| // Copyright 2011 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package color | 
 |  | 
 | // RGBToYCbCr converts an RGB triple to a Y'CbCr triple. | 
 | func RGBToYCbCr(r, g, b uint8) (uint8, uint8, uint8) { | 
 | 	// The JFIF specification says: | 
 | 	//	Y' =  0.2990*R + 0.5870*G + 0.1140*B | 
 | 	//	Cb = -0.1687*R - 0.3313*G + 0.5000*B + 128 | 
 | 	//	Cr =  0.5000*R - 0.4187*G - 0.0813*B + 128 | 
 | 	// https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. | 
 |  | 
 | 	r1 := int32(r) | 
 | 	g1 := int32(g) | 
 | 	b1 := int32(b) | 
 |  | 
 | 	// yy is in range [0,0xff]. | 
 | 	// | 
 | 	// Note that 19595 + 38470 + 7471 equals 65536. | 
 | 	yy := (19595*r1 + 38470*g1 + 7471*b1 + 1<<15) >> 16 | 
 |  | 
 | 	// The bit twiddling below is equivalent to | 
 | 	// | 
 | 	// cb := (-11056*r1 - 21712*g1 + 32768*b1 + 257<<15) >> 16 | 
 | 	// if cb < 0 { | 
 | 	//     cb = 0 | 
 | 	// } else if cb > 0xff { | 
 | 	//     cb = ^int32(0) | 
 | 	// } | 
 | 	// | 
 | 	// but uses fewer branches and is faster. | 
 | 	// Note that the uint8 type conversion in the return | 
 | 	// statement will convert ^int32(0) to 0xff. | 
 | 	// The code below to compute cr uses a similar pattern. | 
 | 	// | 
 | 	// Note that -11056 - 21712 + 32768 equals 0. | 
 | 	cb := -11056*r1 - 21712*g1 + 32768*b1 + 257<<15 | 
 | 	if uint32(cb)&0xff000000 == 0 { | 
 | 		cb >>= 16 | 
 | 	} else { | 
 | 		cb = ^(cb >> 31) | 
 | 	} | 
 |  | 
 | 	// Note that 32768 - 27440 - 5328 equals 0. | 
 | 	cr := 32768*r1 - 27440*g1 - 5328*b1 + 257<<15 | 
 | 	if uint32(cr)&0xff000000 == 0 { | 
 | 		cr >>= 16 | 
 | 	} else { | 
 | 		cr = ^(cr >> 31) | 
 | 	} | 
 |  | 
 | 	return uint8(yy), uint8(cb), uint8(cr) | 
 | } | 
 |  | 
 | // YCbCrToRGB converts a Y'CbCr triple to an RGB triple. | 
 | func YCbCrToRGB(y, cb, cr uint8) (uint8, uint8, uint8) { | 
 | 	// The JFIF specification says: | 
 | 	//	R = Y' + 1.40200*(Cr-128) | 
 | 	//	G = Y' - 0.34414*(Cb-128) - 0.71414*(Cr-128) | 
 | 	//	B = Y' + 1.77200*(Cb-128) | 
 | 	// https://www.w3.org/Graphics/JPEG/jfif3.pdf says Y but means Y'. | 
 | 	// | 
 | 	// Those formulae use non-integer multiplication factors. When computing, | 
 | 	// integer math is generally faster than floating point math. We multiply | 
 | 	// all of those factors by 1<<16 and round to the nearest integer: | 
 | 	//	 91881 = roundToNearestInteger(1.40200 * 65536). | 
 | 	//	 22554 = roundToNearestInteger(0.34414 * 65536). | 
 | 	//	 46802 = roundToNearestInteger(0.71414 * 65536). | 
 | 	//	116130 = roundToNearestInteger(1.77200 * 65536). | 
 | 	// | 
 | 	// Adding a rounding adjustment in the range [0, 1<<16-1] and then shifting | 
