| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| // |
| // The inlining facility makes 2 passes: first caninl determines which |
| // functions are suitable for inlining, and for those that are it |
| // saves a copy of the body. Then inlcalls walks each function body to |
| // expand calls to inlinable functions. |
| // |
| // The debug['l'] flag controls the aggressiveness. Note that main() swaps level 0 and 1, |
| // making 1 the default and -l disable. -ll and more is useful to flush out bugs. |
| // These additional levels (beyond -l) may be buggy and are not supported. |
| // 0: disabled |
| // 1: 40-nodes leaf functions, oneliners, lazy typechecking (default) |
| // 2: early typechecking of all imported bodies |
| // 3: allow variadic functions |
| // 4: allow non-leaf functions , (breaks runtime.Caller) |
| // |
| // At some point this may get another default and become switch-offable with -N. |
| // |
| // The debug['m'] flag enables diagnostic output. a single -m is useful for verifying |
| // which calls get inlined or not, more is for debugging, and may go away at any point. |
| // |
| // TODO: |
| // - inline functions with ... args |
| // - handle T.meth(f()) with func f() (t T, arg, arg, ) |
| |
| package gc |
| |
| import ( |
| "cmd/compile/internal/types" |
| "cmd/internal/src" |
| "fmt" |
| ) |
| |
| // Get the function's package. For ordinary functions it's on the ->sym, but for imported methods |
| // the ->sym can be re-used in the local package, so peel it off the receiver's type. |
| func fnpkg(fn *Node) *types.Pkg { |
| if fn.IsMethod() { |
| // method |
| rcvr := fn.Type.Recv().Type |
| |
| if rcvr.IsPtr() { |
| rcvr = rcvr.Elem() |
| } |
| if rcvr.Sym == nil { |
| Fatalf("receiver with no sym: [%v] %L (%v)", fn.Sym, fn, rcvr) |
| } |
| return rcvr.Sym.Pkg |
| } |
| |
| // non-method |
| return fn.Sym.Pkg |
| } |
| |
| // Lazy typechecking of imported bodies. For local functions, caninl will set ->typecheck |
| // because they're a copy of an already checked body. |
| func typecheckinl(fn *Node) { |
| lno := setlineno(fn) |
| |
| // typecheckinl is only for imported functions; |
| // their bodies may refer to unsafe as long as the package |
| // was marked safe during import (which was checked then). |
| // the ->inl of a local function has been typechecked before caninl copied it. |
| pkg := fnpkg(fn) |
| |
| if pkg == localpkg || pkg == nil { |
| return // typecheckinl on local function |
| } |
| |
| if Debug['m'] > 2 || Debug_export != 0 { |
| fmt.Printf("typecheck import [%v] %L { %#v }\n", fn.Sym, fn, fn.Func.Inl) |
| } |
| |
| save_safemode := safemode |
| safemode = false |
| |
| savefn := Curfn |
| Curfn = fn |
| typecheckslice(fn.Func.Inl.Slice(), Etop) |
| Curfn = savefn |
| |
| safemode = save_safemode |
| |
| lineno = lno |
| } |
| |
| // Caninl determines whether fn is inlineable. |
| // If so, caninl saves fn->nbody in fn->inl and substitutes it with a copy. |
| // fn and ->nbody will already have been typechecked. |
| func caninl(fn *Node) { |
| if fn.Op != ODCLFUNC { |
| Fatalf("caninl %v", fn) |
| } |
| if fn.Func.Nname == nil { |
| Fatalf("caninl no nname %+v", fn) |
| } |
| |
| var reason string // reason, if any, that the function was not inlined |
| if Debug['m'] > 1 { |
| defer func() { |
| if reason != "" { |
| fmt.Printf("%v: cannot inline %v: %s\n", fn.Line(), fn.Func.Nname, reason) |
| } |
| }() |
| } |
| |
