| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| /* |
| Floating-point tangent. |
| */ |
| |
| // The original C code, the long comment, and the constants |
| // below were from http://netlib.sandia.gov/cephes/cmath/sin.c, |
| // available from http://www.netlib.org/cephes/cmath.tgz. |
| // The go code is a simplified version of the original C. |
| // |
| // tan.c |
| // |
| // Circular tangent |
| // |
| // SYNOPSIS: |
| // |
| // double x, y, tan(); |
| // y = tan( x ); |
| // |
| // DESCRIPTION: |
| // |
| // Returns the circular tangent of the radian argument x. |
| // |
| // Range reduction is modulo pi/4. A rational function |
| // x + x**3 P(x**2)/Q(x**2) |
| // is employed in the basic interval [0, pi/4]. |
| // |
| // ACCURACY: |
| // Relative error: |
| // arithmetic domain # trials peak rms |
| // DEC +-1.07e9 44000 4.1e-17 1.0e-17 |
| // IEEE +-1.07e9 30000 2.9e-16 8.1e-17 |
| // |
| // Partial loss of accuracy begins to occur at x = 2**30 = 1.074e9. The loss |
| // is not gradual, but jumps suddenly to about 1 part in 10e7. Results may |
| // be meaningless for x > 2**49 = 5.6e14. |
| // [Accuracy loss statement from sin.go comments.] |
| // |
| // Cephes Math Library Release 2.8: June, 2000 |
| // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier |
| // |
| // The readme file at http://netlib.sandia.gov/cephes/ says: |
| // Some software in this archive may be from the book _Methods and |
| // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster |
| // International, 1989) or from the Cephes Mathematical Library, a |
| // commercial product. In either event, it is copyrighted by the author. |
| // What you see here may be used freely but it comes with no support or |
| // guarantee. |
| // |
| // The two known misprints in the book are repaired here in the |
| // source listings for the gamma function and the incomplete beta |
| // integral. |
| // |
| // Stephen L. Moshier |
| // moshier@na-net.ornl.gov |
| |
| // tan coefficients |
| var _tanP = [...]float64{ |
| -1.30936939181383777646e4, // 0xc0c992d8d24f3f38 |
| 1.15351664838587416140e6, // 0x413199eca5fc9ddd |
| -1.79565251976484877988e7, // 0xc1711fead3299176 |
| } |
| var _tanQ = [...]float64{ |
| 1.00000000000000000000e0, |
| 1.36812963470692954678e4, //0x40cab8a5eeb36572 |
| -1.32089234440210967447e6, //0xc13427bc582abc96 |
| 2.50083801823357915839e7, //0x4177d98fc2ead8ef |
| -5.38695755929454629881e7, //0xc189afe03cbe5a31 |
| } |
| |
| // Tan returns the tangent of the radian argument x. |
| // |
| // Special cases are: |
| // Tan(±0) = ±0 |
| // Tan(±Inf) = NaN |
| // Tan(NaN) = NaN |
| func Tan(x float64) float64 |
| |
| func tan(x float64) float64 { |
| const ( |
| PI4A = 7.85398125648498535156e-1 // 0x3fe921fb40000000, Pi/4 split into three parts |
| PI4B = 3.77489470793079817668e-8 // 0x3e64442d00000000, |
| PI4C = 2.69515142907905952645e-15 // 0x3ce8469898cc5170, |
| ) |
| // special cases |
| switch { |
| case x == 0 || IsNaN(x): |
| return x // return ±0 || NaN() |
| case IsInf(x, 0): |
| return NaN() |
| } |
| |
| // make argument positive but save the sign |
| sign := false |
| if x < 0 { |
| x = -x |
| sign = true |
| } |
| var j uint64 |
| var y, z float64 |
| if x >= reduceThreshold { |
| j, z = trigReduce(x) |
| } else { |
| j = uint64(x * (4 / Pi)) // integer part of x/(Pi/4), as integer for tests on the phase angle |
| y = float64(j) // integer part of x/(Pi/4), as float |
| |
| /* map zeros and singularities to origin */ |
| if j&1 == 1 { |
| j++ |
| y++ |
| } |
| |
| z = ((x - y*PI4A) - y*PI4B) - y*PI4C |
| } |
| zz := z * z |
| |
| if zz > 1e-14 { |
| y = z + z*(zz*(((_tanP[0]*zz)+_tanP[1])*zz+_tanP[2])/((((zz+_tanQ[1])*zz+_tanQ[2])*zz+_tanQ[3])*zz+_tanQ[4])) |
| } else { |
| y = z |
| } |
| if j&2 == 2 { |
| y = -1 / y |
| } |
| if sign { |
| y = -y |
| } |
| return y |
| } |