blob: bb2f08ea7b6e69f78f5d9342983068d9a1214c2f [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package fmt implements formatted I/O with functions analogous
to C's printf and scanf. The format 'verbs' are derived from C's but
are simpler.
Printing:
The verbs:
General:
%v the value in a default format.
when printing structs, the plus flag (%+v) adds field names
%#v a Go-syntax representation of the value
%T a Go-syntax representation of the type of the value
Boolean:
%t the word true or false
Integer:
%b base 2
%c the character represented by the corresponding Unicode code point
%d base 10
%o base 8
%x base 16, with lower-case letters for a-f
%X base 16, with upper-case letters for A-F
Floating-point and complex constituents:
%e scientific notation, e.g. -1234.456e+78
%E scientific notation, e.g. -1234.456E+78
%f decimal point but no exponent, e.g. 123.456
%g whichever of %e or %f produces more compact output
%G whichever of %E or %f produces more compact output
String and slice of bytes:
%s the uninterpreted bytes of the string or slice
%q a double-quoted string safely escaped with Go syntax
%x base 16 notation with two characters per byte
Pointer:
%p base 16 notation, with leading 0x
There is no 'u' flag. Integers are printed unsigned if they have unsigned type.
Similarly, there is no need to specify the size of the operand (int8, int64).
For numeric values, the width and precision flags control
formatting; width sets the width of the field, precision the
number of places after the decimal, if appropriate. The
format %6.2f prints 123.45. The width of a field is the number
of Unicode code points in the string. This differs from C's printf where
the field width is the number of bytes.
Other flags:
+ always print a sign for numeric values
- pad with spaces on the right rather than the left (left-justify the field)
# alternate format: add leading 0 for octal (%#o), 0x for hex (%#x);
suppress 0x for %p (%#p);
print a raw (backquoted) string if possible for %q (%#q)
' ' (space) leave a space for elided sign in numbers (% d);
put spaces between bytes printing strings or slices in hex (% x)
0 pad with leading zeros rather than spaces
For each Printf-like function, there is also a Print function
that takes no format and is equivalent to saying %v for every
operand. Another variant Println inserts blanks between
operands and appends a newline.
Regardless of the verb, if an operand is an interface value,
the internal concrete value is used, not the interface itself.
Thus:
var i interface{} = 23;
fmt.Printf("%v\n", i);
will print 23.
If an operand implements interface Formatter, that interface
can be used for fine control of formatting.
If an operand implements method String() string that method
will be used to conver the object to a string, which will then
be formatted as required by the verb (if any). To avoid
recursion in cases such as
type X int
func (x X) String() string { return Sprintf("%d", x) }
cast the value before recurring:
func (x X) String() string { return Sprintf("%d", int(x)) }
Scanning:
An analogous set of functions scans formatted text to yield
values. Scan, Scanf and Scanln read from os.Stdin; Fscan,
Fscanf and Fscanln read from a specified os.Reader; Sscan,
Sscanf and Sscanln read from an argument string. Sscanln,
Fscanln and Sscanln stop scanning at a newline and require that
the items be followed by one; the other routines treat newlines
as spaces.
Scanf, Fscanf, and Sscanf parse the arguments according to a
format string, analogous to that of Printf. For example, "%x"
will scan an integer as a hexadecimal number, and %v will scan
the default representation format for the value.
The formats behave analogously to those of Printf with the
following exceptions:
%p is not implemented
%T is not implemented
%e %E %f %F %g %g are all equivalent and scan any floating
point or complex value
%s and %v on strings scan a space-delimited token
Width is interpreted in the input text (%5s means at most
five runes of input will be read to scan a string) but there
is no syntax for scanning with a precision (no %5.2f, just
%5f).
When scanning with a format, all non-empty runs of space
characters (including newline) are equivalent to a single
space in both the format and the input. With that proviso,
text in the format string must match the input text; scanning
stops if it does not, with the return value of the function
indicating the number of arguments scanned.