| // If marked "go:noinline", don't inline |
| if fn.Func.Pragma&Noinline != 0 { |
| reason = "marked go:noinline" |
| return |
| } |
| |
| // If marked "go:cgo_unsafe_args", don't inline |
| if fn.Func.Pragma&CgoUnsafeArgs != 0 { |
| reason = "marked go:cgo_unsafe_args" |
| return |
| } |
| |
| // If fn has no body (is defined outside of Go), cannot inline it. |
| if fn.Nbody.Len() == 0 { |
| reason = "no function body" |
| return |
| } |
| |
| if fn.Typecheck == 0 { |
| Fatalf("caninl on non-typechecked function %v", fn) |
| } |
| |
| // can't handle ... args yet |
| if Debug['l'] < 3 { |
| f := fn.Type.Params().Fields() |
| if len := f.Len(); len > 0 { |
| if t := f.Index(len - 1); t.Isddd() { |
| reason = "has ... args" |
| return |
| } |
| } |
| } |
| |
| // Runtime package must not be instrumented. |
| // Instrument skips runtime package. However, some runtime code can be |
| // inlined into other packages and instrumented there. To avoid this, |
| // we disable inlining of runtime functions when instrumenting. |
| // The example that we observed is inlining of LockOSThread, |
| // which lead to false race reports on m contents. |
| if instrumenting && myimportpath == "runtime" { |
| reason = "instrumenting and is runtime function" |
| return |
| } |
| |
| const maxBudget = 80 |
| budget := int32(maxBudget) // allowed hairyness |
| if ishairylist(fn.Nbody, &budget, &reason) { |
| return |
| } |
| if budget < 0 { |
| reason = "function too complex" |
| return |
| } |
| |
| savefn := Curfn |
| Curfn = fn |
| |
| n := fn.Func.Nname |
| |
| n.Func.Inl.Set(fn.Nbody.Slice()) |
| fn.Nbody.Set(inlcopylist(n.Func.Inl.Slice())) |
| inldcl := inlcopylist(n.Name.Defn.Func.Dcl) |
| n.Func.Inldcl.Set(inldcl) |
| n.Func.InlCost = maxBudget - budget |
| |
| // hack, TODO, check for better way to link method nodes back to the thing with the ->inl |
| // this is so export can find the body of a method |
| fn.Type.FuncType().Nname = asTypesNode(n) |
| |
| if Debug['m'] > 1 { |
| fmt.Printf("%v: can inline %#v as: %#v { %#v }\n", fn.Line(), n, fn.Type, n.Func.Inl) |
| } else if Debug['m'] != 0 { |
| fmt.Printf("%v: can inline %v\n", fn.Line(), n) |
| } |
| |
| Curfn = savefn |
| } |
| |
| // Look for anything we want to punt on. |
| func ishairylist(ll Nodes, budget *int32, reason *string) bool { |
| for _, n := range ll.Slice() { |
| if ishairy(n, budget, reason) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| func ishairy(n *Node, budget *int32, reason *string) bool { |
| if n == nil { |
| return false |
| } |
| |
| switch n.Op { |
| // Call is okay if inlinable and we have the budget for the body. |
| case OCALLFUNC: |
| if isIntrinsicCall(n) { |
| *budget-- |
| break |
| } |
| if fn := n.Left.Func; fn != nil && fn.Inl.Len() != 0 { |
| *budget -= fn.InlCost |
| break |
| } |
| |
| if n.isMethodCalledAsFunction() { |
| if d := asNode(n.Left.Sym.Def); d != nil && d.Func.Inl.Len() != 0 { |
| *budget -= d.Func.InlCost |
| break |
| } |
| } |
| if Debug['l'] < 4 { |
| *reason = "non-leaf function" |
| return true |
| } |
| |
| // Call is okay if inlinable and we have the budget for the body. |
| case OCALLMETH: |
| t := n.Left.Type |
| if t == nil { |
| Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) |
| } |
| if t.Nname() == nil { |
| Fatalf("no function definition for [%p] %+v\n", t, t) |
| } |
| if inlfn := asNode(t.FuncType().Nname).Func; inlfn.Inl.Len() != 0 { |
| *budget -= inlfn.InlCost |
