blob: 3335e096a60178b2ad098b9df6a5f14cd9d6c72d [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mips64
import (
"math"
"cmd/compile/internal/gc"
"cmd/compile/internal/ssa"
"cmd/internal/obj"
"cmd/internal/obj/mips"
)
var ssaRegToReg = []int16{
mips.REG_R0, // constant 0
mips.REG_R1,
mips.REG_R2,
mips.REG_R3,
mips.REG_R4,
mips.REG_R5,
mips.REG_R6,
mips.REG_R7,
mips.REG_R8,
mips.REG_R9,
mips.REG_R10,
mips.REG_R11,
mips.REG_R12,
mips.REG_R13,
mips.REG_R14,
mips.REG_R15,
mips.REG_R16,
mips.REG_R17,
mips.REG_R18,
mips.REG_R19,
mips.REG_R20,
mips.REG_R21,
mips.REG_R22,
// R23 = REGTMP not used in regalloc
mips.REG_R24,
mips.REG_R25,
// R26 reserved by kernel
// R27 reserved by kernel
// R28 = REGSB not used in regalloc
mips.REGSP, // R29
mips.REGG, // R30
// R31 = REGLINK not used in regalloc
mips.REG_F0,
mips.REG_F1,
mips.REG_F2,
mips.REG_F3,
mips.REG_F4,
mips.REG_F5,
mips.REG_F6,
mips.REG_F7,
mips.REG_F8,
mips.REG_F9,
mips.REG_F10,
mips.REG_F11,
mips.REG_F12,
mips.REG_F13,
mips.REG_F14,
mips.REG_F15,
mips.REG_F16,
mips.REG_F17,
mips.REG_F18,
mips.REG_F19,
mips.REG_F20,
mips.REG_F21,
mips.REG_F22,
mips.REG_F23,
mips.REG_F24,
mips.REG_F25,
mips.REG_F26,
mips.REG_F27,
mips.REG_F28,
mips.REG_F29,
mips.REG_F30,
mips.REG_F31,
mips.REG_HI, // high bits of multiplication
mips.REG_LO, // low bits of multiplication
0, // SB isn't a real register. We fill an Addr.Reg field with 0 in this case.
}
// Smallest possible faulting page at address zero,
// see ../../../../runtime/mheap.go:/minPhysPageSize
const minZeroPage = 4096
// isFPreg returns whether r is an FP register
func isFPreg(r int16) bool {
return mips.REG_F0 <= r && r <= mips.REG_F31
}
// isHILO returns whether r is HI or LO register
func isHILO(r int16) bool {
return r == mips.REG_HI || r == mips.REG_LO
}
// loadByType returns the load instruction of the given type.
func loadByType(t ssa.Type, r int16) obj.As {
if isFPreg(r) {
if t.Size() == 4 { // float32 or int32
return mips.AMOVF
} else { // float64 or int64
return mips.AMOVD
}
} else {
switch t.Size() {
case 1:
if t.IsSigned() {
return mips.AMOVB
} else {
return mips.AMOVBU
}
case 2:
if t.IsSigned() {
return mips.AMOVH
} else {
return mips.AMOVHU
}
case 4:
if t.IsSigned() {
return mips.AMOVW
} else {
return mips.AMOVWU
}
case 8:
return mips.AMOVV
}
}
panic("bad load type")
}
// storeByType returns the store instruction of the given type.
