| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "cmd/compile/internal/types" |
| "cmd/internal/obj" |
| "fmt" |
| "sort" |
| ) |
| |
| // AlgKind describes the kind of algorithms used for comparing and |
| // hashing a Type. |
| type AlgKind int |
| |
| //go:generate stringer -type AlgKind -trimprefix A |
| |
| const ( |
| // These values are known by runtime. |
| ANOEQ AlgKind = iota |
| AMEM0 |
| AMEM8 |
| AMEM16 |
| AMEM32 |
| AMEM64 |
| AMEM128 |
| ASTRING |
| AINTER |
| ANILINTER |
| AFLOAT32 |
| AFLOAT64 |
| ACPLX64 |
| ACPLX128 |
| |
| // Type can be compared/hashed as regular memory. |
| AMEM AlgKind = 100 |
| |
| // Type needs special comparison/hashing functions. |
| ASPECIAL AlgKind = -1 |
| ) |
| |
| // IsComparable reports whether t is a comparable type. |
| func IsComparable(t *types.Type) bool { |
| a, _ := algtype1(t) |
| return a != ANOEQ |
| } |
| |
| // IsRegularMemory reports whether t can be compared/hashed as regular memory. |
| func IsRegularMemory(t *types.Type) bool { |
| a, _ := algtype1(t) |
| return a == AMEM |
| } |
| |
| // IncomparableField returns an incomparable Field of struct Type t, if any. |
| func IncomparableField(t *types.Type) *types.Field { |
| for _, f := range t.FieldSlice() { |
| if !IsComparable(f.Type) { |
| return f |
| } |
| } |
| return nil |
| } |
| |
| // EqCanPanic reports whether == on type t could panic (has an interface somewhere). |
| // t must be comparable. |
| func EqCanPanic(t *types.Type) bool { |
| switch t.Etype { |
| default: |
| return false |
| case TINTER: |
| return true |
| case TARRAY: |
| return EqCanPanic(t.Elem()) |
| case TSTRUCT: |
| for _, f := range t.FieldSlice() { |
| if !f.Sym.IsBlank() && EqCanPanic(f.Type) { |
| return true |
| } |
| } |
| return false |
| } |
| } |
| |
| // algtype is like algtype1, except it returns the fixed-width AMEMxx variants |
| // instead of the general AMEM kind when possible. |
| func algtype(t *types.Type) AlgKind { |
| a, _ := algtype1(t) |
| if a == AMEM { |
| switch t.Width { |
| case 0: |
| return AMEM0 |
| case 1: |
| return AMEM8 |
| case 2: |
| return AMEM16 |
| case 4: |
| return AMEM32 |
| case 8: |
| return AMEM64 |
| case 16: |
| return AMEM128 |
| } |
| } |
| |
| return a |
| } |
| |
| // algtype1 returns the AlgKind used for comparing and hashing Type t. |
| // If it returns ANOEQ, it also returns the component type of t that |
| // makes it incomparable. |
| func algtype1(t *types.Type) (AlgKind, *types.Type) { |
| if t.Broke() { |
| return AMEM, nil |
| } |
| if t.Noalg() { |
| return ANOEQ, t |
| } |
| |
| switch t.Etype { |
| case TANY, TFORW: |
| // will be defined later. |
| return ANOEQ, t |
| |
| case TINT8, TUINT8, TINT16, TUINT16, |
| TINT32, TUINT32, TINT64, TUINT64, |
| TINT, TUINT, TUINTPTR, |
| TBOOL, TPTR, |
| TCHAN, TUNSAFEPTR: |
| return AMEM, nil |
| |
| case TFUNC, TMAP: |
| return ANOEQ, t |
| |
| case TFLOAT32: |
| return AFLOAT32, nil |
| |
| case TFLOAT64: |
| return AFLOAT64, nil |
| |
| case TCOMPLEX64: |
| return ACPLX64, nil |
| |
| case TCOMPLEX128: |
| return ACPLX128, nil |
| |
| case TSTRING: |
| return ASTRING, nil |
| |
| case TINTER: |
| if t.IsEmptyInterface() { |