| break |
| } |
| if Debug['l'] < 4 { |
| *reason = "non-leaf method" |
| return true |
| } |
| |
| // Things that are too hairy, irrespective of the budget |
| case OCALL, OCALLINTER, OPANIC, ORECOVER: |
| if Debug['l'] < 4 { |
| *reason = "non-leaf op " + n.Op.String() |
| return true |
| } |
| |
| case OCLOSURE, |
| OCALLPART, |
| ORANGE, |
| OFOR, |
| OFORUNTIL, |
| OSELECT, |
| OTYPESW, |
| OPROC, |
| ODEFER, |
| ODCLTYPE, // can't print yet |
| OBREAK, |
| ORETJMP: |
| *reason = "unhandled op " + n.Op.String() |
| return true |
| } |
| |
| (*budget)-- |
| // TODO(mdempsky/josharian): Hacks to appease toolstash; remove. |
| // See issue 17566 and CL 31674 for discussion. |
| switch n.Op { |
| case OSTRUCTKEY: |
| (*budget)-- |
| case OSLICE, OSLICEARR, OSLICESTR: |
| (*budget)-- |
| case OSLICE3, OSLICE3ARR: |
| *budget -= 2 |
| } |
| |
| if *budget < 0 { |
| *reason = "function too complex" |
| return true |
| } |
| |
| if n.Op == OIF && Isconst(n.Left, CTBOOL) { |
| var taken Nodes // statements for the branch that is always taken |
| if n.Left.Bool() { |
| taken = n.Nbody // then case |
| } else { |
| taken = n.Rlist // else case |
| } |
| return ishairylist(n.Ninit, budget, reason) || ishairylist(taken, budget, reason) |
| } |
| |
| return ishairy(n.Left, budget, reason) || ishairy(n.Right, budget, reason) || |
| ishairylist(n.List, budget, reason) || ishairylist(n.Rlist, budget, reason) || |
| ishairylist(n.Ninit, budget, reason) || ishairylist(n.Nbody, budget, reason) |
| } |
| |
| // Inlcopy and inlcopylist recursively copy the body of a function. |
| // Any name-like node of non-local class is marked for re-export by adding it to |
| // the exportlist. |
| func inlcopylist(ll []*Node) []*Node { |
| s := make([]*Node, 0, len(ll)) |
| for _, n := range ll { |
| s = append(s, inlcopy(n)) |
| } |
| return s |
| } |
| |
| func inlcopy(n *Node) *Node { |
| if n == nil { |
| return nil |
| } |
| |
| switch n.Op { |
| case ONAME, OTYPE, OLITERAL: |
| return n |
| } |
| |
| m := *n |
| if m.Func != nil { |
| m.Func.Inl.Set(nil) |
| } |
| m.Left = inlcopy(n.Left) |
| m.Right = inlcopy(n.Right) |
| m.List.Set(inlcopylist(n.List.Slice())) |
| m.Rlist.Set(inlcopylist(n.Rlist.Slice())) |
| m.Ninit.Set(inlcopylist(n.Ninit.Slice())) |
| m.Nbody.Set(inlcopylist(n.Nbody.Slice())) |
| |
| return &m |
| } |
| |
| // Inlcalls/nodelist/node walks fn's statements and expressions and substitutes any |
| // calls made to inlineable functions. This is the external entry point. |
| func inlcalls(fn *Node) { |
| savefn := Curfn |
| Curfn = fn |
| fn = inlnode(fn) |
| if fn != Curfn { |
| Fatalf("inlnode replaced curfn") |
| } |
| Curfn = savefn |
| } |
| |
| // Turn an OINLCALL into a statement. |
| func inlconv2stmt(n *Node) { |
| n.Op = OBLOCK |
| |
| // n->ninit stays |
| n.List.Set(n.Nbody.Slice()) |
| |
| n.Nbody.Set(nil) |
| n.Rlist.Set(nil) |
| } |
| |
| // Turn an OINLCALL into a single valued expression. |
| // The result of inlconv2expr MUST be assigned back to n, e.g. |
| // n.Left = inlconv2expr(n.Left) |
| func inlconv2expr(n *Node) *Node { |
| r := n.Rlist.First() |
| return addinit(r, append(n.Ninit.Slice(), n.Nbody.Slice()...)) |
| } |
| |
| // Turn the rlist (with the return values) of the OINLCALL in |
| // n into an expression list lumping the ninit and body |
| // containing the inlined statements on the first list element so |