func storeByType(t ssa.Type, r int16) obj.As {
if isFPreg(r) {
if t.Size() == 4 { // float32 or int32
return mips.AMOVF
} else { // float64 or int64
return mips.AMOVD
}
} else {
switch t.Size() {
case 1:
return mips.AMOVB
case 2:
return mips.AMOVH
case 4:
return mips.AMOVW
case 8:
return mips.AMOVV
}
}
panic("bad store type")
}
func ssaGenValue(s *gc.SSAGenState, v *ssa.Value) {
s.SetLineno(v.Line)
switch v.Op {
case ssa.OpInitMem:
// memory arg needs no code
case ssa.OpArg:
// input args need no code
case ssa.OpSP, ssa.OpSB, ssa.OpGetG:
// nothing to do
case ssa.OpCopy, ssa.OpMIPS64MOVVconvert, ssa.OpMIPS64MOVVreg:
if v.Type.IsMemory() {
return
}
x := gc.SSARegNum(v.Args[0])
y := gc.SSARegNum(v)
if x == y {
return
}
as := mips.AMOVV
if isFPreg(x) && isFPreg(y) {
as = mips.AMOVD
}
p := gc.Prog(as)
p.From.Type = obj.TYPE_REG
p.From.Reg = x
p.To.Type = obj.TYPE_REG
p.To.Reg = y
if isHILO(x) && isHILO(y) || isHILO(x) && isFPreg(y) || isFPreg(x) && isHILO(y) {
// cannot move between special registers, use TMP as intermediate
p.To.Reg = mips.REGTMP
p = gc.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGTMP
p.To.Type = obj.TYPE_REG
p.To.Reg = y
}
case ssa.OpMIPS64MOVVnop:
if gc.SSARegNum(v) != gc.SSARegNum(v.Args[0]) {
v.Fatalf("input[0] and output not in same register %s", v.LongString())
}
// nothing to do
case ssa.OpLoadReg:
if v.Type.IsFlags() {
v.Fatalf("load flags not implemented: %v", v.LongString())
return
}
r := gc.SSARegNum(v)
p := gc.Prog(loadByType(v.Type, r))
n, off := gc.AutoVar(v.Args[0])
p.From.Type = obj.TYPE_MEM
p.From.Node = n
p.From.Sym = gc.Linksym(n.Sym)
p.From.Offset = off
if n.Class == gc.PPARAM || n.Class == gc.PPARAMOUT {
p.From.Name = obj.NAME_PARAM
p.From.Offset += n.Xoffset
} else {
p.From.Name = obj.NAME_AUTO
}
p.To.Type = obj.TYPE_REG
p.To.Reg = r
if isHILO(r) {
// cannot directly load, load to TMP and move
p.To.Reg = mips.REGTMP
p = gc.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGTMP
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
case ssa.OpPhi:
gc.CheckLoweredPhi(v)
case ssa.OpStoreReg:
if v.Type.IsFlags() {
v.Fatalf("store flags not implemented: %v", v.LongString())
return
}
r := gc.SSARegNum(v.Args[0])
if isHILO(r) {
// cannot directly store, move to TMP and store
p := gc.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = r
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REGTMP
r = mips.REGTMP
}
p := gc.Prog(storeByType(v.Type, r))
p.From.Type = obj.TYPE_REG
p.From.Reg = r
n, off := gc.AutoVar(v)
p.To.Type = obj.TYPE_MEM
p.To.Node = n
p.To.Sym = gc.Linksym(n.Sym)
p.To.Offset = off
if n.Class == gc.PPARAM || n.Class == gc.PPARAMOUT {
p.To.Name = obj.NAME_PARAM
p.To.Offset += n.Xoffset
} else {
p.To.Name = obj.NAME_AUTO
}
case ssa.OpMIPS64ADDV,
ssa.OpMIPS64SUBV,
ssa.OpMIPS64AND,
ssa.OpMIPS64OR,
ssa.OpMIPS64XOR,
ssa.OpMIPS64NOR,
ssa.OpMIPS64SLLV,
ssa.OpMIPS64SRLV,
ssa.OpMIPS64SRAV,
ssa.OpMIPS64ADDF,
ssa.OpMIPS64ADDD,
ssa.OpMIPS64SUBF,
ssa.OpMIPS64SUBD,