| return ANILINTER, nil |
| } |
| return AINTER, nil |
| |
| case TSLICE: |
| return ANOEQ, t |
| |
| case TARRAY: |
| a, bad := algtype1(t.Elem()) |
| switch a { |
| case AMEM: |
| return AMEM, nil |
| case ANOEQ: |
| return ANOEQ, bad |
| } |
| |
| switch t.NumElem() { |
| case 0: |
| // We checked above that the element type is comparable. |
| return AMEM, nil |
| case 1: |
| // Single-element array is same as its lone element. |
| return a, nil |
| } |
| |
| return ASPECIAL, nil |
| |
| case TSTRUCT: |
| fields := t.FieldSlice() |
| |
| // One-field struct is same as that one field alone. |
| if len(fields) == 1 && !fields[0].Sym.IsBlank() { |
| return algtype1(fields[0].Type) |
| } |
| |
| ret := AMEM |
| for i, f := range fields { |
| // All fields must be comparable. |
| a, bad := algtype1(f.Type) |
| if a == ANOEQ { |
| return ANOEQ, bad |
| } |
| |
| // Blank fields, padded fields, fields with non-memory |
| // equality need special compare. |
| if a != AMEM || f.Sym.IsBlank() || ispaddedfield(t, i) { |
| ret = ASPECIAL |
| } |
| } |
| |
| return ret, nil |
| } |
| |
| Fatalf("algtype1: unexpected type %v", t) |
| return 0, nil |
| } |
| |
| // genhash returns a symbol which is the closure used to compute |
| // the hash of a value of type t. |
| // Note: the generated function must match runtime.typehash exactly. |
| func genhash(t *types.Type) *obj.LSym { |
| switch algtype(t) { |
| default: |
| // genhash is only called for types that have equality |
| Fatalf("genhash %v", t) |
| case AMEM0: |
| return sysClosure("memhash0") |
| case AMEM8: |
| return sysClosure("memhash8") |
| case AMEM16: |
| return sysClosure("memhash16") |
| case AMEM32: |
| return sysClosure("memhash32") |
| case AMEM64: |
| return sysClosure("memhash64") |
| case AMEM128: |
| return sysClosure("memhash128") |
| case ASTRING: |
| return sysClosure("strhash") |
| case AINTER: |
| return sysClosure("interhash") |
| case ANILINTER: |
| return sysClosure("nilinterhash") |
| case AFLOAT32: |
| return sysClosure("f32hash") |
| case AFLOAT64: |
| return sysClosure("f64hash") |
| case ACPLX64: |
| return sysClosure("c64hash") |
| case ACPLX128: |
| return sysClosure("c128hash") |
| case AMEM: |
| // For other sizes of plain memory, we build a closure |
| // that calls memhash_varlen. The size of the memory is |
| // encoded in the first slot of the closure. |
| closure := typeLookup(fmt.Sprintf(".hashfunc%d", t.Width)).Linksym() |
| if len(closure.P) > 0 { // already generated |
| return closure |
| } |
| if memhashvarlen == nil { |
| memhashvarlen = sysfunc("memhash_varlen") |
| } |
| ot := 0 |
| ot = dsymptr(closure, ot, memhashvarlen, 0) |
| ot = duintptr(closure, ot, uint64(t.Width)) // size encoded in closure |
| ggloblsym(closure, int32(ot), obj.DUPOK|obj.RODATA) |
| return closure |
| case ASPECIAL: |
| break |
| } |
| |
| closure := typesymprefix(".hashfunc", t).Linksym() |
| if len(closure.P) > 0 { // already generated |
| return closure |
| } |
| |
| // Generate hash functions for subtypes. |
| // There are cases where we might not use these hashes, |
| // but in that case they will get dead-code eliminated. |
| // (And the closure generated by genhash will also get |