 | 	// right by 16 gives us an integer math version of the original formulae. | 
 | 	//	R = (65536*Y' +  91881 *(Cr-128)                  + adjustment) >> 16 | 
 | 	//	G = (65536*Y' -  22554 *(Cb-128) - 46802*(Cr-128) + adjustment) >> 16 | 
 | 	//	B = (65536*Y' + 116130 *(Cb-128)                  + adjustment) >> 16 | 
 | 	// A constant rounding adjustment of 1<<15, one half of 1<<16, would mean | 
 | 	// round-to-nearest when dividing by 65536 (shifting right by 16). | 
 | 	// Similarly, a constant rounding adjustment of 0 would mean round-down. | 
 | 	// | 
 | 	// Defining YY1 = 65536*Y' + adjustment simplifies the formulae and | 
 | 	// requires fewer CPU operations: | 
 | 	//	R = (YY1 +  91881 *(Cr-128)                 ) >> 16 | 
 | 	//	G = (YY1 -  22554 *(Cb-128) - 46802*(Cr-128)) >> 16 | 
 | 	//	B = (YY1 + 116130 *(Cb-128)                 ) >> 16 | 
 | 	// | 
 | 	// The inputs (y, cb, cr) are 8 bit color, ranging in [0x00, 0xff]. In this | 
 | 	// function, the output is also 8 bit color, but in the related YCbCr.RGBA | 
 | 	// method, below, the output is 16 bit color, ranging in [0x0000, 0xffff]. | 
 | 	// Outputting 16 bit color simply requires changing the 16 to 8 in the "R = | 
 | 	// etc >> 16" equation, and likewise for G and B. | 
 | 	// | 
 | 	// As mentioned above, a constant rounding adjustment of 1<<15 is a natural | 
 | 	// choice, but there is an additional constraint: if c0 := YCbCr{Y: y, Cb: | 
 | 	// 0x80, Cr: 0x80} and c1 := Gray{Y: y} then c0.RGBA() should equal | 
 | 	// c1.RGBA(). Specifically, if y == 0 then "R = etc >> 8" should yield | 
 | 	// 0x0000 and if y == 0xff then "R = etc >> 8" should yield 0xffff. If we | 
 | 	// used a constant rounding adjustment of 1<<15, then it would yield 0x0080 | 
 | 	// and 0xff80 respectively. | 
 | 	// | 
 | 	// Note that when cb == 0x80 and cr == 0x80 then the formulae collapse to: | 
 | 	//	R = YY1 >> n | 
 | 	//	G = YY1 >> n | 
 | 	//	B = YY1 >> n | 
 | 	// where n is 16 for this function (8 bit color output) and 8 for the | 
 | 	// YCbCr.RGBA method (16 bit color output). | 
 | 	// | 
 | 	// The solution is to make the rounding adjustment non-constant, and equal | 
 | 	// to 257*Y', which ranges over [0, 1<<16-1] as Y' ranges over [0, 255]. | 
 | 	// YY1 is then defined as: | 
 | 	//	YY1 = 65536*Y' + 257*Y' | 
 | 	// or equivalently: | 
 | 	//	YY1 = Y' * 0x10101 | 
 | 	yy1 := int32(y) * 0x10101 | 
 | 	cb1 := int32(cb) - 128 | 
 | 	cr1 := int32(cr) - 128 | 
 |  | 
 | 	// The bit twiddling below is equivalent to | 
 | 	// | 
 | 	// r := (yy1 + 91881*cr1) >> 16 | 
 | 	// if r < 0 { | 
 | 	//     r = 0 | 
