| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| // The original C code, the long comment, and the constants |
| // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, |
| // available from http://www.netlib.org/cephes/cmath.tgz. |
| // The go code is a simplified version of the original C. |
| // tanh.c |
| // |
| // Hyperbolic tangent |
| // |
| // SYNOPSIS: |
| // |
| // double x, y, tanh(); |
| // |
| // y = tanh( x ); |
| // |
| // DESCRIPTION: |
| // |
| // Returns hyperbolic tangent of argument in the range MINLOG to MAXLOG. |
| // MAXLOG = 8.8029691931113054295988e+01 = log(2**127) |
| // MINLOG = -8.872283911167299960540e+01 = log(2**-128) |
| // |
| // A rational function is used for |x| < 0.625. The form |
| // x + x**3 P(x)/Q(x) of Cody & Waite is employed. |
| // Otherwise, |
| // tanh(x) = sinh(x)/cosh(x) = 1 - 2/(exp(2x) + 1). |
| // |
| // ACCURACY: |
| // |
| // Relative error: |
| // arithmetic domain # trials peak rms |
| // IEEE -2,2 30000 2.5e-16 5.8e-17 |
| // |
| // Cephes Math Library Release 2.8: June, 2000 |
| // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier |
| // |
| // The readme file at http://netlib.sandia.gov/cephes/ says: |
| // Some software in this archive may be from the book _Methods and |
| // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster |
| // International, 1989) or from the Cephes Mathematical Library, a |
| // commercial product. In either event, it is copyrighted by the author. |
| // What you see here may be used freely but it comes with no support or |
| // guarantee. |
| // |
| // The two known misprints in the book are repaired here in the |
| // source listings for the gamma function and the incomplete beta |
| // integral. |
| // |
| // Stephen L. Moshier |
| // moshier@na-net.ornl.gov |
| // |
| |
| var tanhP = [...]float64{ |
| -9.64399179425052238628e-1, |
| -9.92877231001918586564e1, |
| -1.61468768441708447952e3, |
| } |
| var tanhQ = [...]float64{ |
| 1.12811678491632931402e2, |
| 2.23548839060100448583e3, |
| 4.84406305325125486048e3, |
| } |
| |
| // Tanh returns the hyperbolic tangent of x. |
| // |
| // Special cases are: |
| // Tanh(±0) = ±0 |
| // Tanh(±Inf) = ±1 |
| // Tanh(NaN) = NaN |
| func Tanh(x float64) float64 |
| |
| func tanh(x float64) float64 { |
| const MAXLOG = 8.8029691931113054295988e+01 // log(2**127) |
| z := Abs(x) |
| switch { |
| case z > 0.5*MAXLOG: |
| if x < 0 { |
| return -1 |
| } |
| return 1 |
| case z >= 0.625: |
| s := Exp(2 * z) |
| z = 1 - 2/(s+1) |
| if x < 0 { |
| z = -z |
| } |
| default: |
| if x == 0 { |
| return x |
| } |
| s := x * x |
| z = x + x*s*((tanhP[0]*s+tanhP[1])*s+tanhP[2])/(((s+tanhQ[0])*s+tanhQ[1])*s+tanhQ[2]) |
| } |
| return z |
| } |