blob: b2d3c40419096bf14b5de04eb2ebf1c66ba1fc99 [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include <u.h>
#include <libc.h>
#include "gg.h"
#include "opt.h"
#include "../../pkg/runtime/funcdata.h"
enum { BitsPerPointer = 2 };
enum {
UNVISITED = 0,
VISITED = 1,
};
// An ordinary basic block.
//
// Instructions are threaded together in a doubly-linked list. To iterate in
// program order follow the link pointer from the first node and stop after the
// last node has been visited
//
// for(p = bb->first;; p = p->link) {
// ...
// if(p == bb->last)
// break;
// }
//
// To iterate in reverse program order by following the opt pointer from the
// last node
//
// for(p = bb->last; p != nil; p = p->opt) {
// ...
// }
typedef struct BasicBlock BasicBlock;
struct BasicBlock {
// An array of preceding blocks. If the length of this array is 0 the
// block is probably the start block of the CFG.
Array *pred;
// An array out succeeding blocks. If the length of this array is zero,
// the block probably ends in a return instruction.
Array *succ;
// First instruction in the block. When part of a fully initialized
// control flow graph, the opt member will be nil.
Prog *first;
// Last instruction in the basic block.
Prog *last;
// The reverse post order number. This value is initialized to -1 and
// will be replaced by a non-negative value when the CFG is constructed.
// After CFG construction, if rpo is -1 this block is unreachable.
int rpo;
// State to denote whether the block has been visited during a
// traversal.
int mark;
};
// A collection of global state used by liveness analysis.
typedef struct Liveness Liveness;
struct Liveness {
// A pointer to the node corresponding to the function being analyzed.
Node *fn;
// A linked list of instructions for this function.
Prog *ptxt;
// A list of arguments and local variables in this function.
Array *vars;
// A list of basic blocks that are overlayed on the instruction list.
Array *cfg;
// Summary sets of block effects. The upward exposed variables and
// variables killed sets are computed during the dataflow prologue. The
// live in and live out are solved for and serialized in the epilogue.
Bvec **uevar;
Bvec **varkill;
Bvec **livein;
Bvec **liveout;
// An array with a bit vector for each safe point tracking live pointers
// in the arguments and locals area.
Array *argslivepointers;
Array *livepointers;
// An array with a bit vector for each safe point tracking dead values
// pointers in the arguments and locals area.
Array *argsdeadvalues;
Array *deadvalues;
};
static int printnoise = 0;
static void*
xmalloc(uintptr size)
{
void *result;
result = malloc(size);
if(result == nil)
fatal("malloc failed");
return result;
}
// Constructs a new basic block containing a single instruction.
static BasicBlock*
newblock(Prog *prog)
{
BasicBlock *result;
if(prog == nil)
fatal("newblock: prog cannot be nil");
result = xmalloc(sizeof(*result));
result->rpo = -1;
result->mark = UNVISITED;
result->first = prog;
result->last = prog;
result->pred = arraynew(2, sizeof(BasicBlock*));
result->succ = arraynew(2, sizeof(BasicBlock*));
return result;
}
// Frees a basic block and all of its leaf data structures.
static void
freeblock(BasicBlock *bb)
{
if(bb == nil)
fatal("freeblock: cannot free nil");
arrayfree(bb->pred);
arrayfree(bb->succ);
free(bb);
}
// Adds an edge between two basic blocks by making from a predecessor of to and
// to a successor of from.
static void
addedge(BasicBlock *from, BasicBlock *to)
{
if(from == nil)
fatal("addedge: from is nil");
if(to == nil)
fatal("addedge: to is nil");
arrayadd(from->succ, &to);
arrayadd(to->pred, &from);
}
// Inserts prev before curr in the instruction
// stream. Any control flow, such as branches or fall throughs, that target the
// existing instruction are adjusted to target the new instruction.
static void
splicebefore(Liveness *lv, BasicBlock *bb, Prog *prev, Prog *curr)
{
Prog *next, tmp;
USED(lv);
// There may be other instructions pointing at curr,
// and we want them to now point at prev. Instead of
// trying to find all such instructions, swap the contents
// so that the problem becomes inserting next after curr.
// The "opt" field is the backward link in the linked list.
// Overwrite curr's data with prev, but keep the list links.
tmp = *curr;
*curr = *prev;
curr->opt = tmp.opt;
curr->link = tmp.link;
// Overwrite prev (now next) with curr's old data.
next = prev;
*next = tmp;
next->opt = nil;
next->link = nil;
// Now insert next after curr.
next->link = curr->link;
next->opt = curr;
curr->link = next;
if(next->link && next->link->opt == curr)
next->link->opt = next;
if(bb->last == curr)
bb->last = next;
}
// A pretty printer for basic blocks.
static void
printblock(BasicBlock *bb)
{
BasicBlock *pred;
BasicBlock *succ;
Prog *prog;
int i;
print("basic block %d\n", bb->rpo);
print("\tpred:");
for(i = 0; i < arraylength(bb->pred); i++) {
pred = *(BasicBlock**)arrayget(bb->pred, i);
print(" %d", pred->rpo);
}
print("\n");
print("\tsucc:");
for(i = 0; i < arraylength(bb->succ); i++) {
succ = *(BasicBlock**)arrayget(bb->succ, i);
print(" %d", succ->rpo);
}
print("\n");
print("\tprog:\n");
for(prog = bb->first;; prog=prog->link) {
print("\t\t%P\n", prog);
if(prog == bb->last)
break;
}
}
// Iterates over a basic block applying a callback to each instruction. There
// are two criteria for termination. If the end of basic block is reached a
// value of zero is returned. If the callback returns a non-zero value, the
// iteration is stopped and the value of the callback is returned.