 | 	// } else if r > 0xff { | 
 | 	//     r = ^int32(0) | 
 | 	// } | 
 | 	// | 
 | 	// but uses fewer branches and is faster. | 
 | 	// Note that the uint8 type conversion in the return | 
 | 	// statement will convert ^int32(0) to 0xff. | 
 | 	// The code below to compute g and b uses a similar pattern. | 
 | 	r := yy1 + 91881*cr1 | 
 | 	if uint32(r)&0xff000000 == 0 { | 
 | 		r >>= 16 | 
 | 	} else { | 
 | 		r = ^(r >> 31) | 
 | 	} | 
 |  | 
 | 	g := yy1 - 22554*cb1 - 46802*cr1 | 
 | 	if uint32(g)&0xff000000 == 0 { | 
 | 		g >>= 16 | 
 | 	} else { | 
 | 		g = ^(g >> 31) | 
 | 	} | 
 |  | 
 | 	b := yy1 + 116130*cb1 | 
 | 	if uint32(b)&0xff000000 == 0 { | 
 | 		b >>= 16 | 
 | 	} else { | 
 | 		b = ^(b >> 31) | 
 | 	} | 
 |  | 
 | 	return uint8(r), uint8(g), uint8(b) | 
 | } | 
 |  | 
 | // YCbCr represents a fully opaque 24-bit Y'CbCr color, having 8 bits each for | 
 | // one luma and two chroma components. | 
 | // | 
 | // JPEG, VP8, the MPEG family and other codecs use this color model. Such | 
 | // codecs often use the terms YUV and Y'CbCr interchangeably, but strictly | 
 | // speaking, the term YUV applies only to analog video signals, and Y' (luma) | 
 | // is Y (luminance) after applying gamma correction. | 
 | // | 
 | // Conversion between RGB and Y'CbCr is lossy and there are multiple, slightly | 
 | // different formulae for converting between the two. This package follows | 
 | // the JFIF specification at https://www.w3.org/Graphics/JPEG/jfif3.pdf. | 
 | type YCbCr struct { | 
 | 	Y, Cb, Cr uint8 | 
 | } | 
 |  | 
 | func (c YCbCr) RGBA() (uint32, uint32, uint32, uint32) { | 
 | 	// This code is a copy of the YCbCrToRGB function above, except that it | 
 | 	// returns values in the range [0, 0xffff] instead of [0, 0xff]. There is a | 
 | 	// subtle difference between doing this and having YCbCr satisfy the Color | 
 | 	// interface by first converting to an RGBA. The latter loses some | 
 | 	// information by going to and from 8 bits per channel. | 
 | 	// | 
 | 	// For example, this code: | 
 | 	//	const y, cb, cr = 0x7f, 0x7f, 0x7f | 
 | 	//	r, g, b := color.YCbCrToRGB(y, cb, cr) | 
 | 	//	r0, g0, b0, _ := color.YCbCr{y, cb, cr}.RGBA() | 
 | 	//	r1, g1, b1, _ := color.RGBA{r, g, b, 0xff}.RGBA() | 
 | 	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r0, g0, b0) | 
 | 	//	fmt.Printf("0x%04x 0x%04x 0x%04x\n", r1, g1, b1) | 
 | 	// prints: | 
 | 	//	0x7e18 0x808d 0x7db9 | 
 | 	//	0x7e7e 0x8080 0x7d7d | 
 |  | 
 | 	yy1 := int32(c.Y) * 0x10101 | 
 | 	cb1 := int32(c.Cb) - 128 | 
 | 	cr1 := int32(c.Cr) - 128 | 
 |  | 
 | 	// The bit twiddling below is equivalent to | 
 | 	// | 
