| // Copyright 2019 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ld |
| |
| import ( |
| "cmd/internal/goobj" |
| "cmd/internal/objabi" |
| "cmd/internal/sys" |
| "cmd/link/internal/loader" |
| "cmd/link/internal/sym" |
| "fmt" |
| "internal/buildcfg" |
| "unicode" |
| ) |
| |
| var _ = fmt.Print |
| |
| type deadcodePass struct { |
| ctxt *Link |
| ldr *loader.Loader |
| wq heap // work queue, using min-heap for better locality |
| |
| ifaceMethod map[methodsig]bool // methods declared in reached interfaces |
| markableMethods []methodref // methods of reached types |
| reflectSeen bool // whether we have seen a reflect method call |
| dynlink bool |
| |
| methodsigstmp []methodsig // scratch buffer for decoding method signatures |
| } |
| |
| func (d *deadcodePass) init() { |
| d.ldr.InitReachable() |
| d.ifaceMethod = make(map[methodsig]bool) |
| if buildcfg.Experiment.FieldTrack { |
| d.ldr.Reachparent = make([]loader.Sym, d.ldr.NSym()) |
| } |
| d.dynlink = d.ctxt.DynlinkingGo() |
| |
| if d.ctxt.BuildMode == BuildModeShared { |
| // Mark all symbols defined in this library as reachable when |
| // building a shared library. |
| n := d.ldr.NDef() |
| for i := 1; i < n; i++ { |
| s := loader.Sym(i) |
| d.mark(s, 0) |
| } |
| return |
| } |
| |
| var names []string |
| |
| // In a normal binary, start at main.main and the init |
| // functions and mark what is reachable from there. |
| if d.ctxt.linkShared && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) { |
| names = append(names, "main.main", "main..inittask") |
| } else { |
| // The external linker refers main symbol directly. |
| if d.ctxt.LinkMode == LinkExternal && (d.ctxt.BuildMode == BuildModeExe || d.ctxt.BuildMode == BuildModePIE) { |
| if d.ctxt.HeadType == objabi.Hwindows && d.ctxt.Arch.Family == sys.I386 { |
| *flagEntrySymbol = "_main" |
| } else { |
| *flagEntrySymbol = "main" |
| } |
| } |
| names = append(names, *flagEntrySymbol) |
| } |
| // runtime.unreachableMethod is a function that will throw if called. |
| // We redirect unreachable methods to it. |
| names = append(names, "runtime.unreachableMethod") |
| if !d.ctxt.linkShared && d.ctxt.BuildMode != BuildModePlugin { |
| // runtime.buildVersion and runtime.modinfo are referenced in .go.buildinfo section |
| // (see function buildinfo in data.go). They should normally be reachable from the |
| // runtime. Just make it explicit, in case. |
| names = append(names, "runtime.buildVersion", "runtime.modinfo") |
| } |
| if d.ctxt.BuildMode == BuildModePlugin { |
| names = append(names, objabi.PathToPrefix(*flagPluginPath)+"..inittask", objabi.PathToPrefix(*flagPluginPath)+".main", "go.plugin.tabs") |
| |
| // We don't keep the go.plugin.exports symbol, |
| // but we do keep the symbols it refers to. |
| exportsIdx := d.ldr.Lookup("go.plugin.exports", 0) |
| if exportsIdx != 0 { |
| relocs := d.ldr.Relocs(exportsIdx) |
| for i := 0; i < relocs.Count(); i++ { |
| d.mark(relocs.At(i).Sym(), 0) |
| } |
| } |
| } |
| |
| if d.ctxt.Debugvlog > 1 { |
| d.ctxt.Logf("deadcode start names: %v\n", names) |
| } |
| |
| for _, name := range names { |
| // Mark symbol as a data/ABI0 symbol. |
| d.mark(d.ldr.Lookup(name, 0), 0) |
| // Also mark any Go functions (internal ABI). |
| d.mark(d.ldr.Lookup(name, sym.SymVerABIInternal), 0) |
| } |
| |
| // All dynamic exports are roots. |
| for _, s := range d.ctxt.dynexp { |
| if d.ctxt.Debugvlog > 1 { |
| d.ctxt.Logf("deadcode start dynexp: %s<%d>\n", d.ldr.SymName(s), d.ldr.SymVersion(s)) |
| } |
| d.mark(s, 0) |
| } |
| } |
| |
| func (d *deadcodePass) flood() { |
| var methods []methodref |
| for !d.wq.empty() { |
| symIdx := d.wq.pop() |
| |
| d.reflectSeen = d.reflectSeen || d.ldr.IsReflectMethod(symIdx) |
| |
| isgotype := d.ldr.IsGoType(symIdx) |
| relocs := d.ldr.Relocs(symIdx) |
| var usedInIface bool |
| |
| if isgotype { |
| if d.dynlink { |
| // When dynamic linking, a type may be passed across DSO |
| // boundary and get converted to interface at the other side. |