ssa.OpMIPS64MULF,
ssa.OpMIPS64MULD,
ssa.OpMIPS64DIVF,
ssa.OpMIPS64DIVD:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[1])
p.Reg = gc.SSARegNum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
case ssa.OpMIPS64SGT,
ssa.OpMIPS64SGTU:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[0])
p.Reg = gc.SSARegNum(v.Args[1])
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
case ssa.OpMIPS64ADDVconst,
ssa.OpMIPS64SUBVconst,
ssa.OpMIPS64ANDconst,
ssa.OpMIPS64ORconst,
ssa.OpMIPS64XORconst,
ssa.OpMIPS64NORconst,
ssa.OpMIPS64SLLVconst,
ssa.OpMIPS64SRLVconst,
ssa.OpMIPS64SRAVconst,
ssa.OpMIPS64SGTconst,
ssa.OpMIPS64SGTUconst:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.Reg = gc.SSARegNum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
case ssa.OpMIPS64MULV,
ssa.OpMIPS64MULVU,
ssa.OpMIPS64DIVV,
ssa.OpMIPS64DIVVU:
// result in hi,lo
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[1])
p.Reg = gc.SSARegNum(v.Args[0])
case ssa.OpMIPS64MOVVconst:
r := gc.SSARegNum(v)
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_CONST
p.From.Offset = v.AuxInt
p.To.Type = obj.TYPE_REG
p.To.Reg = r
if isFPreg(r) || isHILO(r) {
// cannot move into FP or special registers, use TMP as intermediate
p.To.Reg = mips.REGTMP
p = gc.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGTMP
p.To.Type = obj.TYPE_REG
p.To.Reg = r
}
case ssa.OpMIPS64MOVFconst,
ssa.OpMIPS64MOVDconst:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_FCONST
p.From.Val = math.Float64frombits(uint64(v.AuxInt))
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
case ssa.OpMIPS64CMPEQF,
ssa.OpMIPS64CMPEQD,
ssa.OpMIPS64CMPGEF,
ssa.OpMIPS64CMPGED,
ssa.OpMIPS64CMPGTF,
ssa.OpMIPS64CMPGTD:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[0])
p.Reg = gc.SSARegNum(v.Args[1])
case ssa.OpMIPS64MOVVaddr:
p := gc.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_ADDR
var wantreg string
// MOVV $sym+off(base), R
// the assembler expands it as the following:
// - base is SP: add constant offset to SP (R29)
// when constant is large, tmp register (R23) may be used
// - base is SB: load external address with relocation
switch v.Aux.(type) {
default:
v.Fatalf("aux is of unknown type %T", v.Aux)
case *ssa.ExternSymbol:
wantreg = "SB"
gc.AddAux(&p.From, v)
case *ssa.ArgSymbol, *ssa.AutoSymbol:
wantreg = "SP"
gc.AddAux(&p.From, v)
case nil:
// No sym, just MOVV $off(SP), R
wantreg = "SP"
p.From.Reg = mips.REGSP
p.From.Offset = v.AuxInt
}
if reg := gc.SSAReg(v.Args[0]); reg.Name() != wantreg {
v.Fatalf("bad reg %s for symbol type %T, want %s", reg.Name(), v.Aux, wantreg)
}
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
case ssa.OpMIPS64MOVBload,
ssa.OpMIPS64MOVBUload,
ssa.OpMIPS64MOVHload,
ssa.OpMIPS64MOVHUload,
ssa.OpMIPS64MOVWload,
ssa.OpMIPS64MOVWUload,
ssa.OpMIPS64MOVVload,
ssa.OpMIPS64MOVFload,
ssa.OpMIPS64MOVDload:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_MEM
p.From.Reg = gc.SSARegNum(v.Args[0])