 | 	// r := (yy1 + 91881*cr1) >> 8 | 
 | 	// if r < 0 { | 
 | 	//     r = 0 | 
 | 	// } else if r > 0xff { | 
 | 	//     r = 0xffff | 
 | 	// } | 
 | 	// | 
 | 	// but uses fewer branches and is faster. | 
 | 	// The code below to compute g and b uses a similar pattern. | 
 | 	r := yy1 + 91881*cr1 | 
 | 	if uint32(r)&0xff000000 == 0 { | 
 | 		r >>= 8 | 
 | 	} else { | 
 | 		r = ^(r >> 31) & 0xffff | 
 | 	} | 
 |  | 
 | 	g := yy1 - 22554*cb1 - 46802*cr1 | 
 | 	if uint32(g)&0xff000000 == 0 { | 
 | 		g >>= 8 | 
 | 	} else { | 
 | 		g = ^(g >> 31) & 0xffff | 
 | 	} | 
 |  | 
 | 	b := yy1 + 116130*cb1 | 
 | 	if uint32(b)&0xff000000 == 0 { | 
 | 		b >>= 8 | 
 | 	} else { | 
 | 		b = ^(b >> 31) & 0xffff | 
 | 	} | 
 |  | 
 | 	return uint32(r), uint32(g), uint32(b), 0xffff | 
 | } | 
 |  | 
 | // YCbCrModel is the Model for Y'CbCr colors. | 
 | var YCbCrModel Model = ModelFunc(yCbCrModel) | 
 |  | 
 | func yCbCrModel(c Color) Color { | 
 | 	if _, ok := c.(YCbCr); ok { | 
 | 		return c | 
 | 	} | 
 | 	r, g, b, _ := c.RGBA() | 
 | 	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) | 
 | 	return YCbCr{y, u, v} | 
 | } | 
 |  | 
 | // NYCbCrA represents a non-alpha-premultiplied Y'CbCr-with-alpha color, having | 
 | // 8 bits each for one luma, two chroma and one alpha component. | 
 | type NYCbCrA struct { | 
 | 	YCbCr | 
 | 	A uint8 | 
 | } | 
 |  | 
 | func (c NYCbCrA) RGBA() (uint32, uint32, uint32, uint32) { | 
 | 	// The first part of this method is the same as YCbCr.RGBA. | 
 | 	yy1 := int32(c.Y) * 0x10101 | 
 | 	cb1 := int32(c.Cb) - 128 | 
 | 	cr1 := int32(c.Cr) - 128 | 
 |  | 
 | 	// The bit twiddling below is equivalent to | 
 | 	// | 
 | 	// r := (yy1 + 91881*cr1) >> 8 | 
 | 	// if r < 0 { | 
 | 	//     r = 0 | 
 | 	// } else if r > 0xff { | 
 | 	//     r = 0xffff | 
 | 	// } | 
 | 	// | 
 | 	// but uses fewer branches and is faster. | 
 | 	// The code below to compute g and b uses a similar pattern. | 
 | 	r := yy1 + 91881*cr1 | 
 | 	if uint32(r)&0xff000000 == 0 { | 
 | 		r >>= 8 | 
 | 	} else { | 
 | 		r = ^(r >> 31) & 0xffff | 
 | 	} | 
 |  | 
 | 	g := yy1 - 22554*cb1 - 46802*cr1 | 
 | 	if uint32(g)&0xff000000 == 0 { | 
 | 		g >>= 8 | 
 | 	} else { | 
 | 		g = ^(g >> 31) & 0xffff | 
 | 	} | 
 |  | 
 | 	b := yy1 + 116130*cb1 | 
 | 	if uint32(b)&0xff000000 == 0 { | 
 | 		b >>= 8 | 
 | 	} else { | 
 | 		b = ^(b >> 31) & 0xffff | 
 | 	} | 
 |  | 
 | 	// The second part of this method applies the alpha. | 
 | 	a := uint32(c.A) * 0x101 | 
 | 	return uint32(r) * a / 0xffff, uint32(g) * a / 0xffff, uint32(b) * a / 0xffff, a | 
 | } | 
 |  | 
 | // NYCbCrAModel is the Model for non-alpha-premultiplied Y'CbCr-with-alpha | 