In all the scanning functions, if an operand implements method
Scan (that is, it implements the Scanner interface) that
method will be used to scan the text for that operand. Also,
if the number of arguments scanned is less than the number of
arguments provided, an error is returned.
All arguments to be scanned must be either pointers to basic
types or implementations of the Scanner interface.
*/
package fmt
import (
"bytes"
"io"
"os"
"reflect"
"utf8"
)
// Some constants in the form of bytes, to avoid string overhead.
// Needlessly fastidious, I suppose.
var (
commaSpaceBytes = []byte(", ")
nilAngleBytes = []byte("<nil>")
nilParenBytes = []byte("(nil)")
nilBytes = []byte("nil")
mapBytes = []byte("map[")
missingBytes = []byte("missing")
extraBytes = []byte("?(extra ")
irparenBytes = []byte("i)")
bytesBytes = []byte("[]byte{")
)
// State represents the printer state passed to custom formatters.
// It provides access to the io.Writer interface plus information about
// the flags and options for the operand's format specifier.
type State interface {
// Write is the function to call to emit formatted output to be printed.
Write(b []byte) (ret int, err os.Error)
// Width returns the value of the width option and whether it has been set.
Width() (wid int, ok bool)
// Precision returns the value of the precision option and whether it has been set.
Precision() (prec int, ok bool)
// Flag returns whether the flag c, a character, has been set.
Flag(int) bool
}
// Formatter is the interface implemented by values with a custom formatter.
// The implementation of Format may call Sprintf or Fprintf(f) etc.
// to generate its output.
type Formatter interface {
Format(f State, c int)
}
// Stringer is implemented by any value that has a String method(),
// which defines the ``native'' format for that value.
// The String method is used to print values passed as an operand
// to a %s or %v format or to an unformatted printer such as Print.
type Stringer interface {
String() string
}
// GoStringer is implemented by any value that has a GoString() method,
// which defines the Go syntax for that value.
// The GoString method is used to print values passed as an operand
// to a %#v format.
type GoStringer interface {
GoString() string
}
type pp struct {
n int
buf bytes.Buffer
runeBuf [utf8.UTFMax]byte
fmt fmt
}
// A leaky bucket of reusable pp structures.
var ppFree = make(chan *pp, 100)
// Allocate a new pp struct. Probably can grab the previous one from ppFree.
func newPrinter() *pp {
p, ok := <-ppFree
if !ok {
p = new(pp)
}
p.fmt.init(&p.buf)
return p
}
// Save used pp structs in ppFree; avoids an allocation per invocation.
func (p *pp) free() {
// Don't hold on to pp structs with large buffers.
if cap(p.buf.Bytes()) > 1024 {
return
}
p.buf.Reset()
_ = ppFree <- p
}
func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent }
func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent }
func (p *pp) Flag(b int) bool {
switch b {
case '-':
return p.fmt.minus
case '+':
return p.fmt.plus
case '#':
return p.fmt.sharp
case ' ':
return p.fmt.space
case '0':
return p.fmt.zero
}
return false
}
func (p *pp) add(c int) {
if c < utf8.RuneSelf {
p.buf.WriteByte(byte(c))
} else {
w := utf8.EncodeRune(c, p.runeBuf[0:])
p.buf.Write(p.runeBuf[0:w])
}
}
// Implement Write so we can call Fprintf on a pp (through State), for
// recursive use in custom verbs.
func (p *pp) Write(b []byte) (ret int, err os.Error) {
return p.buf.Write(b)
}
// These routines end in 'f' and take a format string.