| // order will be preserved Used in return, oas2func and call |
| // statements. |
| func inlconv2list(n *Node) []*Node { |
| if n.Op != OINLCALL || n.Rlist.Len() == 0 { |
| Fatalf("inlconv2list %+v\n", n) |
| } |
| |
| s := n.Rlist.Slice() |
| s[0] = addinit(s[0], append(n.Ninit.Slice(), n.Nbody.Slice()...)) |
| return s |
| } |
| |
| func inlnodelist(l Nodes) { |
| s := l.Slice() |
| for i := range s { |
| s[i] = inlnode(s[i]) |
| } |
| } |
| |
| // inlnode recurses over the tree to find inlineable calls, which will |
| // be turned into OINLCALLs by mkinlcall. When the recursion comes |
| // back up will examine left, right, list, rlist, ninit, ntest, nincr, |
| // nbody and nelse and use one of the 4 inlconv/glue functions above |
| // to turn the OINLCALL into an expression, a statement, or patch it |
| // in to this nodes list or rlist as appropriate. |
| // NOTE it makes no sense to pass the glue functions down the |
| // recursion to the level where the OINLCALL gets created because they |
| // have to edit /this/ n, so you'd have to push that one down as well, |
| // but then you may as well do it here. so this is cleaner and |
| // shorter and less complicated. |
| // The result of inlnode MUST be assigned back to n, e.g. |
| // n.Left = inlnode(n.Left) |
| func inlnode(n *Node) *Node { |
| if n == nil { |
| return n |
| } |
| |
| switch n.Op { |
| // inhibit inlining of their argument |
| case ODEFER, OPROC: |
| switch n.Left.Op { |
| case OCALLFUNC, OCALLMETH: |
| n.Left.SetNoInline(true) |
| } |
| return n |
| |
| // TODO do them here (or earlier), |
| // so escape analysis can avoid more heapmoves. |
| case OCLOSURE: |
| return n |
| } |
| |
| lno := setlineno(n) |
| |
| inlnodelist(n.Ninit) |
| for _, n1 := range n.Ninit.Slice() { |
| if n1.Op == OINLCALL { |
| inlconv2stmt(n1) |
| } |
| } |
| |
| n.Left = inlnode(n.Left) |
| if n.Left != nil && n.Left.Op == OINLCALL { |
| n.Left = inlconv2expr(n.Left) |
| } |
| |
| n.Right = inlnode(n.Right) |
| if n.Right != nil && n.Right.Op == OINLCALL { |
| if n.Op == OFOR || n.Op == OFORUNTIL { |
| inlconv2stmt(n.Right) |
| } else { |
| n.Right = inlconv2expr(n.Right) |
| } |
| } |
| |
| inlnodelist(n.List) |
| switch n.Op { |
| case OBLOCK: |
| for _, n2 := range n.List.Slice() { |
| if n2.Op == OINLCALL { |
| inlconv2stmt(n2) |
| } |
| } |
| |
| case ORETURN, OCALLFUNC, OCALLMETH, OCALLINTER, OAPPEND, OCOMPLEX: |
| // if we just replaced arg in f(arg()) or return arg with an inlined call |
| // and arg returns multiple values, glue as list |
| if n.List.Len() == 1 && n.List.First().Op == OINLCALL && n.List.First().Rlist.Len() > 1 { |
| n.List.Set(inlconv2list(n.List.First())) |
| break |
| } |
| fallthrough |
| |
| default: |
| s := n.List.Slice() |
| for i1, n1 := range s { |
| if n1 != nil && n1.Op == OINLCALL { |
| s[i1] = inlconv2expr(s[i1]) |
| } |
| } |
| } |
| |
| inlnodelist(n.Rlist) |
| if n.Op == OAS2FUNC && n.Rlist.First().Op == OINLCALL { |
| n.Rlist.Set(inlconv2list(n.Rlist.First())) |
| n.Op = OAS2 |
| n.Typecheck = 0 |
| n = typecheck(n, Etop) |
| } else { |
| s := n.Rlist.Slice() |
| for i1, n1 := range s { |
| if n1.Op == OINLCALL { |
| if n.Op == OIF { |
| inlconv2stmt(n1) |
| } else { |
| s[i1] = inlconv2expr(s[i1]) |
| } |
| } |
| } |
| } |
| |
| inlnodelist(n.Nbody) |
| for _, n := range n.Nbody.Slice() { |
| if n.Op == OINLCALL { |
| inlconv2stmt(n) |
| } |
| } |
| |
| // with all the branches out of the way, it is now time to |