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
case ssa.OpMIPS64MOVBstore,
ssa.OpMIPS64MOVHstore,
ssa.OpMIPS64MOVWstore,
ssa.OpMIPS64MOVVstore,
ssa.OpMIPS64MOVFstore,
ssa.OpMIPS64MOVDstore:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[1])
p.To.Type = obj.TYPE_MEM
p.To.Reg = gc.SSARegNum(v.Args[0])
gc.AddAux(&p.To, v)
case ssa.OpMIPS64MOVBstorezero,
ssa.OpMIPS64MOVHstorezero,
ssa.OpMIPS64MOVWstorezero,
ssa.OpMIPS64MOVVstorezero:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGZERO
p.To.Type = obj.TYPE_MEM
p.To.Reg = gc.SSARegNum(v.Args[0])
gc.AddAux(&p.To, v)
case ssa.OpMIPS64MOVBreg,
ssa.OpMIPS64MOVBUreg,
ssa.OpMIPS64MOVHreg,
ssa.OpMIPS64MOVHUreg,
ssa.OpMIPS64MOVWreg,
ssa.OpMIPS64MOVWUreg:
a := v.Args[0]
for a.Op == ssa.OpCopy || a.Op == ssa.OpMIPS64MOVVreg {
a = a.Args[0]
}
if a.Op == ssa.OpLoadReg {
t := a.Type
switch {
case v.Op == ssa.OpMIPS64MOVBreg && t.Size() == 1 && t.IsSigned(),
v.Op == ssa.OpMIPS64MOVBUreg && t.Size() == 1 && !t.IsSigned(),
v.Op == ssa.OpMIPS64MOVHreg && t.Size() == 2 && t.IsSigned(),
v.Op == ssa.OpMIPS64MOVHUreg && t.Size() == 2 && !t.IsSigned(),
v.Op == ssa.OpMIPS64MOVWreg && t.Size() == 4 && t.IsSigned(),
v.Op == ssa.OpMIPS64MOVWUreg && t.Size() == 4 && !t.IsSigned():
// arg is a proper-typed load, already zero/sign-extended, don't extend again
if gc.SSARegNum(v) == gc.SSARegNum(v.Args[0]) {
return
}
p := gc.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
return
default:
}
}
fallthrough
case ssa.OpMIPS64MOVWF,
ssa.OpMIPS64MOVWD,
ssa.OpMIPS64TRUNCFW,
ssa.OpMIPS64TRUNCDW,
ssa.OpMIPS64MOVVF,
ssa.OpMIPS64MOVVD,
ssa.OpMIPS64TRUNCFV,
ssa.OpMIPS64TRUNCDV,
ssa.OpMIPS64MOVFD,
ssa.OpMIPS64MOVDF,
ssa.OpMIPS64NEGF,
ssa.OpMIPS64NEGD:
p := gc.Prog(v.Op.Asm())
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
case ssa.OpMIPS64NEGV:
// SUB from REGZERO
p := gc.Prog(mips.ASUBVU)
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(v.Args[0])
p.Reg = mips.REGZERO
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
case ssa.OpMIPS64DUFFZERO:
// runtime.duffzero expects start address - 8 in R1
p := gc.Prog(mips.ASUBVU)
p.From.Type = obj.TYPE_CONST
p.From.Offset = 8
p.Reg = gc.SSARegNum(v.Args[0])
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REG_R1
p = gc.Prog(obj.ADUFFZERO)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(gc.Pkglookup("duffzero", gc.Runtimepkg))
p.To.Offset = v.AuxInt
case ssa.OpMIPS64LoweredZero:
// SUBV $8, R1
// MOVV R0, 8(R1)
// ADDV $8, R1
// BNE Rarg1, R1, -2(PC)
// arg1 is the address of the last element to zero
var sz int64
var mov obj.As
switch {
case v.AuxInt%8 == 0:
sz = 8
mov = mips.AMOVV
case v.AuxInt%4 == 0:
sz = 4
mov = mips.AMOVW
case v.AuxInt%2 == 0:
sz = 2
mov = mips.AMOVH
default:
sz = 1
mov = mips.AMOVB
}
p := gc.Prog(mips.ASUBVU)
p.From.Type = obj.TYPE_CONST
p.From.Offset = sz
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REG_R1
p2 := gc.Prog(mov)
p2.From.Type = obj.TYPE_REG
p2.From.Reg = mips.REGZERO
p2.To.Type = obj.TYPE_MEM