| d.ldr.SetAttrUsedInIface(symIdx, true) |
| } |
| usedInIface = d.ldr.AttrUsedInIface(symIdx) |
| } |
| |
| methods = methods[:0] |
| for i := 0; i < relocs.Count(); i++ { |
| r := relocs.At(i) |
| if r.Weak() { |
| continue |
| } |
| t := r.Type() |
| switch t { |
| case objabi.R_METHODOFF: |
| if i+2 >= relocs.Count() { |
| panic("expect three consecutive R_METHODOFF relocs") |
| } |
| if usedInIface { |
| methods = append(methods, methodref{src: symIdx, r: i}) |
| // The method descriptor is itself a type descriptor, and |
| // it can be used to reach other types, e.g. by using |
| // reflect.Type.Method(i).Type.In(j). We need to traverse |
| // its child types with UsedInIface set. (See also the |
| // comment below.) |
| rs := r.Sym() |
| if !d.ldr.AttrUsedInIface(rs) { |
| d.ldr.SetAttrUsedInIface(rs, true) |
| if d.ldr.AttrReachable(rs) { |
| d.ldr.SetAttrReachable(rs, false) |
| d.mark(rs, symIdx) |
| } |
| } |
| } |
| i += 2 |
| continue |
| case objabi.R_USETYPE: |
| // type symbol used for DWARF. we need to load the symbol but it may not |
| // be otherwise reachable in the program. |
| // do nothing for now as we still load all type symbols. |
| continue |
| case objabi.R_USEIFACE: |
| // R_USEIFACE is a marker relocation that tells the linker the type is |
| // converted to an interface, i.e. should have UsedInIface set. See the |
| // comment below for why we need to unset the Reachable bit and re-mark it. |
| rs := r.Sym() |
| if !d.ldr.AttrUsedInIface(rs) { |
| d.ldr.SetAttrUsedInIface(rs, true) |
| if d.ldr.AttrReachable(rs) { |
| d.ldr.SetAttrReachable(rs, false) |
| d.mark(rs, symIdx) |
| } |
| } |
| continue |
| case objabi.R_USEIFACEMETHOD: |
| // R_USEIFACEMETHOD is a marker relocation that marks an interface |
| // method as used. |
| rs := r.Sym() |
| if d.ctxt.linkShared && (d.ldr.SymType(rs) == sym.SDYNIMPORT || d.ldr.SymType(rs) == sym.Sxxx) { |
| // Don't decode symbol from shared library (we'll mark all exported methods anyway). |
| // We check for both SDYNIMPORT and Sxxx because name-mangled symbols haven't |
| // been resolved at this point. |
| continue |
| } |
| m := d.decodeIfaceMethod(d.ldr, d.ctxt.Arch, rs, r.Add()) |
| if d.ctxt.Debugvlog > 1 { |
| d.ctxt.Logf("reached iface method: %v\n", m) |
| } |
| d.ifaceMethod[m] = true |
| continue |
| } |
| rs := r.Sym() |
| if isgotype && usedInIface && d.ldr.IsGoType(rs) && !d.ldr.AttrUsedInIface(rs) { |
| // If a type is converted to an interface, it is possible to obtain an |
| // interface with a "child" type of it using reflection (e.g. obtain an |
| // interface of T from []chan T). We need to traverse its "child" types |
| // with UsedInIface attribute set. |
| // When visiting the child type (chan T in the example above), it will |
| // have UsedInIface set, so it in turn will mark and (re)visit its children |
| // (e.g. T above). |
| // We unset the reachable bit here, so if the child type is already visited, |
| // it will be visited again. |
| // Note that a type symbol can be visited at most twice, one without |
| // UsedInIface and one with. So termination is still guaranteed. |
| d.ldr.SetAttrUsedInIface(rs, true) |
| d.ldr.SetAttrReachable(rs, false) |
| } |
| d.mark(rs, symIdx) |
| } |
| naux := d.ldr.NAux(symIdx) |
| for i := 0; i < naux; i++ { |
| a := d.ldr.Aux(symIdx, i) |
| if a.Type() == goobj.AuxGotype { |
| // A symbol being reachable doesn't imply we need its |
| // type descriptor. Don't mark it. |
| continue |
| } |
| d.mark(a.Sym(), symIdx) |
| } |
| // Some host object symbols have an outer object, which acts like a |
| // "carrier" symbol, or it holds all the symbols for a particular |
| // section. We need to mark all "referenced" symbols from that carrier, |
| // so we make sure we're pulling in all outer symbols, and their sub |
| // symbols. This is not ideal, and these carrier/section symbols could |
| // be removed. |
| if d.ldr.IsExternal(symIdx) { |
| d.mark(d.ldr.OuterSym(symIdx), symIdx) |