static int
blockany(BasicBlock *bb, int (*callback)(Prog*))
{
Prog *p;
int result;
for(p = bb->last; p != nil; p = p->opt) {
result = (*callback)(p);
if(result != 0)
return result;
}
return 0;
}
// Collects and returns and array of Node*s for functions arguments and local
// variables.
static Array*
getvariables(Node *fn, int allvalues)
{
Array *result;
NodeList *ll;
result = arraynew(0, sizeof(Node*));
for(ll = fn->dcl; ll != nil; ll = ll->next) {
if(ll->n->op == ONAME) {
switch(ll->n->class) {
case PAUTO:
case PPARAM:
case PPARAMOUT:
if(haspointers(ll->n->type) || allvalues)
arrayadd(result, &ll->n);
break;
}
}
}
return result;
}
// A pretty printer for control flow graphs. Takes an array of BasicBlock*s.
static void
printcfg(Array *cfg)
{
BasicBlock *bb;
int32 i;
for(i = 0; i < arraylength(cfg); i++) {
bb = *(BasicBlock**)arrayget(cfg, i);
printblock(bb);
}
}
// Assigns a reverse post order number to each connected basic block using the
// standard algorithm. Unconnected blocks will not be affected.
static void
reversepostorder(BasicBlock *root, int32 *rpo)
{
BasicBlock *bb;
int i;
root->mark = VISITED;
for(i = 0; i < arraylength(root->succ); i++) {
bb = *(BasicBlock**)arrayget(root->succ, i);
if(bb->mark == UNVISITED)
reversepostorder(bb, rpo);
}
*rpo -= 1;
root->rpo = *rpo;
}
// Comparison predicate used for sorting basic blocks by their rpo in ascending
// order.
static int
blockrpocmp(const void *p1, const void *p2)
{
BasicBlock *bb1;
BasicBlock *bb2;
bb1 = *(BasicBlock**)p1;
bb2 = *(BasicBlock**)p2;
if(bb1->rpo < bb2->rpo)
return -1;
if(bb1->rpo > bb2->rpo)
return 1;
return 0;
}
// A pattern matcher for call instructions. Returns true when the instruction
// is a call to a specific package qualified function name.
static int
iscall(Prog *prog, LSym *name)
{
if(prog == nil)
fatal("iscall: prog is nil");
if(name == nil)
fatal("iscall: function name is nil");
if(prog->as != ACALL)
return 0;
return name == prog->to.sym;
}
// Returns true for instructions that call a runtime function implementing a
// select communication clause.
static int
isselectcommcasecall(Prog *prog)
{
static LSym* names[5];
int32 i;
if(names[0] == nil) {
names[0] = linksym(pkglookup("selectsend", runtimepkg));
names[1] = linksym(pkglookup("selectrecv", runtimepkg));
names[2] = linksym(pkglookup("selectrecv2", runtimepkg));
names[3] = linksym(pkglookup("selectdefault", runtimepkg));
}
for(i = 0; names[i] != nil; i++)
if(iscall(prog, names[i]))
return 1;
return 0;
}
// Returns true for call instructions that target runtime·newselect.
static int
isnewselect(Prog *prog)
{
static LSym *sym;
if(sym == nil)
sym = linksym(pkglookup("newselect", runtimepkg));
return iscall(prog, sym);
}
// Returns true for call instructions that target runtime·selectgo.
static int
isselectgocall(Prog *prog)
{
static LSym *sym;
if(sym == nil)
sym = linksym(pkglookup("selectgo", runtimepkg));
return iscall(prog, sym);
}
static int
isdeferreturn(Prog *prog)
{
static LSym *sym;
if(sym == nil)
sym = linksym(pkglookup("deferreturn", runtimepkg));
return iscall(prog, sym);
}
// Walk backwards from a runtime·selectgo call up to its immediately dominating
// runtime·newselect call. Any successor nodes of communication clause nodes
// are implicit successors of the runtime·selectgo call node. The goal of this
// analysis is to add these missing edges to complete the control flow graph.
static void
addselectgosucc(BasicBlock *selectgo)
{
BasicBlock *pred;
BasicBlock *succ;
pred = selectgo;
for(;;) {
if(arraylength(pred->pred) == 0)
fatal("selectgo does not have a newselect");
pred = *(BasicBlock**)arrayget(pred->pred, 0);
if(blockany(pred, isselectcommcasecall)) {
// A select comm case block should have exactly one
// successor.
if(arraylength(pred->succ) != 1)
fatal("select comm case has too many successors");
succ = *(BasicBlock**)arrayget(pred->succ, 0);
// Its successor should have exactly two successors.
// The drop through should flow to the selectgo block
// and the branch should lead to the select case
// statements block.
if(arraylength(succ->succ) != 2)
fatal("select comm case successor has too many successors");
// Add the block as a successor of the selectgo block.
addedge(selectgo, succ);
}
if(blockany(pred, isnewselect)) {
// Reached the matching newselect.
break;
}
}
}
// The entry point for the missing selectgo control flow algorithm. Takes an
// array of BasicBlock*s containing selectgo calls.
static void
fixselectgo(Array *selectgo)
{
BasicBlock *bb;
int32 i;
for(i = 0; i < arraylength(selectgo); i++) {
bb = *(BasicBlock**)arrayget(selectgo, i);
addselectgosucc(bb);
}
}
// Constructs a control flow graph from a sequence of instructions. This
// procedure is complicated by various sources of implicit control flow that are
// not accounted for using the standard cfg construction algorithm. Returns an
// array of BasicBlock*s in control flow graph form (basic blocks ordered by
// their RPO number).
static Array*
newcfg(Prog *firstp)
{
Prog *p;
Prog *prev;
BasicBlock *bb;
Array *cfg;
Array *selectgo;
int32 i;
int32 rpo;
// Reset the opt field of each prog to nil. In the first and second
// passes, instructions that are labels temporarily use the opt field to
// point to their basic block. In the third pass, the opt field reset
// to point to the predecessor of an instruction in its basic block.
for(p = firstp; p != P; p = p->link)
p->opt = nil;
// Allocate an array to remember where we have seen selectgo calls.