| // dead-code eliminated, as we call the subtype hashers |
| // directly.) |
| switch t.Etype { |
| case types.TARRAY: |
| genhash(t.Elem()) |
| case types.TSTRUCT: |
| for _, f := range t.FieldSlice() { |
| genhash(f.Type) |
| } |
| } |
| |
| sym := typesymprefix(".hash", t) |
| if Debug.r != 0 { |
| fmt.Printf("genhash %v %v %v\n", closure, sym, t) |
| } |
| |
| lineno = autogeneratedPos // less confusing than end of input |
| dclcontext = PEXTERN |
| |
| // func sym(p *T, h uintptr) uintptr |
| tfn := nod(OTFUNC, nil, nil) |
| tfn.List.Set2( |
| namedfield("p", types.NewPtr(t)), |
| namedfield("h", types.Types[TUINTPTR]), |
| ) |
| tfn.Rlist.Set1(anonfield(types.Types[TUINTPTR])) |
| |
| fn := dclfunc(sym, tfn) |
| np := asNode(tfn.Type.Params().Field(0).Nname) |
| nh := asNode(tfn.Type.Params().Field(1).Nname) |
| |
| switch t.Etype { |
| case types.TARRAY: |
| // An array of pure memory would be handled by the |
| // standard algorithm, so the element type must not be |
| // pure memory. |
| hashel := hashfor(t.Elem()) |
| |
| n := nod(ORANGE, nil, nod(ODEREF, np, nil)) |
| ni := newname(lookup("i")) |
| ni.Type = types.Types[TINT] |
| n.List.Set1(ni) |
| n.SetColas(true) |
| colasdefn(n.List.Slice(), n) |
| ni = n.List.First() |
| |
| // h = hashel(&p[i], h) |
| call := nod(OCALL, hashel, nil) |
| |
| nx := nod(OINDEX, np, ni) |
| nx.SetBounded(true) |
| na := nod(OADDR, nx, nil) |
| call.List.Append(na) |
| call.List.Append(nh) |
| n.Nbody.Append(nod(OAS, nh, call)) |
| |
| fn.Nbody.Append(n) |
| |
| case types.TSTRUCT: |
| // Walk the struct using memhash for runs of AMEM |
| // and calling specific hash functions for the others. |
| for i, fields := 0, t.FieldSlice(); i < len(fields); { |
| f := fields[i] |
| |
| // Skip blank fields. |
| if f.Sym.IsBlank() { |
| i++ |
| continue |
| } |
| |
| // Hash non-memory fields with appropriate hash function. |
| if !IsRegularMemory(f.Type) { |
| hashel := hashfor(f.Type) |
| call := nod(OCALL, hashel, nil) |
| nx := nodSym(OXDOT, np, f.Sym) // TODO: fields from other packages? |
| na := nod(OADDR, nx, nil) |
| call.List.Append(na) |
| call.List.Append(nh) |
| fn.Nbody.Append(nod(OAS, nh, call)) |
| i++ |
| continue |
| } |
| |
| // Otherwise, hash a maximal length run of raw memory. |
| size, next := memrun(t, i) |
| |
| // h = hashel(&p.first, size, h) |
| hashel := hashmem(f.Type) |
| call := nod(OCALL, hashel, nil) |
| nx := nodSym(OXDOT, np, f.Sym) // TODO: fields from other packages? |
| na := nod(OADDR, nx, nil) |
| call.List.Append(na) |
| call.List.Append(nh) |
| call.List.Append(nodintconst(size)) |
| fn.Nbody.Append(nod(OAS, nh, call)) |
| |
| i = next |
| } |
| } |
| |
| r := nod(ORETURN, nil, nil) |
| r.List.Append(nh) |
| fn.Nbody.Append(r) |
| |
| if Debug.r != 0 { |
| dumplist("genhash body", fn.Nbody) |
| } |
| |
| funcbody() |
| |
| fn.Func.SetDupok(true) |
| fn = typecheck(fn, ctxStmt) |
| |
| Curfn = fn |
| typecheckslice(fn.Nbody.Slice(), ctxStmt) |
| Curfn = nil |
| |
| if debug_dclstack != 0 { |
| testdclstack() |
| } |
| |
| fn.Func.SetNilCheckDisabled(true) |
| xtop = append(xtop, fn) |
| |
| // Build closure. It doesn't close over any variables, so |