// Fprintf formats according to a format specifier and writes to w.
func Fprintf(w io.Writer, format string, a ...interface{}) (n int, error os.Error) {
p := newPrinter()
p.doPrintf(format, a)
n64, error := p.buf.WriteTo(w)
p.free()
return int(n64), error
}
// Printf formats according to a format specifier and writes to standard output.
func Printf(format string, a ...interface{}) (n int, errno os.Error) {
n, errno = Fprintf(os.Stdout, format, a)
return n, errno
}
// Sprintf formats according to a format specifier and returns the resulting string.
func Sprintf(format string, a ...interface{}) string {
p := newPrinter()
p.doPrintf(format, a)
s := p.buf.String()
p.free()
return s
}
// These routines do not take a format string
// Fprint formats using the default formats for its operands and writes to w.
// Spaces are added between operands when neither is a string.
func Fprint(w io.Writer, a ...interface{}) (n int, error os.Error) {
p := newPrinter()
p.doPrint(a, false, false)
n64, error := p.buf.WriteTo(w)
p.free()
return int(n64), error
}
// Print formats using the default formats for its operands and writes to standard output.
// Spaces are added between operands when neither is a string.
func Print(a ...interface{}) (n int, errno os.Error) {
n, errno = Fprint(os.Stdout, a)
return n, errno
}
// Sprint formats using the default formats for its operands and returns the resulting string.
// Spaces are added between operands when neither is a string.
func Sprint(a ...interface{}) string {
p := newPrinter()
p.doPrint(a, false, false)
s := p.buf.String()
p.free()
return s
}
// These routines end in 'ln', do not take a format string,
// always add spaces between operands, and add a newline
// after the last operand.
// Fprintln formats using the default formats for its operands and writes to w.
// Spaces are always added between operands and a newline is appended.
func Fprintln(w io.Writer, a ...interface{}) (n int, error os.Error) {
p := newPrinter()
p.doPrint(a, true, true)
n64, error := p.buf.WriteTo(w)
p.free()
return int(n64), error
}
// Println formats using the default formats for its operands and writes to standard output.
// Spaces are always added between operands and a newline is appended.
func Println(a ...interface{}) (n int, errno os.Error) {
n, errno = Fprintln(os.Stdout, a)
return n, errno
}
// Sprintln formats using the default formats for its operands and returns the resulting string.
// Spaces are always added between operands and a newline is appended.
func Sprintln(a ...interface{}) string {
p := newPrinter()
p.doPrint(a, true, true)
s := p.buf.String()
p.free()
return s
}
// Get the i'th arg of the struct value.
// If the arg itself is an interface, return a value for
// the thing inside the interface, not the interface itself.
func getField(v *reflect.StructValue, i int) reflect.Value {
val := v.Field(i)
if i, ok := val.(*reflect.InterfaceValue); ok {
if inter := i.Interface(); inter != nil {
return reflect.NewValue(inter)
}
}
return val
}
// Convert ASCII to integer. n is 0 (and got is false) if no number present.
func parsenum(s string, start, end int) (num int, isnum bool, newi int) {
if start >= end {
return 0, false, end
}
for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ {
num = num*10 + int(s[newi]-'0')
isnum = true
}
return
}
// Reflection values like reflect.FuncValue implement this method. We use it for %p.
type uintptrGetter interface {
Get() uintptr
}
func (p *pp) unknownType(v interface{}) {
if v == nil {
p.buf.Write(nilAngleBytes)
return
}
p.buf.WriteByte('?')
p.buf.WriteString(reflect.Typeof(v).String())
p.buf.WriteByte('?')
}
func (p *pp) badVerb(verb int, val interface{}) {
p.add('%')
p.add(verb)
p.add('(')
if val == nil {
p.buf.Write(nilAngleBytes)
} else {
p.buf.WriteString(reflect.Typeof(val).String())
p.add('=')
p.printField(val, 'v', false, false, 0)
}
p.add(')')
}
func (p *pp) fmtBool(v bool, verb int, value interface{}) {
switch verb {
case 't', 'v':
p.fmt.fmt_boolean(v)
default:
p.badVerb(verb, value)
}
}
// fmtC formats a rune for the 'c' format.