// These blocks will be revisited to add successor control flow edges.
selectgo = arraynew(0, sizeof(BasicBlock*));
// Loop through all instructions identifying branch targets
// and fall-throughs and allocate basic blocks.
cfg = arraynew(0, sizeof(BasicBlock*));
bb = newblock(firstp);
arrayadd(cfg, &bb);
for(p = firstp; p != P; p = p->link) {
if(p->to.type == D_BRANCH) {
if(p->to.u.branch == nil)
fatal("prog branch to nil");
if(p->to.u.branch->opt == nil) {
p->to.u.branch->opt = newblock(p->to.u.branch);
arrayadd(cfg, &p->to.u.branch->opt);
}
if(p->as != AJMP && p->link != nil && p->link->opt == nil) {
p->link->opt = newblock(p->link);
arrayadd(cfg, &p->link->opt);
}
} else if(isselectcommcasecall(p) || isselectgocall(p)) {
// Accommodate implicit selectgo control flow.
if(p->link->opt == nil) {
p->link->opt = newblock(p->link);
arrayadd(cfg, &p->link->opt);
}
}
}
// Loop through all basic blocks maximally growing the list of
// contained instructions until a label is reached. Add edges
// for branches and fall-through instructions.
for(i = 0; i < arraylength(cfg); i++) {
bb = *(BasicBlock**)arrayget(cfg, i);
for(p = bb->last; p != nil; p = p->link) {
if(p->opt != nil && p != bb->last)
break;
bb->last = p;
// Pattern match an unconditional branch followed by a
// dead return instruction. This avoids a creating
// unreachable control flow nodes.
if(p->link != nil && p->link->link == nil)
if (p->as == AJMP && p->link->as == ARET && p->link->opt == nil)
break;
// Collect basic blocks with selectgo calls.
if(isselectgocall(p))
arrayadd(selectgo, &bb);
}
if(bb->last->to.type == D_BRANCH)
addedge(bb, bb->last->to.u.branch->opt);
if(bb->last->link != nil) {
// Add a fall-through when the instruction is
// not an unconditional control transfer.
switch(bb->last->as) {
case AJMP:
case ARET:
break;
default:
addedge(bb, bb->last->link->opt);
}
}
}
// Add back links so the instructions in a basic block can be traversed
// backward. This is the final state of the instruction opt field.
for(i = 0; i < arraylength(cfg); i++) {
bb = *(BasicBlock**)arrayget(cfg, i);
p = bb->first;
prev = nil;
for(;;) {
p->opt = prev;
if(p == bb->last)
break;
prev = p;
p = p->link;
}
}
// Add missing successor edges to the selectgo blocks.
if(arraylength(selectgo))
fixselectgo(selectgo);
arrayfree(selectgo);
// Find a depth-first order and assign a depth-first number to
// all basic blocks.
for(i = 0; i < arraylength(cfg); i++) {
bb = *(BasicBlock**)arrayget(cfg, i);
bb->mark = UNVISITED;
}
bb = *(BasicBlock**)arrayget(cfg, 0);
rpo = arraylength(cfg);
reversepostorder(bb, &rpo);
// Sort the basic blocks by their depth first number. The
// array is now a depth-first spanning tree with the first
// node being the root.
arraysort(cfg, blockrpocmp);
bb = *(BasicBlock**)arrayget(cfg, 0);
// Unreachable control flow nodes are indicated by a -1 in the rpo
// field. If we see these nodes something must have gone wrong in an
// upstream compilation phase.
if(bb->rpo == -1)
fatal("newcfg: unreferenced basic blocks");
return cfg;
}
// Frees a control flow graph (an array of BasicBlock*s) and all of its leaf
// data structures.
static void
freecfg(Array *cfg)
{
BasicBlock *bb;
BasicBlock *bb0;
Prog *p;
int32 i;
int32 len;
len = arraylength(cfg);
if(len > 0) {
bb0 = *(BasicBlock**)arrayget(cfg, 0);
for(p = bb0->first; p != P; p = p->link) {
p->opt = nil;
}
for(i = 0; i < len; i++) {
bb = *(BasicBlock**)arrayget(cfg, i);
freeblock(bb);
}
}
arrayfree(cfg);
}
// Returns true if the node names a variable that is otherwise uninteresting to
// the liveness computation.
static int
isfunny(Node *node)
{
char *names[] = { ".fp", ".args", "_", nil };
int i;
if(node->sym != nil && node->sym->name != nil)
for(i = 0; names[i] != nil; i++)
if(strcmp(node->sym->name, names[i]) == 0)
return 1;
return 0;
}
// Computes the upward exposure and kill effects of an instruction on a set of
// variables. The vars argument is an array of Node*s.
static void
progeffects(Prog *prog, Array *vars, Bvec *uevar, Bvec *varkill)
{
ProgInfo info;
Adr *from;
Adr *to;
Node *node;
int32 i;
int32 pos;
bvresetall(uevar);
bvresetall(varkill);
proginfo(&info, prog);
if(prog->as == ARET) {
// Return instructions implicitly read all the arguments. For
// the sake of correctness, out arguments must be read. For the
// sake of backtrace quality, we read in arguments as well.
