blob: 5a4bc1d60aa5e573ff27f510fe951d4f7468ef6d [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import (
"fmt"
"math"
)
type indVarFlags uint8
const (
indVarMinExc indVarFlags = 1 << iota // minimum value is exclusive (default: inclusive)
indVarMaxInc // maximum value is inclusive (default: exclusive)
)
type indVar struct {
ind *Value // induction variable
min *Value // minimum value, inclusive/exclusive depends on flags
max *Value // maximum value, inclusive/exclusive depends on flags
entry *Block // entry block in the loop.
flags indVarFlags
// Invariant: for all blocks strictly dominated by entry:
// min <= ind < max [if flags == 0]
// min < ind < max [if flags == indVarMinExc]
// min <= ind <= max [if flags == indVarMaxInc]
// min < ind <= max [if flags == indVarMinExc|indVarMaxInc]
}
// parseIndVar checks whether the SSA value passed as argument is a valid induction
// variable, and, if so, extracts:
// * the minimum bound
// * the increment value
// * the "next" value (SSA value that is Phi'd into the induction variable every loop)
// Currently, we detect induction variables that match (Phi min nxt),
// with nxt being (Add inc ind).
// If it can't parse the induction variable correctly, it returns (nil, nil, nil).
func parseIndVar(ind *Value) (min, inc, nxt *Value) {
if ind.Op != OpPhi {
return
}
if n := ind.Args[0]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) {
min, nxt = ind.Args[1], n
} else if n := ind.Args[1]; n.Op == OpAdd64 && (n.Args[0] == ind || n.Args[1] == ind) {
min, nxt = ind.Args[0], n
} else {
// Not a recognized induction variable.
return
}
if nxt.Args[0] == ind { // nxt = ind + inc
inc = nxt.Args[1]
} else if nxt.Args[1] == ind { // nxt = inc + ind
inc = nxt.Args[0]
} else {
panic("unreachable") // one of the cases must be true from the above.
}
return
}
// findIndVar finds induction variables in a function.
//
// Look for variables and blocks that satisfy the following
//
// loop:
// ind = (Phi min nxt),
// if ind < max
// then goto enter_loop
// else goto exit_loop
//
// enter_loop:
// do something
// nxt = inc + ind
// goto loop
//
// exit_loop:
//
//
// TODO: handle 32 bit operations
func findIndVar(f *Func) []indVar {
var iv []indVar
sdom := f.Sdom()
for _, b := range f.Blocks {
if b.Kind != BlockIf || len(b.Preds) != 2 {
continue
}
var flags indVarFlags
var ind, max *Value // induction, and maximum
// Check thet the control if it either ind </<= max or max >/>= ind.
// TODO: Handle 32-bit comparisons.
// TODO: Handle unsigned comparisons?
c := b.Controls[0]
switch c.Op {
case OpLeq64:
flags |= indVarMaxInc
fallthrough
case OpLess64:
ind, max = c.Args[0], c.Args[1]
default:
continue
}
// See if this is really an induction variable
less := true
min, inc, nxt := parseIndVar(ind)
if min == nil {
// We failed to parse the induction variable. Before punting, we want to check
// whether the control op was written with arguments in non-idiomatic order,
// so that we believe being "max" (the upper bound) is actually the induction
// variable itself. This would happen for code like:
// for i := 0; len(n) > i; i++
min, inc, nxt = parseIndVar(max)
if min == nil {
// No recognied induction variable on either operand
continue
}
// Ok, the arguments were reversed. Swap them, and remember that we're
// looking at a ind >/>= loop (so the induction must be decrementing).
ind, max = max, ind
less = false
}
// Expect the increment to be a nonzero constant.
if inc.Op != OpConst64 {
continue
}
step := inc.AuxInt
if step == 0 {
continue
}
// Increment sign must match comparison direction.
// When incrementing, the termination comparison must be ind </<= max.
// When decrementing, the termination comparison must be ind >/>= max.
// See issue 26116.
if step > 0 && !less {
continue
}
if step < 0 && less {
continue
}
// If the increment is negative, swap min/max and their flags
if step < 0 {
min, max = max, min
oldf := flags
flags = indVarMaxInc
if oldf&indVarMaxInc == 0 {
flags |= indVarMinExc
}
step = -step
}
// Up to now we extracted the induction variable (ind),
// the increment delta (inc), the temporary sum (nxt),
// the mininum value (min) and the maximum value (max).
//
// We also know that ind has the form (Phi min nxt) where
// nxt is (Add inc nxt) which means: 1) inc dominates nxt
// and 2) there is a loop starting at inc and containing nxt.
//
// We need to prove that the induction variable is incremented
// only when it's smaller than the maximum value.
// Two conditions must happen listed below to accept ind
// as an induction variable.