| // it contains just the function pointer. |
| dsymptr(closure, 0, sym.Linksym(), 0) |
| ggloblsym(closure, int32(Widthptr), obj.DUPOK|obj.RODATA) |
| |
| return closure |
| } |
| |
| func hashfor(t *types.Type) *Node { |
| var sym *types.Sym |
| |
| switch a, _ := algtype1(t); a { |
| case AMEM: |
| Fatalf("hashfor with AMEM type") |
| case AINTER: |
| sym = Runtimepkg.Lookup("interhash") |
| case ANILINTER: |
| sym = Runtimepkg.Lookup("nilinterhash") |
| case ASTRING: |
| sym = Runtimepkg.Lookup("strhash") |
| case AFLOAT32: |
| sym = Runtimepkg.Lookup("f32hash") |
| case AFLOAT64: |
| sym = Runtimepkg.Lookup("f64hash") |
| case ACPLX64: |
| sym = Runtimepkg.Lookup("c64hash") |
| case ACPLX128: |
| sym = Runtimepkg.Lookup("c128hash") |
| default: |
| // Note: the caller of hashfor ensured that this symbol |
| // exists and has a body by calling genhash for t. |
| sym = typesymprefix(".hash", t) |
| } |
| |
| n := newname(sym) |
| setNodeNameFunc(n) |
| n.Type = functype(nil, []*Node{ |
| anonfield(types.NewPtr(t)), |
| anonfield(types.Types[TUINTPTR]), |
| }, []*Node{ |
| anonfield(types.Types[TUINTPTR]), |
| }) |
| return n |
| } |
| |
| // sysClosure returns a closure which will call the |
| // given runtime function (with no closed-over variables). |
| func sysClosure(name string) *obj.LSym { |
| s := sysvar(name + "·f") |
| if len(s.P) == 0 { |
| f := sysfunc(name) |
| dsymptr(s, 0, f, 0) |
| ggloblsym(s, int32(Widthptr), obj.DUPOK|obj.RODATA) |
| } |
| return s |
| } |
| |
| // geneq returns a symbol which is the closure used to compute |
| // equality for two objects of type t. |
| func geneq(t *types.Type) *obj.LSym { |
| switch algtype(t) { |
| case ANOEQ: |
| // The runtime will panic if it tries to compare |
| // a type with a nil equality function. |
| return nil |
| case AMEM0: |
| return sysClosure("memequal0") |
| case AMEM8: |
| return sysClosure("memequal8") |
| case AMEM16: |
| return sysClosure("memequal16") |
| case AMEM32: |
| return sysClosure("memequal32") |
| case AMEM64: |
| return sysClosure("memequal64") |
| case AMEM128: |
| return sysClosure("memequal128") |
| case ASTRING: |
| return sysClosure("strequal") |
| case AINTER: |
| return sysClosure("interequal") |
| case ANILINTER: |
| return sysClosure("nilinterequal") |
| case AFLOAT32: |
| return sysClosure("f32equal") |
| case AFLOAT64: |
| return sysClosure("f64equal") |
| case ACPLX64: |
| return sysClosure("c64equal") |
| case ACPLX128: |
| return sysClosure("c128equal") |
| case AMEM: |
| // make equality closure. The size of the type |
| // is encoded in the closure. |
| closure := typeLookup(fmt.Sprintf(".eqfunc%d", t.Width)).Linksym() |
| if len(closure.P) != 0 { |
| return closure |
| } |
| if memequalvarlen == nil { |
| memequalvarlen = sysvar("memequal_varlen") // asm func |
| } |
| ot := 0 |
| ot = dsymptr(closure, ot, memequalvarlen, 0) |
| ot = duintptr(closure, ot, uint64(t.Width)) |
| ggloblsym(closure, int32(ot), obj.DUPOK|obj.RODATA) |
| return closure |
| case ASPECIAL: |
| break |
| } |
| |
| closure := typesymprefix(".eqfunc", t).Linksym() |
| if len(closure.P) > 0 { // already generated |
| return closure |
| } |
| sym := typesymprefix(".eq", t) |