p2.To.Reg = mips.REG_R1
p2.To.Offset = sz
p3 := gc.Prog(mips.AADDVU)
p3.From.Type = obj.TYPE_CONST
p3.From.Offset = sz
p3.To.Type = obj.TYPE_REG
p3.To.Reg = mips.REG_R1
p4 := gc.Prog(mips.ABNE)
p4.From.Type = obj.TYPE_REG
p4.From.Reg = gc.SSARegNum(v.Args[1])
p4.Reg = mips.REG_R1
p4.To.Type = obj.TYPE_BRANCH
gc.Patch(p4, p2)
case ssa.OpMIPS64LoweredMove:
// SUBV $8, R1
// MOVV 8(R1), Rtmp
// MOVV Rtmp, (R2)
// ADDV $8, R1
// ADDV $8, R2
// BNE Rarg2, R1, -4(PC)
// arg2 is the address of the last element of src
var sz int64
var mov obj.As
switch {
case v.AuxInt%8 == 0:
sz = 8
mov = mips.AMOVV
case v.AuxInt%4 == 0:
sz = 4
mov = mips.AMOVW
case v.AuxInt%2 == 0:
sz = 2
mov = mips.AMOVH
default:
sz = 1
mov = mips.AMOVB
}
p := gc.Prog(mips.ASUBVU)
p.From.Type = obj.TYPE_CONST
p.From.Offset = sz
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REG_R1
p2 := gc.Prog(mov)
p2.From.Type = obj.TYPE_MEM
p2.From.Reg = mips.REG_R1
p2.From.Offset = sz
p2.To.Type = obj.TYPE_REG
p2.To.Reg = mips.REGTMP
p3 := gc.Prog(mov)
p3.From.Type = obj.TYPE_REG
p3.From.Reg = mips.REGTMP
p3.To.Type = obj.TYPE_MEM
p3.To.Reg = mips.REG_R2
p4 := gc.Prog(mips.AADDVU)
p4.From.Type = obj.TYPE_CONST
p4.From.Offset = sz
p4.To.Type = obj.TYPE_REG
p4.To.Reg = mips.REG_R1
p5 := gc.Prog(mips.AADDVU)
p5.From.Type = obj.TYPE_CONST
p5.From.Offset = sz
p5.To.Type = obj.TYPE_REG
p5.To.Reg = mips.REG_R2
p6 := gc.Prog(mips.ABNE)
p6.From.Type = obj.TYPE_REG
p6.From.Reg = gc.SSARegNum(v.Args[2])
p6.Reg = mips.REG_R1
p6.To.Type = obj.TYPE_BRANCH
gc.Patch(p6, p2)
case ssa.OpMIPS64CALLstatic:
if v.Aux.(*gc.Sym) == gc.Deferreturn.Sym {
// Deferred calls will appear to be returning to
// the CALL deferreturn(SB) that we are about to emit.
// However, the stack trace code will show the line
// of the instruction byte before the return PC.
// To avoid that being an unrelated instruction,
// insert an actual hardware NOP that will have the right line number.
// This is different from obj.ANOP, which is a virtual no-op
// that doesn't make it into the instruction stream.
ginsnop()
}
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(v.Aux.(*gc.Sym))
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpMIPS64CALLclosure:
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 0
p.To.Reg = gc.SSARegNum(v.Args[0])
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpMIPS64CALLdefer:
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(gc.Deferproc.Sym)
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpMIPS64CALLgo:
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(gc.Newproc.Sym)
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpMIPS64CALLinter:
p := gc.Prog(obj.ACALL)
p.To.Type = obj.TYPE_MEM
p.To.Offset = 0
p.To.Reg = gc.SSARegNum(v.Args[0])
if gc.Maxarg < v.AuxInt {
gc.Maxarg = v.AuxInt
}
case ssa.OpMIPS64LoweredNilCheck:
// Optimization - if the subsequent block has a load or store
// at the same address, we don't need to issue this instruction.