| // transmogrify this node itself unless inhibited by the |
| // switch at the top of this function. |
| switch n.Op { |
| case OCALLFUNC, OCALLMETH: |
| if n.NoInline() { |
| return n |
| } |
| } |
| |
| switch n.Op { |
| case OCALLFUNC: |
| if Debug['m'] > 3 { |
| fmt.Printf("%v:call to func %+v\n", n.Line(), n.Left) |
| } |
| if n.Left.Func != nil && n.Left.Func.Inl.Len() != 0 && !isIntrinsicCall(n) { // normal case |
| n = mkinlcall(n, n.Left, n.Isddd()) |
| } else if n.isMethodCalledAsFunction() && asNode(n.Left.Sym.Def) != nil { |
| n = mkinlcall(n, asNode(n.Left.Sym.Def), n.Isddd()) |
| } |
| |
| case OCALLMETH: |
| if Debug['m'] > 3 { |
| fmt.Printf("%v:call to meth %L\n", n.Line(), n.Left.Right) |
| } |
| |
| // typecheck should have resolved ODOTMETH->type, whose nname points to the actual function. |
| if n.Left.Type == nil { |
| Fatalf("no function type for [%p] %+v\n", n.Left, n.Left) |
| } |
| |
| if n.Left.Type.Nname() == nil { |
| Fatalf("no function definition for [%p] %+v\n", n.Left.Type, n.Left.Type) |
| } |
| |
| n = mkinlcall(n, asNode(n.Left.Type.FuncType().Nname), n.Isddd()) |
| } |
| |
| lineno = lno |
| return n |
| } |
| |
| // The result of mkinlcall MUST be assigned back to n, e.g. |
| // n.Left = mkinlcall(n.Left, fn, isddd) |
| func mkinlcall(n *Node, fn *Node, isddd bool) *Node { |
| save_safemode := safemode |
| |
| // imported functions may refer to unsafe as long as the |
| // package was marked safe during import (already checked). |
| pkg := fnpkg(fn) |
| |
| if pkg != localpkg && pkg != nil { |
| safemode = false |
| } |
| n = mkinlcall1(n, fn, isddd) |
| safemode = save_safemode |
| return n |
| } |
| |
| func tinlvar(t *types.Field, inlvars map[*Node]*Node) *Node { |
| if asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) { |
| inlvar := inlvars[asNode(t.Nname)] |
| if inlvar == nil { |
| Fatalf("missing inlvar for %v\n", asNode(t.Nname)) |
| } |
| return inlvar |
| } |
| |
| return typecheck(nblank, Erv|Easgn) |
| } |
| |
| var inlgen int |
| |
| // if *np is a call, and fn is a function with an inlinable body, substitute *np with an OINLCALL. |
| // On return ninit has the parameter assignments, the nbody is the |
| // inlined function body and list, rlist contain the input, output |
| // parameters. |
| // The result of mkinlcall1 MUST be assigned back to n, e.g. |
| // n.Left = mkinlcall1(n.Left, fn, isddd) |
| func mkinlcall1(n *Node, fn *Node, isddd bool) *Node { |
| // For variadic fn. |
| if fn.Func.Inl.Len() == 0 { |
| return n |
| } |
| |
| if fn == Curfn || fn.Name.Defn == Curfn { |
| return n |
| } |
| |
| inlvars := make(map[*Node]*Node) |
| |
| if Debug['l'] < 2 { |
| typecheckinl(fn) |
| } |
| |
| // Bingo, we have a function node, and it has an inlineable body |
| if Debug['m'] > 1 { |
| fmt.Printf("%v: inlining call to %v %#v { %#v }\n", n.Line(), fn.Sym, fn.Type, fn.Func.Inl) |
| } else if Debug['m'] != 0 { |
| fmt.Printf("%v: inlining call to %v\n", n.Line(), fn) |
| } |
| |
| if Debug['m'] > 2 { |
| fmt.Printf("%v: Before inlining: %+v\n", n.Line(), n) |
| } |
| |
| ninit := n.Ninit |
| |
| //dumplist("ninit pre", ninit); |
| |
| var dcl []*Node |
| if fn.Name.Defn != nil { |
| // local function |
| dcl = fn.Func.Inldcl.Slice() |
| } else { |
| // imported function |
| dcl = fn.Func.Dcl |
| } |
| |
| var retvars []*Node |
| i := 0 |
| |
| // Make temp names to use instead of the originals |