func (p *pp) fmtC(c int64) {
rune := int(c) // Check for overflow.
if int64(rune) != c {
rune = utf8.RuneError
}
w := utf8.EncodeRune(rune, p.runeBuf[0:utf8.UTFMax])
p.fmt.pad(p.runeBuf[0:w])
}
func (p *pp) fmtInt64(v int64, verb int, value interface{}) {
switch verb {
case 'b':
p.fmt.integer(v, 2, signed, ldigits)
case 'c':
p.fmtC(v)
case 'd', 'v':
p.fmt.integer(v, 10, signed, ldigits)
case 'o':
p.fmt.integer(v, 8, signed, ldigits)
case 'x':
p.fmt.integer(v, 16, signed, ldigits)
case 'X':
p.fmt.integer(v, 16, signed, udigits)
default:
p.badVerb(verb, value)
}
}
// fmt_sharpHex64 formats a uint64 in hexadecimal and prefixes it with 0x by
// temporarily turning on the sharp flag.
func (p *pp) fmt0x64(v uint64) {
sharp := p.fmt.sharp
p.fmt.sharp = true // turn on 0x
p.fmt.integer(int64(v), 16, unsigned, ldigits)
p.fmt.sharp = sharp
}
func (p *pp) fmtUint64(v uint64, verb int, sharp bool, value interface{}) {
switch verb {
case 'b':
p.fmt.integer(int64(v), 2, unsigned, ldigits)
case 'c':
p.fmtC(int64(v))
case 'd':
p.fmt.integer(int64(v), 10, unsigned, ldigits)
case 'v':
if sharp {
p.fmt0x64(v)
} else {
p.fmt.integer(int64(v), 10, unsigned, ldigits)
}
case 'o':
p.fmt.integer(int64(v), 8, unsigned, ldigits)
case 'x':
p.fmt.integer(int64(v), 16, unsigned, ldigits)
case 'X':
p.fmt.integer(int64(v), 16, unsigned, udigits)
default:
p.badVerb(verb, value)
}
}
func (p *pp) fmtFloat32(v float32, verb int, value interface{}) {
switch verb {
case 'b':
p.fmt.fmt_fb32(v)
case 'e':
p.fmt.fmt_e32(v)
case 'E':
p.fmt.fmt_E32(v)
case 'f':
p.fmt.fmt_f32(v)
case 'g', 'v':
p.fmt.fmt_g32(v)
case 'G':
p.fmt.fmt_G32(v)
default:
p.badVerb(verb, value)
}
}
func (p *pp) fmtFloat64(v float64, verb int, value interface{}) {
switch verb {
case 'b':
p.fmt.fmt_fb64(v)
case 'e':
p.fmt.fmt_e64(v)
case 'E':
p.fmt.fmt_E64(v)
case 'f':
p.fmt.fmt_f64(v)
case 'g', 'v':
p.fmt.fmt_g64(v)
case 'G':
p.fmt.fmt_G64(v)
default:
p.badVerb(verb, value)
}
}
func (p *pp) fmtComplex64(v complex64, verb int, value interface{}) {
switch verb {
case 'e', 'E', 'f', 'F', 'g', 'G':
p.fmt.fmt_c64(v, verb)
case 'v':
p.fmt.fmt_c64(v, 'g')
default:
p.badVerb(verb, value)
}
}
func (p *pp) fmtComplex128(v complex128, verb int, value interface{}) {
switch verb {
case 'e', 'E', 'f', 'F', 'g', 'G':
p.fmt.fmt_c128(v, verb)
case 'v':
p.fmt.fmt_c128(v, 'g')
default:
p.badVerb(verb, value)
}
}
func (p *pp) fmtString(v string, verb int, sharp bool, value interface{}) {
switch verb {
case 'v':
if sharp {
p.fmt.fmt_q(v)
} else {
p.fmt.fmt_s(v)
}
case 's':
p.fmt.fmt_s(v)
case 'x':
p.fmt.fmt_sx(v)
case 'X':
p.fmt.fmt_sX(v)
case 'q':
p.fmt.fmt_q(v)
default:
p.badVerb(verb, value)
}
}
func (p *pp) fmtBytes(v []byte, verb int, sharp bool, depth int, value interface{}) {
if verb == 'v' {
if p.fmt.sharp {
p.buf.Write(bytesBytes)
} else {
p.buf.WriteByte('[')
}
for i, c := range v {
if i > 0 {
if p.fmt.sharp {
p.buf.Write(commaSpaceBytes)
} else {
p.buf.WriteByte(' ')
}
}
p.printField(c, 'v', p.fmt.plus, p.fmt.sharp, depth+1)