for(i = 0; i < arraylength(vars); i++) {
node = *(Node**)arrayget(vars, i);
switch(node->class & ~PHEAP) {
case PPARAM:
case PPARAMOUT:
bvset(uevar, i);
break;
case PAUTO:
// Because the lifetime of stack variables
// that have their address taken is undecidable,
// we conservatively assume their lifetime
// extends to the return as well.
if(isfat(node->type) || node->addrtaken)
bvset(uevar, i);
}
}
return;
}
if(prog->as == ATEXT) {
// A text instruction marks the entry point to a function and
// the definition point of all in arguments.
for(i = 0; i < arraylength(vars); i++) {
node = *(Node**)arrayget(vars, i);
switch(node->class & ~PHEAP) {
case PPARAM:
bvset(varkill, i);
}
}
return;
}
if(info.flags & (LeftRead | LeftWrite | LeftAddr)) {
from = &prog->from;
if (from->node != nil && !isfunny(from->node) && from->sym != nil) {
switch(prog->from.node->class & ~PHEAP) {
case PAUTO:
case PPARAM:
case PPARAMOUT:
pos = arrayindexof(vars, from->node);
if(pos == -1)
goto Next;
if(info.flags & (LeftRead | LeftAddr))
bvset(uevar, pos);
if(info.flags & LeftWrite)
if(from->node != nil && (!isfat(from->node->type) || prog->as == AFATVARDEF))
bvset(varkill, pos);
}
}
}
Next:
if(info.flags & (RightRead | RightWrite | RightAddr)) {
to = &prog->to;
if (to->node != nil && to->sym != nil && !isfunny(to->node)) {
switch(prog->to.node->class & ~PHEAP) {
case PAUTO:
case PPARAM:
case PPARAMOUT:
pos = arrayindexof(vars, to->node);
if(pos == -1)
goto Next1;
if(info.flags & (RightRead | RightAddr))
bvset(uevar, pos);
if(info.flags & RightWrite)
if(to->node != nil && (!isfat(to->node->type) || prog->as == AFATVARDEF))
bvset(varkill, pos);
}
}
}
Next1:;
}
// Constructs a new liveness structure used to hold the global state of the
// liveness computation. The cfg argument is an array of BasicBlock*s and the
// vars argument is an array of Node*s.
static Liveness*
newliveness(Node *fn, Prog *ptxt, Array *cfg, Array *vars, int computedead)
{
Liveness *result;
int32 i;
int32 nblocks;
int32 nvars;
result = xmalloc(sizeof(*result));
result->fn = fn;
result->ptxt = ptxt;
result->cfg = cfg;
result->vars = vars;
nblocks = arraylength(cfg);
result->uevar = xmalloc(sizeof(Bvec*) * nblocks);
result->varkill = xmalloc(sizeof(Bvec*) * nblocks);
result->livein = xmalloc(sizeof(Bvec*) * nblocks);
result->liveout = xmalloc(sizeof(Bvec*) * nblocks);
nvars = arraylength(vars);
for(i = 0; i < nblocks; i++) {
result->uevar[i] = bvalloc(nvars);
result->varkill[i] = bvalloc(nvars);
result->livein[i] = bvalloc(nvars);
result->liveout[i] = bvalloc(nvars);
}
result->livepointers = arraynew(0, sizeof(Bvec*));
result->argslivepointers = arraynew(0, sizeof(Bvec*));
if(computedead) {
result->deadvalues = arraynew(0, sizeof(Bvec*));
result->argsdeadvalues = arraynew(0, sizeof(Bvec*));
} else {
result->deadvalues = nil;
result->argsdeadvalues = nil;
}
return result;
}
// Frees the liveness structure and all of its leaf data structures.
static void
freeliveness(Liveness *lv)
{
int32 i;
if(lv == nil)
fatal("freeliveness: cannot free nil");
for(i = 0; i < arraylength(lv->livepointers); i++)
free(*(Bvec**)arrayget(lv->livepointers, i));
arrayfree(lv->livepointers);
for(i = 0; i < arraylength(lv->argslivepointers); i++)
free(*(Bvec**)arrayget(lv->argslivepointers, i));
arrayfree(lv->argslivepointers);
if(lv->deadvalues != nil) {
for(i = 0; i < arraylength(lv->deadvalues); i++)
free(*(Bvec**)arrayget(lv->deadvalues, i));
arrayfree(lv->deadvalues);
for(i = 0; i < arraylength(lv->argsdeadvalues); i++)
free(*(Bvec**)arrayget(lv->argsdeadvalues, i));
arrayfree(lv->argsdeadvalues);
}
for(i = 0; i < arraylength(lv->cfg); i++) {
free(lv->uevar[i]);
free(lv->varkill[i]);
free(lv->livein[i]);
free(lv->liveout[i]);
}
free(lv->uevar);
free(lv->varkill);
free(lv->livein);
free(lv->liveout);
free(lv);
}
static void
printeffects(Prog *p, Bvec *uevar, Bvec *varkill)
{
print("effects of %P", p);
print("\nuevar: ");
bvprint(uevar);
print("\nvarkill: ");
bvprint(varkill);
print("\n");
}
// Pretty print a variable node. Uses Pascal like conventions for pointers and
// addresses to avoid confusing the C like conventions used in the node variable
// names.
static void
printnode(Node *node)
{
char *p;
char *a;
p = haspointers(node->type) ? "^" : "";
a = node->addrtaken ? "@" : "";
print(" %N%s%s", node, p, a);
}
// Pretty print a list of variables. The vars argument is an array of Node*s.