mem := v.Args[1]
for _, w := range v.Block.Succs[0].Block().Values {
if w.Op == ssa.OpPhi {
if w.Type.IsMemory() {
mem = w
}
continue
}
if len(w.Args) == 0 || !w.Args[len(w.Args)-1].Type.IsMemory() {
// w doesn't use a store - can't be a memory op.
continue
}
if w.Args[len(w.Args)-1] != mem {
v.Fatalf("wrong store after nilcheck v=%s w=%s", v, w)
}
switch w.Op {
case ssa.OpMIPS64MOVBload, ssa.OpMIPS64MOVBUload, ssa.OpMIPS64MOVHload, ssa.OpMIPS64MOVHUload,
ssa.OpMIPS64MOVWload, ssa.OpMIPS64MOVWUload, ssa.OpMIPS64MOVVload,
ssa.OpMIPS64MOVFload, ssa.OpMIPS64MOVDload,
ssa.OpMIPS64MOVBstore, ssa.OpMIPS64MOVHstore, ssa.OpMIPS64MOVWstore, ssa.OpMIPS64MOVVstore,
ssa.OpMIPS64MOVFstore, ssa.OpMIPS64MOVDstore,
ssa.OpMIPS64MOVBstorezero, ssa.OpMIPS64MOVHstorezero, ssa.OpMIPS64MOVWstorezero, ssa.OpMIPS64MOVVstorezero:
// arg0 is ptr, auxint is offset
if w.Args[0] == v.Args[0] && w.Aux == nil && w.AuxInt >= 0 && w.AuxInt < minZeroPage {
if gc.Debug_checknil != 0 && int(v.Line) > 1 {
gc.Warnl(v.Line, "removed nil check")
}
return
}
case ssa.OpMIPS64DUFFZERO, ssa.OpMIPS64LoweredZero:
// arg0 is ptr
if w.Args[0] == v.Args[0] {
if gc.Debug_checknil != 0 && int(v.Line) > 1 {
gc.Warnl(v.Line, "removed nil check")
}
return
}
case ssa.OpMIPS64LoweredMove:
// arg0 is dst ptr, arg1 is src ptr
if w.Args[0] == v.Args[0] || w.Args[1] == v.Args[0] {
if gc.Debug_checknil != 0 && int(v.Line) > 1 {
gc.Warnl(v.Line, "removed nil check")
}
return
}
default:
}
if w.Type.IsMemory() {
if w.Op == ssa.OpVarDef || w.Op == ssa.OpVarKill || w.Op == ssa.OpVarLive {
// these ops are OK
mem = w
continue
}
// We can't delay the nil check past the next store.
break
}
}
// Issue a load which will fault if arg is nil.
p := gc.Prog(mips.AMOVB)
p.From.Type = obj.TYPE_MEM
p.From.Reg = gc.SSARegNum(v.Args[0])
gc.AddAux(&p.From, v)
p.To.Type = obj.TYPE_REG
p.To.Reg = mips.REGTMP
if gc.Debug_checknil != 0 && v.Line > 1 { // v.Line==1 in generated wrappers
gc.Warnl(v.Line, "generated nil check")
}
case ssa.OpVarDef:
gc.Gvardef(v.Aux.(*gc.Node))
case ssa.OpVarKill:
gc.Gvarkill(v.Aux.(*gc.Node))
case ssa.OpVarLive:
gc.Gvarlive(v.Aux.(*gc.Node))
case ssa.OpKeepAlive:
gc.KeepAlive(v)
case ssa.OpMIPS64FPFlagTrue,
ssa.OpMIPS64FPFlagFalse:
// MOVV $0, r
// BFPF 2(PC)
// MOVV $1, r
branch := mips.ABFPF
if v.Op == ssa.OpMIPS64FPFlagFalse {
branch = mips.ABFPT
}
p := gc.Prog(mips.AMOVV)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGZERO
p.To.Type = obj.TYPE_REG
p.To.Reg = gc.SSARegNum(v)
p2 := gc.Prog(branch)
p2.To.Type = obj.TYPE_BRANCH
p3 := gc.Prog(mips.AMOVV)
p3.From.Type = obj.TYPE_CONST
p3.From.Offset = 1
p3.To.Type = obj.TYPE_REG
p3.To.Reg = gc.SSARegNum(v)
p4 := gc.Prog(obj.ANOP) // not a machine instruction, for branch to land
gc.Patch(p2, p4)
case ssa.OpSelect0, ssa.OpSelect1:
// nothing to do
case ssa.OpMIPS64LoweredGetClosurePtr:
// Closure pointer is R22 (mips.REGCTXT).