| if Debug.r != 0 { |
| fmt.Printf("geneq %v\n", t) |
| } |
| |
| // Autogenerate code for equality of structs and arrays. |
| |
| lineno = autogeneratedPos // less confusing than end of input |
| dclcontext = PEXTERN |
| |
| // func sym(p, q *T) bool |
| tfn := nod(OTFUNC, nil, nil) |
| tfn.List.Set2( |
| namedfield("p", types.NewPtr(t)), |
| namedfield("q", types.NewPtr(t)), |
| ) |
| tfn.Rlist.Set1(namedfield("r", types.Types[TBOOL])) |
| |
| fn := dclfunc(sym, tfn) |
| np := asNode(tfn.Type.Params().Field(0).Nname) |
| nq := asNode(tfn.Type.Params().Field(1).Nname) |
| nr := asNode(tfn.Type.Results().Field(0).Nname) |
| |
| // Label to jump to if an equality test fails. |
| neq := autolabel(".neq") |
| |
| // We reach here only for types that have equality but |
| // cannot be handled by the standard algorithms, |
| // so t must be either an array or a struct. |
| switch t.Etype { |
| default: |
| Fatalf("geneq %v", t) |
| |
| case TARRAY: |
| nelem := t.NumElem() |
| |
| // checkAll generates code to check the equality of all array elements. |
| // If unroll is greater than nelem, checkAll generates: |
| // |
| // if eq(p[0], q[0]) && eq(p[1], q[1]) && ... { |
| // } else { |
| // return |
| // } |
| // |
| // And so on. |
| // |
| // Otherwise it generates: |
| // |
| // for i := 0; i < nelem; i++ { |
| // if eq(p[i], q[i]) { |
| // } else { |
| // goto neq |
| // } |
| // } |
| // |
| // TODO(josharian): consider doing some loop unrolling |
| // for larger nelem as well, processing a few elements at a time in a loop. |
| checkAll := func(unroll int64, last bool, eq func(pi, qi *Node) *Node) { |
| // checkIdx generates a node to check for equality at index i. |
| checkIdx := func(i *Node) *Node { |
| // pi := p[i] |
| pi := nod(OINDEX, np, i) |
| pi.SetBounded(true) |
| pi.Type = t.Elem() |
| // qi := q[i] |
| qi := nod(OINDEX, nq, i) |
| qi.SetBounded(true) |
| qi.Type = t.Elem() |
| return eq(pi, qi) |
| } |
| |
| if nelem <= unroll { |
| if last { |
| // Do last comparison in a different manner. |
| nelem-- |
| } |
| // Generate a series of checks. |
| for i := int64(0); i < nelem; i++ { |
| // if check {} else { goto neq } |
| nif := nod(OIF, checkIdx(nodintconst(i)), nil) |
| nif.Rlist.Append(nodSym(OGOTO, nil, neq)) |
| fn.Nbody.Append(nif) |
| } |
| if last { |
| fn.Nbody.Append(nod(OAS, nr, checkIdx(nodintconst(nelem)))) |
| } |
| } else { |
| // Generate a for loop. |
| // for i := 0; i < nelem; i++ |
| i := temp(types.Types[TINT]) |
| init := nod(OAS, i, nodintconst(0)) |
| cond := nod(OLT, i, nodintconst(nelem)) |
| post := nod(OAS, i, nod(OADD, i, nodintconst(1))) |
| loop := nod(OFOR, cond, post) |
| loop.Ninit.Append(init) |
| // if eq(pi, qi) {} else { goto neq } |
| nif := nod(OIF, checkIdx(i), nil) |
| nif.Rlist.Append(nodSym(OGOTO, nil, neq)) |
| loop.Nbody.Append(nif) |
| fn.Nbody.Append(loop) |
| if last { |
| fn.Nbody.Append(nod(OAS, nr, nodbool(true))) |
| } |
| } |
| } |
| |
| switch t.Elem().Etype { |
| case TSTRING: |
| // Do two loops. First, check that all the lengths match (cheap). |
| // Second, check that all the contents match (expensive). |
| // TODO: when the array size is small, unroll the length match checks. |