static void
printvars(char *name, Bvec *bv, Array *vars)
{
int32 i;
print("%s:", name);
for(i = 0; i < arraylength(vars); i++)
if(bvget(bv, i))
printnode(*(Node**)arrayget(vars, i));
print("\n");
}
// Prints a basic block annotated with the information computed by liveness
// analysis.
static void
livenessprintblock(Liveness *lv, BasicBlock *bb)
{
BasicBlock *pred;
BasicBlock *succ;
Prog *prog;
Bvec *live;
int i;
int32 pos;
print("basic block %d\n", bb->rpo);
print("\tpred:");
for(i = 0; i < arraylength(bb->pred); i++) {
pred = *(BasicBlock**)arrayget(bb->pred, i);
print(" %d", pred->rpo);
}
print("\n");
print("\tsucc:");
for(i = 0; i < arraylength(bb->succ); i++) {
succ = *(BasicBlock**)arrayget(bb->succ, i);
print(" %d", succ->rpo);
}
print("\n");
printvars("\tuevar", lv->uevar[bb->rpo], lv->vars);
printvars("\tvarkill", lv->varkill[bb->rpo], lv->vars);
printvars("\tlivein", lv->livein[bb->rpo], lv->vars);
printvars("\tliveout", lv->liveout[bb->rpo], lv->vars);
print("\tprog:\n");
for(prog = bb->first;; prog = prog->link) {
print("\t\t%P", prog);
if(prog->as == APCDATA && prog->from.offset == PCDATA_StackMapIndex) {
pos = prog->to.offset;
live = *(Bvec**)arrayget(lv->livepointers, pos);
print(" ");
bvprint(live);
}
print("\n");
if(prog == bb->last)
break;
}
}
// Prints a control flow graph annotated with any information computed by
// liveness analysis.
static void
livenessprintcfg(Liveness *lv)
{
BasicBlock *bb;
int32 i;
for(i = 0; i < arraylength(lv->cfg); i++) {
bb = *(BasicBlock**)arrayget(lv->cfg, i);
livenessprintblock(lv, bb);
}
}
static void
checkauto(Node *fn, Prog *p, Node *n, char *where)
{
NodeList *ll;
int found;
char *fnname;
char *nname;
found = 0;
for(ll = fn->dcl; ll != nil; ll = ll->next) {
if(ll->n->op == ONAME && ll->n->class == PAUTO) {
if(n == ll->n) {
found = 1;
break;
}
}
}
if(found)
return;
fnname = fn->nname->sym->name ? fn->nname->sym->name : "<unknown>";
nname = n->sym->name ? n->sym->name : "<unknown>";
print("D_AUTO '%s' not found: name is '%s' function is '%s' class is %d\n", where, nname, fnname, n->class);
print("Here '%P'\nlooking for node %p\n", p, n);
for(ll = fn->dcl; ll != nil; ll = ll->next)
print("node=%p, node->class=%d\n", (uintptr)ll->n, ll->n->class);
yyerror("checkauto: invariant lost");
}
static void
checkparam(Node *fn, Prog *p, Node *n, char *where)
{
NodeList *ll;
int found;
char *fnname;
char *nname;
if(isfunny(n))
return;
found = 0;
for(ll = fn->dcl; ll != nil; ll = ll->next) {
if(ll->n->op == ONAME && ((ll->n->class & ~PHEAP) == PPARAM ||
(ll->n->class & ~PHEAP) == PPARAMOUT)) {
if(n == ll->n) {
found = 1;
break;
}
}
}
if(found)
return;
if(n->sym) {
fnname = fn->nname->sym->name ? fn->nname->sym->name : "<unknown>";
nname = n->sym->name ? n->sym->name : "<unknown>";
print("D_PARAM '%s' not found: name='%s' function='%s' class is %d\n", where, nname, fnname, n->class);
print("Here '%P'\nlooking for node %p\n", p, n);
for(ll = fn->dcl; ll != nil; ll = ll->next)
print("node=%p, node->class=%d\n", ll->n, ll->n->class);
}
yyerror("checkparam: invariant lost");
}
static void
checkprog(Node *fn, Prog *p)
{
if(p->from.type == D_AUTO)
checkauto(fn, p, p->from.node, "from");
if(p->from.type == D_PARAM)
checkparam(fn, p, p->from.node, "from");
if(p->to.type == D_AUTO)
checkauto(fn, p, p->to.node, "to");
if(p->to.type == D_PARAM)
checkparam(fn, p, p->to.node, "to");
}
// Check instruction invariants. We assume that the nodes corresponding to the
// sources and destinations of memory operations will be declared in the
// function. This is not strictly true, as is the case for the so-called funny
// nodes and there are special cases to skip over that stuff. The analysis will
// fail if this invariant blindly changes.
static void
checkptxt(Node *fn, Prog *firstp)
{
Prog *p;
for(p = firstp; p != P; p = p->link) {
if(0)
print("analyzing '%P'\n", p);
switch(p->as) {
case ADATA:
case AGLOBL:
case ANAME:
case ASIGNAME:
case ATYPE:
continue;
}
checkprog(fn, p);
}
}
// NOTE: The bitmap for a specific type t should be cached in t after the first run
// and then simply copied into bv at the correct offset on future calls with
// the same type t. On https://rsc.googlecode.com/hg/testdata/slow.go, twobitwalktype1
// accounts for 40% of the 6g execution time.