| d.mark(d.ldr.SubSym(symIdx), symIdx) |
| } |
| |
| if len(methods) != 0 { |
| if !isgotype { |
| panic("method found on non-type symbol") |
| } |
| // Decode runtime type information for type methods |
| // to help work out which methods can be called |
| // dynamically via interfaces. |
| methodsigs := d.decodetypeMethods(d.ldr, d.ctxt.Arch, symIdx, &relocs) |
| if len(methods) != len(methodsigs) { |
| panic(fmt.Sprintf("%q has %d method relocations for %d methods", d.ldr.SymName(symIdx), len(methods), len(methodsigs))) |
| } |
| for i, m := range methodsigs { |
| methods[i].m = m |
| if d.ctxt.Debugvlog > 1 { |
| d.ctxt.Logf("markable method: %v of sym %v %s\n", m, symIdx, d.ldr.SymName(symIdx)) |
| } |
| } |
| d.markableMethods = append(d.markableMethods, methods...) |
| } |
| } |
| } |
| |
| func (d *deadcodePass) mark(symIdx, parent loader.Sym) { |
| if symIdx != 0 && !d.ldr.AttrReachable(symIdx) { |
| d.wq.push(symIdx) |
| d.ldr.SetAttrReachable(symIdx, true) |
| if buildcfg.Experiment.FieldTrack && d.ldr.Reachparent[symIdx] == 0 { |
| d.ldr.Reachparent[symIdx] = parent |
| } |
| if *flagDumpDep { |
| to := d.ldr.SymName(symIdx) |
| if to != "" { |
| if d.ldr.AttrUsedInIface(symIdx) { |
| to += " <UsedInIface>" |
| } |
| from := "_" |
| if parent != 0 { |
| from = d.ldr.SymName(parent) |
| if d.ldr.AttrUsedInIface(parent) { |
| from += " <UsedInIface>" |
| } |
| } |
| fmt.Printf("%s -> %s\n", from, to) |
| } |
| } |
| } |
| } |
| |
| func (d *deadcodePass) markMethod(m methodref) { |
| relocs := d.ldr.Relocs(m.src) |
| d.mark(relocs.At(m.r).Sym(), m.src) |
| d.mark(relocs.At(m.r+1).Sym(), m.src) |
| d.mark(relocs.At(m.r+2).Sym(), m.src) |
| } |
| |
| // deadcode marks all reachable symbols. |
| // |
| // The basis of the dead code elimination is a flood fill of symbols, |
| // following their relocations, beginning at *flagEntrySymbol. |
| // |
| // This flood fill is wrapped in logic for pruning unused methods. |
| // All methods are mentioned by relocations on their receiver's *rtype. |
| // These relocations are specially defined as R_METHODOFF by the compiler |
| // so we can detect and manipulated them here. |
| // |
| // There are three ways a method of a reachable type can be invoked: |
| // |
| // 1. direct call |
| // 2. through a reachable interface type |
| // 3. reflect.Value.Method (or MethodByName), or reflect.Type.Method |
| // (or MethodByName) |
| // |
| // The first case is handled by the flood fill, a directly called method |
| // is marked as reachable. |
| // |
| // The second case is handled by decomposing all reachable interface |
| // types into method signatures. Each encountered method is compared |
| // against the interface method signatures, if it matches it is marked |
| // as reachable. This is extremely conservative, but easy and correct. |
| // |
| // The third case is handled by looking to see if any of: |
| // - reflect.Value.Method or MethodByName is reachable |
| // - reflect.Type.Method or MethodByName is called (through the |
| // REFLECTMETHOD attribute marked by the compiler). |
| // If any of these happen, all bets are off and all exported methods |
| // of reachable types are marked reachable. |
| // |
| // Any unreached text symbols are removed from ctxt.Textp. |
| func deadcode(ctxt *Link) { |
| ldr := ctxt.loader |
| d := deadcodePass{ctxt: ctxt, ldr: ldr} |
| d.init() |
| d.flood() |
| |
| methSym := ldr.Lookup("reflect.Value.Method", sym.SymVerABIInternal) |
| methByNameSym := ldr.Lookup("reflect.Value.MethodByName", sym.SymVerABIInternal) |
| |
| if ctxt.DynlinkingGo() { |
| // Exported methods may satisfy interfaces we don't know |
| // about yet when dynamically linking. |
| d.reflectSeen = true |
| } |
| |
| for { |
| // Methods might be called via reflection. Give up on |
| // static analysis, mark all exported methods of |
| // all reachable types as reachable. |
| d.reflectSeen = d.reflectSeen || (methSym != 0 && ldr.AttrReachable(methSym)) || (methByNameSym != 0 && ldr.AttrReachable(methByNameSym)) |