| checkAll(3, false, func(pi, qi *Node) *Node { |
| // Compare lengths. |
| eqlen, _ := eqstring(pi, qi) |
| return eqlen |
| }) |
| checkAll(1, true, func(pi, qi *Node) *Node { |
| // Compare contents. |
| _, eqmem := eqstring(pi, qi) |
| return eqmem |
| }) |
| case TFLOAT32, TFLOAT64: |
| checkAll(2, true, func(pi, qi *Node) *Node { |
| // p[i] == q[i] |
| return nod(OEQ, pi, qi) |
| }) |
| // TODO: pick apart structs, do them piecemeal too |
| default: |
| checkAll(1, true, func(pi, qi *Node) *Node { |
| // p[i] == q[i] |
| return nod(OEQ, pi, qi) |
| }) |
| } |
| |
| case TSTRUCT: |
| // Build a list of conditions to satisfy. |
| // The conditions are a list-of-lists. Conditions are reorderable |
| // within each inner list. The outer lists must be evaluated in order. |
| var conds [][]*Node |
| conds = append(conds, []*Node{}) |
| and := func(n *Node) { |
| i := len(conds) - 1 |
| conds[i] = append(conds[i], n) |
| } |
| |
| // Walk the struct using memequal for runs of AMEM |
| // and calling specific equality tests for the others. |
| for i, fields := 0, t.FieldSlice(); i < len(fields); { |
| f := fields[i] |
| |
| // Skip blank-named fields. |
| if f.Sym.IsBlank() { |
| i++ |
| continue |
| } |
| |
| // Compare non-memory fields with field equality. |
| if !IsRegularMemory(f.Type) { |
| if EqCanPanic(f.Type) { |
| // Enforce ordering by starting a new set of reorderable conditions. |
| conds = append(conds, []*Node{}) |
| } |
| p := nodSym(OXDOT, np, f.Sym) |
| q := nodSym(OXDOT, nq, f.Sym) |
| switch { |
| case f.Type.IsString(): |
| eqlen, eqmem := eqstring(p, q) |
| and(eqlen) |
| and(eqmem) |
| default: |
| and(nod(OEQ, p, q)) |
| } |
| if EqCanPanic(f.Type) { |
| // Also enforce ordering after something that can panic. |
| conds = append(conds, []*Node{}) |
| } |
| i++ |
| continue |
| } |
| |
| // Find maximal length run of memory-only fields. |
| size, next := memrun(t, i) |
| |
| // TODO(rsc): All the calls to newname are wrong for |
| // cross-package unexported fields. |
| if s := fields[i:next]; len(s) <= 2 { |
| // Two or fewer fields: use plain field equality. |
| for _, f := range s { |
| and(eqfield(np, nq, f.Sym)) |
| } |
| } else { |
| // More than two fields: use memequal. |
| and(eqmem(np, nq, f.Sym, size)) |
| } |
| i = next |
| } |
| |
| // Sort conditions to put runtime calls last. |
| // Preserve the rest of the ordering. |
| var flatConds []*Node |
| for _, c := range conds { |
| isCall := func(n *Node) bool { |
| return n.Op == OCALL || n.Op == OCALLFUNC |
| } |
| sort.SliceStable(c, func(i, j int) bool { |
| return !isCall(c[i]) && isCall(c[j]) |
| }) |
| flatConds = append(flatConds, c...) |
| } |
| |
| if len(flatConds) == 0 { |
| fn.Nbody.Append(nod(OAS, nr, nodbool(true))) |
| } else { |
| for _, c := range flatConds[:len(flatConds)-1] { |
| // if cond {} else { goto neq } |
| n := nod(OIF, c, nil) |
| n.Rlist.Append(nodSym(OGOTO, nil, neq)) |
| fn.Nbody.Append(n) |
| } |
| fn.Nbody.Append(nod(OAS, nr, flatConds[len(flatConds)-1])) |
| } |
| } |
| |
| // ret: |
| // return |
| ret := autolabel(".ret") |
| fn.Nbody.Append(nodSym(OLABEL, nil, ret)) |