static void
twobitwalktype1(Type *t, vlong *xoffset, Bvec *bv)
{
vlong fieldoffset;
vlong i;
vlong o;
Type *t1;
if(t->align > 0 && (*xoffset & (t->align - 1)) != 0)
fatal("twobitwalktype1: invalid initial alignment, %T", t);
switch(t->etype) {
case TINT8:
case TUINT8:
case TINT16:
case TUINT16:
case TINT32:
case TUINT32:
case TINT64:
case TUINT64:
case TINT:
case TUINT:
case TUINTPTR:
case TBOOL:
case TFLOAT32:
case TFLOAT64:
case TCOMPLEX64:
case TCOMPLEX128:
*xoffset += t->width;
break;
case TPTR32:
case TPTR64:
case TUNSAFEPTR:
case TFUNC:
case TCHAN:
case TMAP:
if((*xoffset & (widthptr-1)) != 0)
fatal("twobitwalktype1: invalid alignment, %T", t);
bvset(bv, (*xoffset / widthptr) * BitsPerPointer);
*xoffset += t->width;
break;
case TSTRING:
// struct { byte *str; intgo len; }
if((*xoffset & (widthptr-1)) != 0)
fatal("twobitwalktype1: invalid alignment, %T", t);
bvset(bv, (*xoffset / widthptr) * BitsPerPointer);
*xoffset += t->width;
break;
case TINTER:
// struct { Itab *tab; union { void *ptr, uintptr val } data; }
// or, when isnilinter(t)==true:
// struct { Type *type; union { void *ptr, uintptr val } data; }
if((*xoffset & (widthptr-1)) != 0)
fatal("twobitwalktype1: invalid alignment, %T", t);
bvset(bv, ((*xoffset / widthptr) * BitsPerPointer) + 1);
if(isnilinter(t))
bvset(bv, ((*xoffset / widthptr) * BitsPerPointer));
*xoffset += t->width;
break;
case TARRAY:
// The value of t->bound is -1 for slices types and >0 for
// for fixed array types. All other values are invalid.
if(t->bound < -1)
fatal("twobitwalktype1: invalid bound, %T", t);
if(isslice(t)) {
// struct { byte *array; uintgo len; uintgo cap; }
if((*xoffset & (widthptr-1)) != 0)
fatal("twobitwalktype1: invalid TARRAY alignment, %T", t);
bvset(bv, (*xoffset / widthptr) * BitsPerPointer);
*xoffset += t->width;
} else if(!haspointers(t->type))
*xoffset += t->width;
else
for(i = 0; i < t->bound; i++)
twobitwalktype1(t->type, xoffset, bv);
break;
case TSTRUCT:
o = 0;
for(t1 = t->type; t1 != T; t1 = t1->down) {
fieldoffset = t1->width;
*xoffset += fieldoffset - o;
twobitwalktype1(t1->type, xoffset, bv);
o = fieldoffset + t1->type->width;
}
*xoffset += t->width - o;
break;
default:
fatal("twobitwalktype1: unexpected type, %T", t);
}
}
// Returns the number of words of local variables.
static int32
localswords(void)
{
return stkptrsize / widthptr;
}
// Returns the number of words of in and out arguments.
static int32
argswords(void)
{
return curfn->type->argwid / widthptr;
}
// Generates live pointer value maps for arguments and local variables. The
// this argument and the in arguments are always assumed live. The vars
// argument is an array of Node*s.
static void
twobitlivepointermap(Liveness *lv, Bvec *liveout, Array *vars, Bvec *args, Bvec *locals)
{
Node *node;
Type *thisargtype;
Type *inargtype;
vlong xoffset;
int32 i;
for(i = 0; i < arraylength(vars); i++) {
node = *(Node**)arrayget(vars, i);
switch(node->class) {
case PAUTO:
if(bvget(liveout, i) && haspointers(node->type)) {
xoffset = node->xoffset + stkptrsize;
twobitwalktype1(node->type, &xoffset, locals);
}
break;
case PPARAM:
case PPARAMOUT:
if(bvget(liveout, i) && haspointers(node->type)) {
xoffset = node->xoffset;
twobitwalktype1(node->type, &xoffset, args);
}
break;
}
}
// In various and obscure circumstances, such as methods with an unused
// receiver, the this argument and in arguments are omitted from the
// node list. We must explicitly preserve these values to ensure that
// the addresses printed in backtraces are valid.
thisargtype = getthisx(lv->fn->type);
if(thisargtype != nil) {
xoffset = 0;
twobitwalktype1(thisargtype, &xoffset, args);
}
inargtype = getinargx(lv->fn->type);
if(inargtype != nil) {
xoffset = 0;
twobitwalktype1(inargtype, &xoffset, args);
}
}
// Generates dead value maps for arguments and local variables. Dead values of
// any type are tracked, not just pointers. The this argument and the in
// arguments are never assumed dead. The vars argument is an array of Node*s.
static void
twobitdeadvaluemap(Liveness *lv, Bvec *liveout, Array *vars, Bvec *args, Bvec *locals)
{
Node *node;
/*
Type *thisargtype;
Type *inargtype;
*/
vlong xoffset;
int32 i;
for(i = 0; i < arraylength(vars); i++) {
node = *(Node**)arrayget(vars, i);
switch(node->class) {
case PAUTO:
if(!bvget(liveout, i)) {
xoffset = node->xoffset + stkptrsize;
twobitwalktype1(node->type, &xoffset, locals);
}
break;
case PPARAM:
case PPARAMOUT:
if(!bvget(liveout, i)) {
xoffset = node->xoffset;
twobitwalktype1(node->type, &xoffset, args);
}
break;
}
}
USED(lv);
/*
thisargtype = getinargx(lv->fn->type);
if(thisargtype != nil) {
xoffset = 0;
twobitwalktype1(thisargtype, &xoffset, args);
}
inargtype = getinargx(lv->fn->type);
if(inargtype != nil) {
xoffset = 0;
twobitwalktype1(inargtype, &xoffset, args);
}
*/
}
// Construct a disembodied instruction.