}
if sharp {
p.buf.WriteByte('}')
} else {
p.buf.WriteByte(']')
}
return
}
s := string(v)
switch verb {
case 's':
p.fmt.fmt_s(s)
case 'x':
p.fmt.fmt_sx(s)
case 'X':
p.fmt.fmt_sX(s)
case 'q':
p.fmt.fmt_q(s)
default:
p.badVerb(verb, value)
}
}
func (p *pp) fmtUintptrGetter(field interface{}, value reflect.Value, verb int, sharp bool) bool {
v, ok := value.(uintptrGetter)
if !ok {
return false
}
u := v.Get()
if sharp {
p.add('(')
p.buf.WriteString(reflect.Typeof(field).String())
p.add(')')
p.add('(')
if u == 0 {
p.buf.Write(nilBytes)
} else {
p.fmt0x64(uint64(v.Get()))
}
p.add(')')
} else {
p.fmt0x64(uint64(u))
}
return true
}
var (
intBits = reflect.Typeof(0).Bits()
floatBits = reflect.Typeof(0.0).Bits()
complexBits = reflect.Typeof(1i).Bits()
uintptrBits = reflect.Typeof(uintptr(0)).Bits()
)
func (p *pp) printField(field interface{}, verb int, plus, sharp bool, depth int) (was_string bool) {
if field != nil {
switch {
default:
if stringer, ok := field.(Stringer); ok {
p.printField(stringer.String(), verb, plus, sharp, depth)
return false // this value is not a string
}
case sharp:
if stringer, ok := field.(GoStringer); ok {
p.printField(stringer.GoString(), verb, plus, sharp, depth)
return false // this value is not a string
}
}
}
// Some types can be done without reflection.
switch f := field.(type) {
case bool:
p.fmtBool(f, verb, field)
return false
case float:
if floatBits == 32 {
p.fmtFloat32(float32(f), verb, field)
} else {
p.fmtFloat64(float64(f), verb, field)
}
return false
case float32:
p.fmtFloat32(f, verb, field)
return false
case float64:
p.fmtFloat64(f, verb, field)
return false
case complex:
if complexBits == 64 {
p.fmtComplex64(complex64(f), verb, field)
} else {
p.fmtComplex128(complex128(f), verb, field)
}
return false
case complex64:
p.fmtComplex64(complex64(f), verb, field)
return false
case complex128:
p.fmtComplex128(f, verb, field)
return false
case int:
p.fmtInt64(int64(f), verb, field)
return false
case int8:
p.fmtInt64(int64(f), verb, field)
return false
case int16:
p.fmtInt64(int64(f), verb, field)
return false
case int32:
p.fmtInt64(int64(f), verb, field)
return false
case int64:
p.fmtInt64(f, verb, field)
return false
case uint:
p.fmtUint64(uint64(f), verb, sharp, field)
return false
case uint8:
p.fmtUint64(uint64(f), verb, sharp, field)
return false
case uint16:
p.fmtUint64(uint64(f), verb, sharp, field)
return false
case uint32:
p.fmtUint64(uint64(f), verb, sharp, field)
return false
case uint64:
p.fmtUint64(f, verb, sharp, field)
return false
case uintptr:
p.fmtUint64(uint64(f), verb, sharp, field)
return false
case string:
p.fmtString(f, verb, sharp, field)
return verb == 's' || verb == 'v'
case []byte:
p.fmtBytes(f, verb, sharp, depth, field)
return verb == 's'
}
if field == nil {
if verb == 'v' {
p.buf.Write(nilAngleBytes)
} else {
p.badVerb(verb, field)
}
return false
}
value := reflect.NewValue(field)
// Need to use reflection
// Special case for reflection values that know how to print with %p.