| fn.Nbody.Append(nod(ORETURN, nil, nil)) |
| |
| // neq: |
| // r = false |
| // return (or goto ret) |
| fn.Nbody.Append(nodSym(OLABEL, nil, neq)) |
| fn.Nbody.Append(nod(OAS, nr, nodbool(false))) |
| if EqCanPanic(t) || hasCall(fn) { |
| // Epilogue is large, so share it with the equal case. |
| fn.Nbody.Append(nodSym(OGOTO, nil, ret)) |
| } else { |
| // Epilogue is small, so don't bother sharing. |
| fn.Nbody.Append(nod(ORETURN, nil, nil)) |
| } |
| // TODO(khr): the epilogue size detection condition above isn't perfect. |
| // We should really do a generic CL that shares epilogues across |
| // the board. See #24936. |
| |
| if Debug.r != 0 { |
| dumplist("geneq body", fn.Nbody) |
| } |
| |
| funcbody() |
| |
| fn.Func.SetDupok(true) |
| fn = typecheck(fn, ctxStmt) |
| |
| Curfn = fn |
| typecheckslice(fn.Nbody.Slice(), ctxStmt) |
| Curfn = nil |
| |
| if debug_dclstack != 0 { |
| testdclstack() |
| } |
| |
| // Disable checknils while compiling this code. |
| // We are comparing a struct or an array, |
| // neither of which can be nil, and our comparisons |
| // are shallow. |
| fn.Func.SetNilCheckDisabled(true) |
| xtop = append(xtop, fn) |
| |
| // Generate a closure which points at the function we just generated. |
| dsymptr(closure, 0, sym.Linksym(), 0) |
| ggloblsym(closure, int32(Widthptr), obj.DUPOK|obj.RODATA) |
| return closure |
| } |
| |
| func hasCall(n *Node) bool { |
| if n.Op == OCALL || n.Op == OCALLFUNC { |
| return true |
| } |
| if n.Left != nil && hasCall(n.Left) { |
| return true |
| } |
| if n.Right != nil && hasCall(n.Right) { |
| return true |
| } |
| for _, x := range n.Ninit.Slice() { |
| if hasCall(x) { |
| return true |
| } |
| } |
| for _, x := range n.Nbody.Slice() { |
| if hasCall(x) { |
| return true |
| } |
| } |
| for _, x := range n.List.Slice() { |
| if hasCall(x) { |
| return true |
| } |
| } |
| for _, x := range n.Rlist.Slice() { |
| if hasCall(x) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // eqfield returns the node |
| // p.field == q.field |
| func eqfield(p *Node, q *Node, field *types.Sym) *Node { |
| nx := nodSym(OXDOT, p, field) |
| ny := nodSym(OXDOT, q, field) |
| ne := nod(OEQ, nx, ny) |
| return ne |
| } |
| |
| // eqstring returns the nodes |
| // len(s) == len(t) |
| // and |
| // memequal(s.ptr, t.ptr, len(s)) |
| // which can be used to construct string equality comparison. |
| // eqlen must be evaluated before eqmem, and shortcircuiting is required. |
| func eqstring(s, t *Node) (eqlen, eqmem *Node) { |
| s = conv(s, types.Types[TSTRING]) |
| t = conv(t, types.Types[TSTRING]) |
| sptr := nod(OSPTR, s, nil) |
| tptr := nod(OSPTR, t, nil) |
| slen := conv(nod(OLEN, s, nil), types.Types[TUINTPTR]) |
| tlen := conv(nod(OLEN, t, nil), types.Types[TUINTPTR]) |
| |
| fn := syslook("memequal") |
| fn = substArgTypes(fn, types.Types[TUINT8], types.Types[TUINT8]) |
| call := nod(OCALL, fn, nil) |
| call.List.Append(sptr, tptr, slen.copy()) |
| call = typecheck(call, ctxExpr|ctxMultiOK) |
| |
| cmp := nod(OEQ, slen, tlen) |
| cmp = typecheck(cmp, ctxExpr) |
| cmp.Type = types.Types[TBOOL] |
| return cmp, call |
| } |
| |
| // eqinterface returns the nodes |
| // s.tab == t.tab (or s.typ == t.typ, as appropriate) |