| |
| // Mark all methods that could satisfy a discovered |
| // interface as reachable. We recheck old marked interfaces |
| // as new types (with new methods) may have been discovered |
| // in the last pass. |
| rem := d.markableMethods[:0] |
| for _, m := range d.markableMethods { |
| if (d.reflectSeen && m.isExported()) || d.ifaceMethod[m.m] { |
| d.markMethod(m) |
| } else { |
| rem = append(rem, m) |
| } |
| } |
| d.markableMethods = rem |
| |
| if d.wq.empty() { |
| // No new work was discovered. Done. |
| break |
| } |
| d.flood() |
| } |
| } |
| |
| // methodsig is a typed method signature (name + type). |
| type methodsig struct { |
| name string |
| typ loader.Sym // type descriptor symbol of the function |
| } |
| |
| // methodref holds the relocations from a receiver type symbol to its |
| // method. There are three relocations, one for each of the fields in |
| // the reflect.method struct: mtyp, ifn, and tfn. |
| type methodref struct { |
| m methodsig |
| src loader.Sym // receiver type symbol |
| r int // the index of R_METHODOFF relocations |
| } |
| |
| func (m methodref) isExported() bool { |
| for _, r := range m.m.name { |
| return unicode.IsUpper(r) |
| } |
| panic("methodref has no signature") |
| } |
| |
| // decodeMethodSig decodes an array of method signature information. |
| // Each element of the array is size bytes. The first 4 bytes is a |
| // nameOff for the method name, and the next 4 bytes is a typeOff for |
| // the function type. |
| // |
| // Conveniently this is the layout of both runtime.method and runtime.imethod. |
| func (d *deadcodePass) decodeMethodSig(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs, off, size, count int) []methodsig { |
| if cap(d.methodsigstmp) < count { |
| d.methodsigstmp = append(d.methodsigstmp[:0], make([]methodsig, count)...) |
| } |
| var methods = d.methodsigstmp[:count] |
| for i := 0; i < count; i++ { |
| methods[i].name = decodetypeName(ldr, symIdx, relocs, off) |
| methods[i].typ = decodeRelocSym(ldr, symIdx, relocs, int32(off+4)) |
| off += size |
| } |
| return methods |
| } |
| |
| // Decode the method of interface type symbol symIdx at offset off. |
| func (d *deadcodePass) decodeIfaceMethod(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, off int64) methodsig { |
| p := ldr.Data(symIdx) |
| if decodetypeKind(arch, p)&kindMask != kindInterface { |
| panic(fmt.Sprintf("symbol %q is not an interface", ldr.SymName(symIdx))) |
| } |
| relocs := ldr.Relocs(symIdx) |
| var m methodsig |
| m.name = decodetypeName(ldr, symIdx, &relocs, int(off)) |
| m.typ = decodeRelocSym(ldr, symIdx, &relocs, int32(off+4)) |
| return m |
| } |
| |
| func (d *deadcodePass) decodetypeMethods(ldr *loader.Loader, arch *sys.Arch, symIdx loader.Sym, relocs *loader.Relocs) []methodsig { |
| p := ldr.Data(symIdx) |
| if !decodetypeHasUncommon(arch, p) { |
| panic(fmt.Sprintf("no methods on %q", ldr.SymName(symIdx))) |
| } |
| off := commonsize(arch) // reflect.rtype |
| switch decodetypeKind(arch, p) & kindMask { |
| case kindStruct: // reflect.structType |
| off += 4 * arch.PtrSize |
| case kindPtr: // reflect.ptrType |
| off += arch.PtrSize |
| case kindFunc: // reflect.funcType |
| off += arch.PtrSize // 4 bytes, pointer aligned |
| case kindSlice: // reflect.sliceType |
| off += arch.PtrSize |
| case kindArray: // reflect.arrayType |
| off += 3 * arch.PtrSize |
| case kindChan: // reflect.chanType |
| off += 2 * arch.PtrSize |
| case kindMap: // reflect.mapType |
| off += 4*arch.PtrSize + 8 |
| case kindInterface: // reflect.interfaceType |
| off += 3 * arch.PtrSize |
| default: |
| // just Sizeof(rtype) |
| } |
| |
| mcount := int(decodeInuxi(arch, p[off+4:], 2)) |
| moff := int(decodeInuxi(arch, p[off+4+2+2:], 4)) |
| off += moff // offset to array of reflect.method values |
| const sizeofMethod = 4 * 4 // sizeof reflect.method in program |
| return d.decodeMethodSig(ldr, arch, symIdx, relocs, off, sizeofMethod, mcount) |
| } |