| for _, ln := range dcl { |
| if ln.Class == PPARAMOUT { // return values handled below. |
| continue |
| } |
| if ln.isParamStackCopy() { // ignore the on-stack copy of a parameter that moved to the heap |
| continue |
| } |
| if ln.Op == ONAME { |
| inlvars[ln] = typecheck(inlvar(ln), Erv) |
| if ln.Class == PPARAM || ln.Name.Param.Stackcopy != nil && ln.Name.Param.Stackcopy.Class == PPARAM { |
| ninit.Append(nod(ODCL, inlvars[ln], nil)) |
| } |
| } |
| } |
| |
| // temporaries for return values. |
| var m *Node |
| for _, t := range fn.Type.Results().Fields().Slice() { |
| if t != nil && asNode(t.Nname) != nil && !isblank(asNode(t.Nname)) { |
| m = inlvar(asNode(t.Nname)) |
| m = typecheck(m, Erv) |
| inlvars[asNode(t.Nname)] = m |
| } else { |
| // anonymous return values, synthesize names for use in assignment that replaces return |
| m = retvar(t, i) |
| i++ |
| } |
| |
| ninit.Append(nod(ODCL, m, nil)) |
| retvars = append(retvars, m) |
| } |
| |
| // assign receiver. |
| if fn.IsMethod() && n.Left.Op == ODOTMETH { |
| // method call with a receiver. |
| t := fn.Type.Recv() |
| |
| if t != nil && t.Nname != nil && !isblank(asNode(t.Nname)) && inlvars[asNode(t.Nname)] == nil { |
| Fatalf("missing inlvar for %v\n", asNode(t.Nname)) |
| } |
| if n.Left.Left == nil { |
| Fatalf("method call without receiver: %+v", n) |
| } |
| if t == nil { |
| Fatalf("method call unknown receiver type: %+v", n) |
| } |
| as := nod(OAS, tinlvar(t, inlvars), n.Left.Left) |
| if as != nil { |
| as = typecheck(as, Etop) |
| ninit.Append(as) |
| } |
| } |
| |
| // check if inlined function is variadic. |
| variadic := false |
| |
| var varargtype *types.Type |
| varargcount := 0 |
| for _, t := range fn.Type.Params().Fields().Slice() { |
| if t.Isddd() { |
| variadic = true |
| varargtype = t.Type |
| } |
| } |
| |
| // but if argument is dotted too forget about variadicity. |
| if variadic && isddd { |
| variadic = false |
| } |
| |
| // check if argument is actually a returned tuple from call. |
| multiret := 0 |
| |
| if n.List.Len() == 1 { |
| switch n.List.First().Op { |
| case OCALL, OCALLFUNC, OCALLINTER, OCALLMETH: |
| if n.List.First().Left.Type.Results().NumFields() > 1 { |
| multiret = n.List.First().Left.Type.Results().NumFields() - 1 |
| } |
| } |
| } |
| |
| if variadic { |
| varargcount = n.List.Len() + multiret |
| if n.Left.Op != ODOTMETH { |
| varargcount -= fn.Type.Recvs().NumFields() |
| } |
| varargcount -= fn.Type.Params().NumFields() - 1 |
| } |
| |
| // assign arguments to the parameters' temp names |
| as := nod(OAS2, nil, nil) |
| |
| as.Rlist.Set(n.List.Slice()) |
| li := 0 |
| |
| // TODO: if len(nlist) == 1 but multiple args, check that n->list->n is a call? |
| if fn.IsMethod() && n.Left.Op != ODOTMETH { |
| // non-method call to method |
| if n.List.Len() == 0 { |
| Fatalf("non-method call to method without first arg: %+v", n) |
| } |
| |
| // append receiver inlvar to LHS. |
| t := fn.Type.Recv() |
| |
| if t != nil && t.Nname != nil && !isblank(asNode(t.Nname)) && inlvars[asNode(t.Nname)] == nil { |
| Fatalf("missing inlvar for %v\n", asNode(t.Nname)) |
| } |
| if t == nil { |
| Fatalf("method call unknown receiver type: %+v", n) |
| } |
| as.List.Append(tinlvar(t, inlvars)) |
| li++ |
| } |
| |
| // append ordinary arguments to LHS. |
| chkargcount := n.List.Len() > 1 |
| |
| var vararg *Node // the slice argument to a variadic call |
| var varargs []*Node // the list of LHS names to put in vararg. |