static Prog*
unlinkedprog(int as)
{
Prog *p;
p = mal(sizeof(*p));
clearp(p);
p->as = as;
return p;
}
// Construct a new PCDATA instruction associated with and for the purposes of
// covering an existing instruction.
static Prog*
newpcdataprog(Prog *prog, int32 index)
{
Node from;
Node to;
Prog *pcdata;
nodconst(&from, types[TINT32], PCDATA_StackMapIndex);
nodconst(&to, types[TINT32], index);
pcdata = unlinkedprog(APCDATA);
pcdata->lineno = prog->lineno;
naddr(&from, &pcdata->from, 0);
naddr(&to, &pcdata->to, 0);
return pcdata;
}
// Returns true for instructions that are safe points that must be annotated
// with liveness information.
static int
issafepoint(Prog *prog)
{
return prog->as == ATEXT || prog->as == ACALL;
}
// Initializes the sets for solving the live variables. Visits all the
// instructions in each basic block to summarizes the information at each basic
// block
static void
livenessprologue(Liveness *lv)
{
BasicBlock *bb;
Bvec *uevar;
Bvec *varkill;
Prog *prog;
int32 i;
int32 nvars;
nvars = arraylength(lv->vars);
uevar = bvalloc(nvars);
varkill = bvalloc(nvars);
for(i = 0; i < arraylength(lv->cfg); i++) {
bb = *(BasicBlock**)arrayget(lv->cfg, i);
// Walk the block instructions backward and update the block
// effects with the each prog effects.
for(prog = bb->last; prog != nil; prog = prog->opt) {
progeffects(prog, lv->vars, uevar, varkill);
if(0) printeffects(prog, uevar, varkill);
bvor(lv->varkill[i], lv->varkill[i], varkill);
bvandnot(lv->uevar[i], lv->uevar[i], varkill);
bvor(lv->uevar[i], lv->uevar[i], uevar);
}
}
free(uevar);
free(varkill);
}
// Solve the liveness dataflow equations.
static void
livenesssolve(Liveness *lv)
{
BasicBlock *bb;
BasicBlock *succ;
Bvec *newlivein;
Bvec *newliveout;
int32 rpo;
int32 i;
int32 j;
int change;
// These temporary bitvectors exist to avoid successive allocations and
// frees within the loop.
newlivein = bvalloc(arraylength(lv->vars));
newliveout = bvalloc(arraylength(lv->vars));
// Iterate through the blocks in reverse round-robin fashion. A work
// queue might be slightly faster. As is, the number of iterations is
// so low that it hardly seems to be worth the complexity.
change = 1;
while(change != 0) {
change = 0;
// Walk blocks in the general direction of propagation. This
// improves convergence.
for(i = arraylength(lv->cfg) - 1; i >= 0; i--) {
// out[b] = \bigcup_{s \in succ[b]} in[s]
bb = *(BasicBlock**)arrayget(lv->cfg, i);
rpo = bb->rpo;
bvresetall(newliveout);
for(j = 0; j < arraylength(bb->succ); j++) {
succ = *(BasicBlock**)arrayget(bb->succ, j);
bvor(newliveout, newliveout, lv->livein[succ->rpo]);
}
if(bvcmp(lv->liveout[rpo], newliveout)) {
change = 1;
bvcopy(lv->liveout[rpo], newliveout);
}
// in[b] = uevar[b] \cup (out[b] \setminus varkill[b])
bvandnot(newlivein, lv->liveout[rpo], lv->varkill[rpo]);
bvor(lv->livein[rpo], newlivein, lv->uevar[rpo]);
}
}
free(newlivein);
free(newliveout);
}
// Visits all instructions in a basic block and computes a bit vector of live
// variables at each safe point locations.
static void
livenessepilogue(Liveness *lv)
{
BasicBlock *bb;
Bvec *livein, *liveout, *uevar, *varkill, *args, *locals;
Prog *p, *next;
int32 i, j, nmsg, nvars, pos;
char **msg;
Fmt fmt;
nvars = arraylength(lv->vars);
livein = bvalloc(nvars);
liveout = bvalloc(nvars);
uevar = bvalloc(nvars);
varkill = bvalloc(nvars);
msg = nil;
nmsg = 0;
for(i = 0; i < arraylength(lv->cfg); i++) {
bb = *(BasicBlock**)arrayget(lv->cfg, i);
bvcopy(livein, lv->liveout[bb->rpo]);
// Walk forward through the basic block instructions and
// allocate and empty map for those instructions that need them
for(p = bb->last; p != nil; p = p->opt) {
if(!issafepoint(p))
continue;
// Allocate a bit vector for each class and facet of
// value we are tracking.
// Live stuff first.
args = bvalloc(argswords() * BitsPerPointer);
arrayadd(lv->argslivepointers, &args);
locals = bvalloc(localswords() * BitsPerPointer);
arrayadd(lv->livepointers, &locals);
// Dead stuff second.
if(lv->deadvalues != nil) {
args = bvalloc(argswords() * BitsPerPointer);
arrayadd(lv->argsdeadvalues, &args);
locals = bvalloc(localswords() * BitsPerPointer);
arrayadd(lv->deadvalues, &locals);
}
}
if(debuglive) {
nmsg = arraylength(lv->livepointers);
msg = xmalloc(nmsg*sizeof msg[0]);
for(j=0; j<nmsg; j++)
msg[j] = nil;
}
// walk backward, emit pcdata and populate the maps
pos = arraylength(lv->livepointers) - 1;
if(pos < 0) {
// the first block we encounter should have the ATEXT so
// at no point should pos ever be less than zero.