// First condition: loop entry has a single predecessor, which
// is the header block. This implies that b.Succs[0] is
// reached iff ind < max.
if len(b.Succs[0].b.Preds) != 1 {
// b.Succs[1] must exit the loop.
continue
}
// Second condition: b.Succs[0] dominates nxt so that
// nxt is computed when inc < max, meaning nxt <= max.
if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
// inc+ind can only be reached through the branch that enters the loop.
continue
}
// We can only guarantee that the loop runs within limits of induction variable
// if (one of)
// (1) the increment is ±1
// (2) the limits are constants
// (3) loop is of the form k0 upto Known_not_negative-k inclusive, step <= k
// (4) loop is of the form k0 upto Known_not_negative-k exclusive, step <= k+1
// (5) loop is of the form Known_not_negative downto k0, minint+step < k0
if step > 1 {
ok := false
if min.Op == OpConst64 && max.Op == OpConst64 {
if max.AuxInt > min.AuxInt && max.AuxInt%step == min.AuxInt%step { // handle overflow
ok = true
}
}
// Handle induction variables of these forms.
// KNN is known-not-negative.
// SIGNED ARITHMETIC ONLY. (see switch on c above)
// Possibilities for KNN are len and cap; perhaps we can infer others.
// for i := 0; i <= KNN-k ; i += k
// for i := 0; i < KNN-(k-1); i += k
// Also handle decreasing.
// "Proof" copied from https://go-review.googlesource.com/c/go/+/104041/10/src/cmd/compile/internal/ssa/loopbce.go#164
//
// In the case of
// // PC is Positive Constant
// L := len(A)-PC
// for i := 0; i < L; i = i+PC
//
// we know:
//
// 0 + PC does not over/underflow.
// len(A)-PC does not over/underflow
// maximum value for L is MaxInt-PC
// i < L <= MaxInt-PC means i + PC < MaxInt hence no overflow.
// To match in SSA:
// if (a) min.Op == OpConst64(k0)
// and (b) k0 >= MININT + step
// and (c) max.Op == OpSubtract(Op{StringLen,SliceLen,SliceCap}, k)
// or (c) max.Op == OpAdd(Op{StringLen,SliceLen,SliceCap}, -k)
// or (c) max.Op == Op{StringLen,SliceLen,SliceCap}
// and (d) if upto loop, require indVarMaxInc && step <= k or !indVarMaxInc && step-1 <= k
if min.Op == OpConst64 && min.AuxInt >= step+math.MinInt64 {
knn := max
k := int64(0)
var kArg *Value
switch max.Op {
case OpSub64:
knn = max.Args[0]
kArg = max.Args[1]
case OpAdd64:
knn = max.Args[0]
kArg = max.Args[1]
if knn.Op == OpConst64 {
knn, kArg = kArg, knn
}
}
switch knn.Op {
case OpSliceLen, OpStringLen, OpSliceCap:
default:
knn = nil
}
if kArg != nil && kArg.Op == OpConst64 {
k = kArg.AuxInt
if max.Op == OpAdd64 {
k = -k
}
}
if k >= 0 && knn != nil {
if inc.AuxInt > 0 { // increasing iteration
// The concern for the relation between step and k is to ensure that iv never exceeds knn
// i.e., iv < knn-(K-1) ==> iv + K <= knn; iv <= knn-K ==> iv +K < knn
if step <= k || flags&indVarMaxInc == 0 && step-1 == k {
ok = true
}
} else { // decreasing iteration
// Will be decrementing from max towards min; max is knn-k; will only attempt decrement if
// knn-k >[=] min; underflow is only a concern if min-step is not smaller than min.
// This all assumes signed integer arithmetic
// This is already assured by the test above: min.AuxInt >= step+math.MinInt64
ok = true
}
}
}
// TODO: other unrolling idioms
// for i := 0; i < KNN - KNN % k ; i += k
// for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
// for i := 0; i < KNN&(-k) ; i += k // k a power of 2
if !ok {
continue
}
}
if f.pass.debug >= 1 {
printIndVar(b, ind, min, max, step, flags)
}
iv = append(iv, indVar{
ind: ind,
min: min,
max: max,
entry: b.Succs[0].b,
flags: flags,
})
b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
}
return iv
}
func dropAdd64(v *Value) (*Value, int64) {
if v.Op == OpAdd64 && v.Args[0].Op == OpConst64 {
return v.Args[1], v.Args[0].AuxInt
}
if v.Op == OpAdd64 && v.Args[1].Op == OpConst64 {
return v.Args[0], v.Args[1].AuxInt
}
return v, 0
}
func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {
mb1, mb2 := "[", "]"
if flags&indVarMinExc != 0 {
mb1 = "("
}
if flags&indVarMaxInc == 0 {
mb2 = ")"
}
mlim1, mlim2 := fmt.Sprint(min.AuxInt), fmt.Sprint(max.AuxInt)
if !min.isGenericIntConst() {
if b.Func.pass.debug >= 2 {
mlim1 = fmt.Sprint(min)
} else {
mlim1 = "?"
}
}
if !max.isGenericIntConst() {
if b.Func.pass.debug >= 2 {
mlim2 = fmt.Sprint(max)
} else {
mlim2 = "?"
}
}
extra := ""
if b.Func.pass.debug >= 2 {
extra = fmt.Sprintf(" (%s)", i)
}
b.Func.Warnl(b.Pos, "Induction variable: limits %v%v,%v%v, increment %d%s", mb1, mlim1, mlim2, mb2, inc, extra)
}