| if !chkargcount { |
| // 0 or 1 expression on RHS. |
| var i int |
| for _, t := range fn.Type.Params().Fields().Slice() { |
| if variadic && t.Isddd() { |
| vararg = tinlvar(t, inlvars) |
| for i = 0; i < varargcount && li < n.List.Len(); i++ { |
| m = argvar(varargtype, i) |
| varargs = append(varargs, m) |
| as.List.Append(m) |
| } |
| |
| break |
| } |
| |
| as.List.Append(tinlvar(t, inlvars)) |
| } |
| } else { |
| // match arguments except final variadic (unless the call is dotted itself) |
| t, it := types.IterFields(fn.Type.Params()) |
| for t != nil { |
| if li >= n.List.Len() { |
| break |
| } |
| if variadic && t.Isddd() { |
| break |
| } |
| as.List.Append(tinlvar(t, inlvars)) |
| t = it.Next() |
| li++ |
| } |
| |
| // match varargcount arguments with variadic parameters. |
| if variadic && t != nil && t.Isddd() { |
| vararg = tinlvar(t, inlvars) |
| var i int |
| for i = 0; i < varargcount && li < n.List.Len(); i++ { |
| m = argvar(varargtype, i) |
| varargs = append(varargs, m) |
| as.List.Append(m) |
| li++ |
| } |
| |
| if i == varargcount { |
| t = it.Next() |
| } |
| } |
| |
| if li < n.List.Len() || t != nil { |
| Fatalf("arg count mismatch: %#v vs %.v\n", fn.Type.Params(), n.List) |
| } |
| } |
| |
| if as.Rlist.Len() != 0 { |
| as = typecheck(as, Etop) |
| ninit.Append(as) |
| } |
| |
| // turn the variadic args into a slice. |
| if variadic { |
| as = nod(OAS, vararg, nil) |
| if varargcount == 0 { |
| as.Right = nodnil() |
| as.Right.Type = varargtype |
| } else { |
| varslicetype := types.NewSlice(varargtype.Elem()) |
| as.Right = nod(OCOMPLIT, nil, typenod(varslicetype)) |
| as.Right.List.Set(varargs) |
| } |
| |
| as = typecheck(as, Etop) |
| ninit.Append(as) |
| } |
| |
| // zero the outparams |
| for _, n := range retvars { |
| as = nod(OAS, n, nil) |
| as = typecheck(as, Etop) |
| ninit.Append(as) |
| } |
| |
| retlabel := autolabel(".i") |
| retlabel.Etype = 1 // flag 'safe' for escape analysis (no backjumps) |
| |
| inlgen++ |
| |
| subst := inlsubst{ |
| retlabel: retlabel, |
| retvars: retvars, |
| inlvars: inlvars, |
| } |
| |
| body := subst.list(fn.Func.Inl) |
| |
| lab := nod(OLABEL, retlabel, nil) |
| lab.SetUsed(true) // avoid 'not used' when function doesn't have return |
| body = append(body, lab) |
| |
| typecheckslice(body, Etop) |
| |
| //dumplist("ninit post", ninit); |
| |
| call := nod(OINLCALL, nil, nil) |
| |
| call.Ninit.Set(ninit.Slice()) |
| call.Nbody.Set(body) |
| call.Rlist.Set(retvars) |
| call.Type = n.Type |
| call.Typecheck = 1 |
| |
| // Hide the args from setPos -- the parameters to the inlined |
| // call already have good line numbers that should be preserved. |
| args := as.Rlist |
| as.Rlist.Set(nil) |
| |
| // Rewrite the line information for the inlined AST. |
| parent := -1 |
| callBase := Ctxt.PosTable.Pos(n.Pos).Base() |
| if callBase != nil { |
| parent = callBase.InliningIndex() |
| } |
| newIndex := Ctxt.InlTree.Add(parent, n.Pos, Linksym(fn.Sym)) |
| setpos := &setPos{ |
| bases: make(map[*src.PosBase]*src.PosBase), |
| newInlIndex: newIndex, |
| } |
| setpos.node(call) |
| |
| as.Rlist.Set(args.Slice()) |
| |
| //dumplist("call body", body); |
| |
| n = call |
| |
| // transitive inlining |
| // might be nice to do this before exporting the body, |
| // but can't emit the body with inlining expanded. |
| // instead we emit the things that the body needs |