gc.CheckLoweredGetClosurePtr(v)
default:
v.Fatalf("genValue not implemented: %s", v.LongString())
}
}
var blockJump = map[ssa.BlockKind]struct {
asm, invasm obj.As
}{
ssa.BlockMIPS64EQ: {mips.ABEQ, mips.ABNE},
ssa.BlockMIPS64NE: {mips.ABNE, mips.ABEQ},
ssa.BlockMIPS64LTZ: {mips.ABLTZ, mips.ABGEZ},
ssa.BlockMIPS64GEZ: {mips.ABGEZ, mips.ABLTZ},
ssa.BlockMIPS64LEZ: {mips.ABLEZ, mips.ABGTZ},
ssa.BlockMIPS64GTZ: {mips.ABGTZ, mips.ABLEZ},
ssa.BlockMIPS64FPT: {mips.ABFPT, mips.ABFPF},
ssa.BlockMIPS64FPF: {mips.ABFPF, mips.ABFPT},
}
func ssaGenBlock(s *gc.SSAGenState, b, next *ssa.Block) {
s.SetLineno(b.Line)
switch b.Kind {
case ssa.BlockPlain, ssa.BlockCheck:
if b.Succs[0].Block() != next {
p := gc.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockDefer:
// defer returns in R1:
// 0 if we should continue executing
// 1 if we should jump to deferreturn call
p := gc.Prog(mips.ABNE)
p.From.Type = obj.TYPE_REG
p.From.Reg = mips.REGZERO
p.Reg = mips.REG_R1
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()})
if b.Succs[0].Block() != next {
p := gc.Prog(obj.AJMP)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
}
case ssa.BlockExit:
gc.Prog(obj.AUNDEF) // tell plive.go that we never reach here
case ssa.BlockRet:
gc.Prog(obj.ARET)
case ssa.BlockRetJmp:
p := gc.Prog(obj.ARET)
p.To.Type = obj.TYPE_MEM
p.To.Name = obj.NAME_EXTERN
p.To.Sym = gc.Linksym(b.Aux.(*gc.Sym))
case ssa.BlockMIPS64EQ, ssa.BlockMIPS64NE,
ssa.BlockMIPS64LTZ, ssa.BlockMIPS64GEZ,
ssa.BlockMIPS64LEZ, ssa.BlockMIPS64GTZ,
ssa.BlockMIPS64FPT, ssa.BlockMIPS64FPF:
jmp := blockJump[b.Kind]
var p *obj.Prog
switch next {
case b.Succs[0].Block():
p = gc.Prog(jmp.invasm)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[1].Block()})
case b.Succs[1].Block():
p = gc.Prog(jmp.asm)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
default:
p = gc.Prog(jmp.asm)
p.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: p, B: b.Succs[0].Block()})
q := gc.Prog(obj.AJMP)
q.To.Type = obj.TYPE_BRANCH
s.Branches = append(s.Branches, gc.Branch{P: q, B: b.Succs[1].Block()})
}
if !b.Control.Type.IsFlags() {
p.From.Type = obj.TYPE_REG
p.From.Reg = gc.SSARegNum(b.Control)
}
default:
b.Fatalf("branch not implemented: %s. Control: %s", b.LongString(), b.Control.LongString())
}
}