if verb == 'p' && p.fmtUintptrGetter(field, value, verb, sharp) {
return false
}
BigSwitch:
switch f := value.(type) {
case *reflect.BoolValue:
p.fmtBool(f.Get(), verb, field)
case *reflect.IntValue:
p.fmtInt64(f.Get(), verb, field)
case *reflect.UintValue:
p.fmtUint64(uint64(f.Get()), verb, sharp, field)
case *reflect.FloatValue:
if f.Type().Size() == 4 {
p.fmtFloat32(float32(f.Get()), verb, field)
} else {
p.fmtFloat64(float64(f.Get()), verb, field)
}
case *reflect.ComplexValue:
if f.Type().Size() == 8 {
p.fmtComplex64(complex64(f.Get()), verb, field)
} else {
p.fmtComplex128(complex128(f.Get()), verb, field)
}
case *reflect.StringValue:
p.fmtString(f.Get(), verb, sharp, field)
case *reflect.MapValue:
if sharp {
p.buf.WriteString(f.Type().String())
p.buf.WriteByte('{')
} else {
p.buf.Write(mapBytes)
}
keys := f.Keys()
for i, key := range keys {
if i > 0 {
if sharp {
p.buf.Write(commaSpaceBytes)
} else {
p.buf.WriteByte(' ')
}
}
p.printField(key.Interface(), verb, plus, sharp, depth+1)
p.buf.WriteByte(':')
p.printField(f.Elem(key).Interface(), verb, plus, sharp, depth+1)
}
if sharp {
p.buf.WriteByte('}')
} else {
p.buf.WriteByte(']')
}
case *reflect.StructValue:
if sharp {
p.buf.WriteString(reflect.Typeof(field).String())
}
p.add('{')
v := f
t := v.Type().(*reflect.StructType)
p.fmt.clearflags() // clear flags for p.printField
for i := 0; i < v.NumField(); i++ {
if i > 0 {
if sharp {
p.buf.Write(commaSpaceBytes)
} else {
p.buf.WriteByte(' ')
}
}
if plus || sharp {
if f := t.Field(i); f.Name != "" {
p.buf.WriteString(f.Name)
p.buf.WriteByte(':')
}
}
p.printField(getField(v, i).Interface(), verb, plus, sharp, depth+1)
}
p.buf.WriteByte('}')
case *reflect.InterfaceValue:
value := f.Elem()
if value == nil {
if sharp {
p.buf.WriteString(reflect.Typeof(field).String())
p.buf.Write(nilParenBytes)
} else {
p.buf.Write(nilAngleBytes)
}
} else {
return p.printField(value.Interface(), verb, plus, sharp, depth+1)
}
case reflect.ArrayOrSliceValue:
if sharp {
p.buf.WriteString(reflect.Typeof(field).String())
p.buf.WriteByte('{')
} else {
p.buf.WriteByte('[')
}
for i := 0; i < f.Len(); i++ {
if i > 0 {
if sharp {
p.buf.Write(commaSpaceBytes)
} else {
p.buf.WriteByte(' ')
}
}
p.printField(f.Elem(i).Interface(), verb, plus, sharp, depth+1)
}
if sharp {
p.buf.WriteByte('}')
} else {
p.buf.WriteByte(']')
}
case *reflect.PtrValue:
v := f.Get()
// pointer to array or slice or struct? ok at top level
// but not embedded (avoid loops)
if v != 0 && depth == 0 {
switch a := f.Elem().(type) {
case reflect.ArrayOrSliceValue:
p.buf.WriteByte('&')
p.printField(a.Interface(), verb, plus, sharp, depth+1)
break BigSwitch
case *reflect.StructValue:
p.buf.WriteByte('&')
p.printField(a.Interface(), verb, plus, sharp, depth+1)