| // and |
| // ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate) |
| // which can be used to construct interface equality comparison. |
| // eqtab must be evaluated before eqdata, and shortcircuiting is required. |
| func eqinterface(s, t *Node) (eqtab, eqdata *Node) { |
| if !types.Identical(s.Type, t.Type) { |
| Fatalf("eqinterface %v %v", s.Type, t.Type) |
| } |
| // func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool) |
| // func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool) |
| var fn *Node |
| if s.Type.IsEmptyInterface() { |
| fn = syslook("efaceeq") |
| } else { |
| fn = syslook("ifaceeq") |
| } |
| |
| stab := nod(OITAB, s, nil) |
| ttab := nod(OITAB, t, nil) |
| sdata := nod(OIDATA, s, nil) |
| tdata := nod(OIDATA, t, nil) |
| sdata.Type = types.Types[TUNSAFEPTR] |
| tdata.Type = types.Types[TUNSAFEPTR] |
| sdata.SetTypecheck(1) |
| tdata.SetTypecheck(1) |
| |
| call := nod(OCALL, fn, nil) |
| call.List.Append(stab, sdata, tdata) |
| call = typecheck(call, ctxExpr|ctxMultiOK) |
| |
| cmp := nod(OEQ, stab, ttab) |
| cmp = typecheck(cmp, ctxExpr) |
| cmp.Type = types.Types[TBOOL] |
| return cmp, call |
| } |
| |
| // eqmem returns the node |
| // memequal(&p.field, &q.field [, size]) |
| func eqmem(p *Node, q *Node, field *types.Sym, size int64) *Node { |
| nx := nod(OADDR, nodSym(OXDOT, p, field), nil) |
| ny := nod(OADDR, nodSym(OXDOT, q, field), nil) |
| nx = typecheck(nx, ctxExpr) |
| ny = typecheck(ny, ctxExpr) |
| |
| fn, needsize := eqmemfunc(size, nx.Type.Elem()) |
| call := nod(OCALL, fn, nil) |
| call.List.Append(nx) |
| call.List.Append(ny) |
| if needsize { |
| call.List.Append(nodintconst(size)) |
| } |
| |
| return call |
| } |
| |
| func eqmemfunc(size int64, t *types.Type) (fn *Node, needsize bool) { |
| switch size { |
| default: |
| fn = syslook("memequal") |
| needsize = true |
| case 1, 2, 4, 8, 16: |
| buf := fmt.Sprintf("memequal%d", int(size)*8) |
| fn = syslook(buf) |
| } |
| |
| fn = substArgTypes(fn, t, t) |
| return fn, needsize |
| } |
| |
| // memrun finds runs of struct fields for which memory-only algs are appropriate. |
| // t is the parent struct type, and start is the field index at which to start the run. |
| // size is the length in bytes of the memory included in the run. |
| // next is the index just after the end of the memory run. |
| func memrun(t *types.Type, start int) (size int64, next int) { |
| next = start |
| for { |
| next++ |
| if next == t.NumFields() { |
| break |
| } |
| // Stop run after a padded field. |
| if ispaddedfield(t, next-1) { |
| break |
| } |
| // Also, stop before a blank or non-memory field. |
| if f := t.Field(next); f.Sym.IsBlank() || !IsRegularMemory(f.Type) { |
| break |
| } |
| } |
| return t.Field(next-1).End() - t.Field(start).Offset, next |
| } |
| |
| // ispaddedfield reports whether the i'th field of struct type t is followed |
| // by padding. |
| func ispaddedfield(t *types.Type, i int) bool { |
| if !t.IsStruct() { |
| Fatalf("ispaddedfield called non-struct %v", t) |
| } |
| end := t.Width |
| if i+1 < t.NumFields() { |
| end = t.Field(i + 1).Offset |
| } |
| return t.Field(i).End() != end |
| } |