fatal("livenessepilogue");
}
for(p = bb->last; p != nil; p = next) {
next = p->opt; // splicebefore modifies p->opt
// Propagate liveness information
progeffects(p, lv->vars, uevar, varkill);
bvcopy(liveout, livein);
bvandnot(livein, liveout, varkill);
bvor(livein, livein, uevar);
if(printnoise){
print("%P\n", p);
printvars("uevar", uevar, lv->vars);
printvars("varkill", varkill, lv->vars);
printvars("livein", livein, lv->vars);
printvars("liveout", liveout, lv->vars);
}
if(issafepoint(p)) {
// Found an interesting instruction, record the
// corresponding liveness information.
if(debuglive) {
fmtstrinit(&fmt);
fmtprint(&fmt, "%L: live at ", p->lineno);
if(p->as == ACALL)
fmtprint(&fmt, "CALL %lS:", p->to.sym);
else
fmtprint(&fmt, "TEXT %lS:", p->from.sym);
for(j = 0; j < arraylength(lv->vars); j++)
if(bvget(liveout, j))
fmtprint(&fmt, " %N", *(Node**)arrayget(lv->vars, j));
fmtprint(&fmt, "\n");
msg[pos] = fmtstrflush(&fmt);
}
// Record live pointers.
args = *(Bvec**)arrayget(lv->argslivepointers, pos);
locals = *(Bvec**)arrayget(lv->livepointers, pos);
twobitlivepointermap(lv, liveout, lv->vars, args, locals);
// Record dead values.
if(lv->deadvalues != nil) {
args = *(Bvec**)arrayget(lv->argsdeadvalues, pos);
locals = *(Bvec**)arrayget(lv->deadvalues, pos);
twobitdeadvaluemap(lv, liveout, lv->vars, args, locals);
}
// Only CALL instructions need a PCDATA annotation.
// The TEXT instruction annotation is implicit.
if(p->as == ACALL) {
if(isdeferreturn(p)) {
// Because this runtime call
// modifies its return address
// to return back to itself,
// emitting a PCDATA before the
// call instruction will result
// in an off by one error during
// a stack walk. Fortunately,
// the compiler inserts a no-op
// instruction before this call
// so we can reliably anchor the
// PCDATA to that instruction.
splicebefore(lv, bb, newpcdataprog(p->opt, pos), p->opt);
} else {
splicebefore(lv, bb, newpcdataprog(p, pos), p);
}
}
pos--;
}
}
if(debuglive) {
for(j=0; j<nmsg; j++)
if(msg[j] != nil)
print("%s", msg[j]);
free(msg);
msg = nil;
nmsg = 0;
}
}
free(livein);
free(liveout);
free(uevar);
free(varkill);
}
// Dumps an array of bitmaps to a symbol as a sequence of uint32 values. The
// first word dumped is the total number of bitmaps. The second word is the
// length of the bitmaps. All bitmaps are assumed to be of equal length. The
// words that are followed are the raw bitmap words. The arr argument is an
// array of Node*s.
static void
twobitwritesymbol(Array *arr, Sym *sym, Bvec *check)
{
Bvec *bv;
int off;
uint32 bit;
uint32 word;
uint32 checkword;
int32 i;
int32 j;
int32 len;
int32 pos;
len = arraylength(arr);
// Dump the length of the bitmap array.
off = duint32(sym, 0, len);
for(i = 0; i < len; i++) {
bv = *(Bvec**)arrayget(arr, i);
// If we have been provided a check bitmap we can use it
// to confirm that the bitmap we are dumping is a subset
// of the check bitmap.
if(check != nil) {
for(j = 0; j < bv->n; j += 32) {
word = bv->b[j/32];
checkword = check->b[j/32];
if(word != checkword) {
// Found a mismatched word, find
// the mismatched bit.
for(pos = 0; pos < 32; pos++) {
bit = 1 << pos;
if((word & bit) && !(checkword & bit)) {
print("twobitwritesymbol: expected %032b to be a subset of %032b\n", word, checkword);
fatal("mismatch at bit position %d\n", pos);
}
}
}
}
}
// Dump the length of the bitmap.
off = duint32(sym, off, bv->n);
// Dump the words of the bitmap.
for(j = 0; j < bv->n; j += 32) {
word = bv->b[j/32];
off = duint32(sym, off, word);
}
}
ggloblsym(sym, off, 0, 1);
}
static void
printprog(Prog *p)
{
while(p != nil) {
print("%P\n", p);
p = p->link;
}
}
// Entry pointer for liveness analysis. Constructs a complete CFG, solves for
// the liveness of pointer variables in the function, and emits a runtime data
// structure read by the garbage collector.
void
liveness(Node *fn, Prog *firstp, Sym *argssym, Sym *livesym, Sym *deadsym)
{
Array *cfg;
Array *vars;
Liveness *lv;
if(0) print("curfn->nname->sym->name is %s\n", curfn->nname->sym->name);
if(0) printprog(firstp);
checkptxt(fn, firstp);
// Construct the global liveness state.
cfg = newcfg(firstp);
if(0) printcfg(cfg);
vars = getvariables(fn, deadsym != nil);
lv = newliveness(fn, firstp, cfg, vars, deadsym != nil);
// Run the dataflow framework.
livenessprologue(lv);
if(0) livenessprintcfg(lv);
livenesssolve(lv);
if(0) livenessprintcfg(lv);
livenessepilogue(lv);
// Emit the live pointer map data structures
twobitwritesymbol(lv->livepointers, livesym, nil);
twobitwritesymbol(lv->argslivepointers, argssym, nil);
// Optionally emit a dead value map data structure for locals.
if(deadsym != nil)
twobitwritesymbol(lv->deadvalues, deadsym, nil);
// Free everything.
freeliveness(lv);
arrayfree(vars);
freecfg(cfg);
}