 | // colors. | 
 | var NYCbCrAModel Model = ModelFunc(nYCbCrAModel) | 
 |  | 
 | func nYCbCrAModel(c Color) Color { | 
 | 	switch c := c.(type) { | 
 | 	case NYCbCrA: | 
 | 		return c | 
 | 	case YCbCr: | 
 | 		return NYCbCrA{c, 0xff} | 
 | 	} | 
 | 	r, g, b, a := c.RGBA() | 
 |  | 
 | 	// Convert from alpha-premultiplied to non-alpha-premultiplied. | 
 | 	if a != 0 { | 
 | 		r = (r * 0xffff) / a | 
 | 		g = (g * 0xffff) / a | 
 | 		b = (b * 0xffff) / a | 
 | 	} | 
 |  | 
 | 	y, u, v := RGBToYCbCr(uint8(r>>8), uint8(g>>8), uint8(b>>8)) | 
 | 	return NYCbCrA{YCbCr{Y: y, Cb: u, Cr: v}, uint8(a >> 8)} | 
 | } | 
 |  | 
 | // RGBToCMYK converts an RGB triple to a CMYK quadruple. | 
 | func RGBToCMYK(r, g, b uint8) (uint8, uint8, uint8, uint8) { | 
 | 	rr := uint32(r) | 
 | 	gg := uint32(g) | 
 | 	bb := uint32(b) | 
 | 	w := rr | 
 | 	if w < gg { | 
 | 		w = gg | 
 | 	} | 
 | 	if w < bb { | 
 | 		w = bb | 
 | 	} | 
 | 	if w == 0 { | 
 | 		return 0, 0, 0, 0xff | 
 | 	} | 
 | 	c := (w - rr) * 0xff / w | 
 | 	m := (w - gg) * 0xff / w | 
 | 	y := (w - bb) * 0xff / w | 
 | 	return uint8(c), uint8(m), uint8(y), uint8(0xff - w) | 
 | } | 
 |  | 
 | // CMYKToRGB converts a CMYK quadruple to an RGB triple. | 
 | func CMYKToRGB(c, m, y, k uint8) (uint8, uint8, uint8) { | 
 | 	w := 0xffff - uint32(k)*0x101 | 
 | 	r := (0xffff - uint32(c)*0x101) * w / 0xffff | 
 | 	g := (0xffff - uint32(m)*0x101) * w / 0xffff | 
 | 	b := (0xffff - uint32(y)*0x101) * w / 0xffff | 
 | 	return uint8(r >> 8), uint8(g >> 8), uint8(b >> 8) | 
 | } | 
 |  | 
 | // CMYK represents a fully opaque CMYK color, having 8 bits for each of cyan, | 
 | // magenta, yellow and black. | 
 | // | 
 | // It is not associated with any particular color profile. | 
 | type CMYK struct { | 
 | 	C, M, Y, K uint8 | 
 | } | 
 |  | 
 | func (c CMYK) RGBA() (uint32, uint32, uint32, uint32) { | 
 | 	// This code is a copy of the CMYKToRGB function above, except that it | 
 | 	// returns values in the range [0, 0xffff] instead of [0, 0xff]. | 
 |  | 
 | 	w := 0xffff - uint32(c.K)*0x101 | 
 | 	r := (0xffff - uint32(c.C)*0x101) * w / 0xffff | 
 | 	g := (0xffff - uint32(c.M)*0x101) * w / 0xffff | 
 | 	b := (0xffff - uint32(c.Y)*0x101) * w / 0xffff | 
 | 	return r, g, b, 0xffff | 
 | } | 
 |  | 
 | // CMYKModel is the Model for CMYK colors. | 
 | var CMYKModel Model = ModelFunc(cmykModel) | 
 |  | 
 | func cmykModel(c Color) Color { | 
 | 	if _, ok := c.(CMYK); ok { | 
 | 		return c | 
 | 	} | 
 | 	r, g, b, _ := c.RGBA() | 
 | 	cc, mm, yy, kk := RGBToCMYK(uint8(r>>8), uint8(g>>8), uint8(b>>8)) | 
 | 	return CMYK{cc, mm, yy, kk} | 
 | } |