break BigSwitch
}
}
if sharp {
p.buf.WriteByte('(')
p.buf.WriteString(reflect.Typeof(field).String())
p.buf.WriteByte(')')
p.buf.WriteByte('(')
if v == 0 {
p.buf.Write(nilBytes)
} else {
p.fmt0x64(uint64(v))
}
p.buf.WriteByte(')')
break
}
if v == 0 {
p.buf.Write(nilAngleBytes)
break
}
p.fmt0x64(uint64(v))
case uintptrGetter:
if p.fmtUintptrGetter(field, value, verb, sharp) {
break
}
p.unknownType(f)
default:
p.unknownType(f)
}
return false
}
func (p *pp) doPrintf(format string, a []interface{}) {
end := len(format) - 1
fieldnum := 0 // we process one field per non-trivial format
for i := 0; i <= end; {
c, w := utf8.DecodeRuneInString(format[i:])
if c != '%' || i == end {
if w == 1 {
p.buf.WriteByte(byte(c))
} else {
p.buf.WriteString(format[i : i+w])
}
i += w
continue
}
i++
// flags and widths
p.fmt.clearflags()
F:
for ; i < end; i++ {
switch format[i] {
case '#':
p.fmt.sharp = true
case '0':
p.fmt.zero = true
case '+':
p.fmt.plus = true
case '-':
p.fmt.minus = true
case ' ':
p.fmt.space = true
default:
break F
}
}
// do we have 20 (width)?
p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end)
// do we have .20 (precision)?
if i < end && format[i] == '.' {
p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i+1, end)
}
c, w = utf8.DecodeRuneInString(format[i:])
i += w
// percent is special - absorbs no operand
if c == '%' {
p.buf.WriteByte('%') // TODO: should we bother with width & prec?
continue
}
if fieldnum >= len(a) { // out of operands
p.buf.WriteByte('%')
p.add(c)
p.buf.Write(missingBytes)
continue
}
field := a[fieldnum]
fieldnum++
// %T is special; we always do it here.
if c == 'T' {
// the value's type
if field == nil {
p.buf.Write(nilAngleBytes)
break
}
p.printField(reflect.Typeof(field).String(), 's', false, false, 0)
continue
}
// Try Formatter (except for %T).
if field != nil {
if formatter, ok := field.(Formatter); ok {
formatter.Format(p, c)
continue
}
}
p.printField(field, c, p.fmt.plus, p.fmt.sharp, 0)
}
if fieldnum < len(a) {
p.buf.Write(extraBytes)
for ; fieldnum < len(a); fieldnum++ {
field := a[fieldnum]
if field != nil {
p.buf.WriteString(reflect.Typeof(field).String())
p.buf.WriteByte('=')
}
p.printField(field, 'v', false, false, 0)
if fieldnum+1 < len(a) {
p.buf.Write(commaSpaceBytes)
}
}
p.buf.WriteByte(')')
}
}
func (p *pp) doPrint(a []interface{}, addspace, addnewline bool) {
prev_string := false
for fieldnum := 0; fieldnum < len(a); fieldnum++ {
// always add spaces if we're doing println
field := a[fieldnum]
if fieldnum > 0 {
_, is_string := field.(*reflect.StringValue)
if addspace || !is_string && !prev_string {
p.buf.WriteByte(' ')
}
}
prev_string = p.printField(field, 'v', false, false, 0)
}
if addnewline {
p.buf.WriteByte('\n')
}
}