| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package cmplx |
| |
| import "math" |
| |
| // The original C code, the long comment, and the constants |
| // below are from http://netlib.sandia.gov/cephes/c9x-complex/clog.c. |
| // The go code is a simplified version of the original C. |
| // |
| // Cephes Math Library Release 2.8: June, 2000 |
| // Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier |
| // |
| // The readme file at http://netlib.sandia.gov/cephes/ says: |
| // Some software in this archive may be from the book _Methods and |
| // Programs for Mathematical Functions_ (Prentice-Hall or Simon & Schuster |
| // International, 1989) or from the Cephes Mathematical Library, a |
| // commercial product. In either event, it is copyrighted by the author. |
| // What you see here may be used freely but it comes with no support or |
| // guarantee. |
| // |
| // The two known misprints in the book are repaired here in the |
| // source listings for the gamma function and the incomplete beta |
| // integral. |
| // |
| // Stephen L. Moshier |
| // moshier@na-net.ornl.gov |
| |
| // Complex exponential function |
| // |
| // DESCRIPTION: |
| // |
| // Returns the complex exponential of the complex argument z. |
| // |
| // If |
| // z = x + iy, |
| // r = exp(x), |
| // then |
| // w = r cos y + i r sin y. |
| // |
| // ACCURACY: |
| // |
| // Relative error: |
| // arithmetic domain # trials peak rms |
| // DEC -10,+10 8700 3.7e-17 1.1e-17 |
| // IEEE -10,+10 30000 3.0e-16 8.7e-17 |
| |
| // Exp returns e**x, the base-e exponential of x. |
| func Exp(x complex128) complex128 { |
| switch re, im := real(x), imag(x); { |
| case math.IsInf(re, 0): |
| switch { |
| case re > 0 && im == 0: |
| return x |
| case math.IsInf(im, 0) || math.IsNaN(im): |
| if re < 0 { |
| return complex(0, math.Copysign(0, im)) |
| } else { |
| return complex(math.Inf(1.0), math.NaN()) |
| } |
| } |
| case math.IsNaN(re): |
| if im == 0 { |
| return complex(math.NaN(), im) |
| } |
| } |
| r := math.Exp(real(x)) |
| s, c := math.Sincos(imag(x)) |
| return complex(r*c, r*s) |
| } |