers in this object |
| } |
| if bits&bitPointer == 0 { |
| continue // not a pointer |
| } |
| |
| // Work here is duplicated in scanblock and above. |
| // If you make changes here, make changes there too. |
| obj := *(*uintptr)(unsafe.Pointer(b + i)) |
| |
| // At this point we have extracted the next potential pointer. |
| // Check if it points into heap and not back at the current object. |
| if obj != 0 && arena_start <= obj && obj < arena_used && obj-b >= n { |
| // Mark the object. |
| if obj, hbits, span := heapBitsForObject(obj); obj != 0 { |
| greyobject(obj, b, i, hbits, span, gcw) |
| } |
| } |
| } |
| gcw.bytesMarked += uint64(n) |
| gcw.scanWork += int64(i) |
| } |
| |
| // Shade the object if it isn't already. |
| // The object is not nil and known to be in the heap. |
| // Preemption must be disabled. |
| //go:nowritebarrier |
| func shade(b uintptr) { |
| if obj, hbits, span := heapBitsForObject(b); obj != 0 { |
| gcw := &getg().m.p.ptr().gcw |
| greyobject(obj, 0, 0, hbits, span, gcw) |
| if gcphase == _GCmarktermination || gcBlackenPromptly { |
| // Ps aren't allowed to cache work during mark |
| // termination. |
| gcw.dispose() |
| } |
| } |
| } |
| |
| // obj is the start of an object with mark mbits. |
| // If it isn't already marked, mark it and enqueue into gcw. |
| // base and off are for debugging only and could be removed. |
| //go:nowritebarrier |
| func greyobject(obj, base, off uintptr, hbits heapBits, span *mspan, gcw *gcWork) { |
| // obj should be start of allocation, and so must be at least pointer-aligned. |
| if obj&(ptrSize-1) != 0 { |
| throw("greyobject: obj not pointer-aligned") |
| } |
| |
| if useCheckmark { |
| if !hbits.isMarked() { |
| printlock() |
| print("runtime:greyobject: checkmarks finds unexpected unmarked object obj=", hex(obj), "\n") |
| print("runtime: found obj at *(", hex(base), "+", hex(off), ")\n") |
| |
| // Dump the source (base) object |
| gcDumpObject("base", base, off) |
| |
| // Dump the object |
| gcDumpObject("obj", obj, ^uintptr(0)) |
| |
| throw("checkmark found unmarked object") |
| } |
| if hbits.isCheckmarked(span.elemsize) { |
| return |
| } |
| hbits.setCheckmarked(span.elemsize) |
| if !hbits.isCheckmarked(span.elemsize) { |
| throw("setCheckmarked and isCheckmarked disagree") |
| } |
| } else { |
| // If marked we have nothing to do. |
| if hbits.isMarked() { |
| return |
| } |
| hbits.setMarked() |
| |
| // If this is a noscan object, fast-track it to black |
| // instead of greying it. |
| if !hbits.hasPointers(span.elemsize) { |
| gcw.bytesMarked += uint64(span.elemsize) |
| return |
| } |
| } |
| |
| // Queue the obj for scanning. The PREFETCH(obj) logic has been removed but |
| // seems like a nice optimization that can be added back in. |
| // There needs to be time between the PREFETCH and the use. |
| // Previously we put the obj in an 8 element buffer that is drained at a rate |
| // to give the PREFETCH time to do its work. |
| // Use of PREFETCHNTA might be more appropriate than PREFETCH |
| |
| gcw.put(obj) |
| } |
| |
| // gcDumpObject dumps the contents of obj for debugging and marks the |
| // field at byte offset off in obj. |
| func gcDumpObject(label string, obj, off uintptr) { |
| if obj < mheap_.arena_start || obj >= mheap_.arena_used { |
| print(label, "=", hex(obj), " is not a heap object\n") |
| return |
| } |
| k := obj >> _PageShift |
| x := k |
| x -= mheap_.arena_start >> _PageShift |
| s := h_spans[x] |
| print(label, "=", hex(obj), " k=", hex(k)) |
| if s == nil { |
| print(" s=nil\n") |
| return |
| } |
| print(" s.start*_PageSize=", hex(s.start*_PageSize), " s.limit=", hex(s.limit), " s.sizeclass=", s.sizeclass, " s.elemsize=", s.elemsize, "\n") |
| for i := uintptr(0); i < s.elemsize; i += ptrSize { |
| print(" *(", label, "+", i, ") = ", hex(*(*uintptr)(unsafe.Pointer(obj + uintptr(i))))) |
| if i == off { |
| print(" <==") |
| } |
| print("\n") |
| } |
| } |
| |
| // If gcBlackenPromptly is true we are in the second mark phase phase so we allocate black. |
| //go:nowritebarrier |
| func gcmarknewobject_m(obj, size uintptr) { |
| if useCheckmark && !gcBlackenPromptly { // The world should be stopped so this should not happen. |
| throw("gcmarknewobject called while doing checkmark") |
| } |
| heapBitsForAddr(obj).setMarked() |
| xadd64(&work.bytesMarked, int64(size)) |
| } |
| |
| // Checkmarking |
| |
| // To help debug the concurrent GC we remark with the world |
| // stopped ensuring that any object encountered has their normal |
| // mark bit set. To do this we use an orthogonal bit |
| // pattern to indicate the object is marked. The following pattern |
| // uses the upper two bits in the object's boundary nibble. |
| // 01: scalar not marked |
| // 10: pointer not marked |
| // 11: pointer marked |
| // 00: scalar marked |
| // Xoring with 01 will flip the pattern from marked to unmarked and vica versa. |
| // The higher bit is 1 for pointers and 0 for scalars, whether the object |
| // is marked or not. |
| // The first nibble no longer holds the typeDead pattern indicating that the |
| // there are no more pointers in the object. This information is held |
| // in the second nibble. |
| |
| // If useCheckmark is true, marking of an object uses the |
| // checkmark bits (encoding above) instead of the standard |
| // mark bits. |
| var useCheckmark = false |
| |
| //go:nowritebarrier |
| func initCheckmarks() { |
| useCheckmark = true |
| for _, s := range work.spans { |
| if s.state == _MSpanInUse { |
| heapBitsForSpan(s.base()).initCheckmarkSpan(s.layout()) |
| } |
| } |
| } |
| |
| func clearCheckmarks() { |
| useCheckmark = false |
| for _, s := range work.spans { |
| if s.state == _MSpanInUse { |
| heapBitsForSpan(s.base()).clearCheckmarkSpan(s.layout()) |
| } |
| } |
| } |