| // and each use must redo the inlining. |
| // luckily these are small. |
| body = fn.Func.Inl.Slice() |
| fn.Func.Inl.Set(nil) // prevent infinite recursion (shouldn't happen anyway) |
| inlnodelist(call.Nbody) |
| for _, n := range call.Nbody.Slice() { |
| if n.Op == OINLCALL { |
| inlconv2stmt(n) |
| } |
| } |
| fn.Func.Inl.Set(body) |
| |
| if Debug['m'] > 2 { |
| fmt.Printf("%v: After inlining %+v\n\n", n.Line(), n) |
| } |
| |
| return n |
| } |
| |
| // Every time we expand a function we generate a new set of tmpnames, |
| // PAUTO's in the calling functions, and link them off of the |
| // PPARAM's, PAUTOS and PPARAMOUTs of the called function. |
| func inlvar(var_ *Node) *Node { |
| if Debug['m'] > 3 { |
| fmt.Printf("inlvar %+v\n", var_) |
| } |
| |
| n := newname(var_.Sym) |
| n.Type = var_.Type |
| n.Class = PAUTO |
| n.SetUsed(true) |
| n.Name.Curfn = Curfn // the calling function, not the called one |
| n.SetAddrtaken(var_.Addrtaken()) |
| |
| Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) |
| return n |
| } |
| |
| // Synthesize a variable to store the inlined function's results in. |
| func retvar(t *types.Field, i int) *Node { |
| n := newname(lookupN("~r", i)) |
| n.Type = t.Type |
| n.Class = PAUTO |
| n.SetUsed(true) |
| n.Name.Curfn = Curfn // the calling function, not the called one |
| Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) |
| return n |
| } |
| |
| // Synthesize a variable to store the inlined function's arguments |
| // when they come from a multiple return call. |
| func argvar(t *types.Type, i int) *Node { |
| n := newname(lookupN("~arg", i)) |
| n.Type = t.Elem() |
| n.Class = PAUTO |
| n.SetUsed(true) |
| n.Name.Curfn = Curfn // the calling function, not the called one |
| Curfn.Func.Dcl = append(Curfn.Func.Dcl, n) |
| return n |
| } |
| |
| // The inlsubst type implements the actual inlining of a single |
| // function call. |
| type inlsubst struct { |
| // Target of the goto substituted in place of a return. |
| retlabel *Node |
| |
| // Temporary result variables. |
| retvars []*Node |
| |
| inlvars map[*Node]*Node |
| } |
| |
| // list inlines a list of nodes. |
| func (subst *inlsubst) list(ll Nodes) []*Node { |
| s := make([]*Node, 0, ll.Len()) |
| for _, n := range ll.Slice() { |
| s = append(s, subst.node(n)) |
| } |
| return s |
| } |
| |
| // node recursively copies a node from the saved pristine body of the |
| // inlined function, substituting references to input/output |
| // parameters with ones to the tmpnames, and substituting returns with |
| // assignments to the output. |
| func (subst *inlsubst) node(n *Node) *Node { |
| if n == nil { |
| return nil |
| } |
| |
| switch n.Op { |
| case ONAME: |
| if inlvar := subst.inlvars[n]; inlvar != nil { // These will be set during inlnode |
| if Debug['m'] > 2 { |
| fmt.Printf("substituting name %+v -> %+v\n", n, inlvar) |
| } |
| return inlvar |
| } |
| |
| if Debug['m'] > 2 { |
| fmt.Printf("not substituting name %+v\n", n) |
| } |
| return n |
| |
| case OLITERAL, OTYPE: |
| // If n is a named constant or type, we can continue |
| // using it in the inline copy. Otherwise, make a copy |
| // so we can update the line number. |
| if n.Sym != nil { |
| return n |
| } |
| |
| // Since we don't handle bodies with closures, this return is guaranteed to belong to the current inlined function. |
| |
| // dump("Return before substitution", n); |
| case ORETURN: |
| m := nod(OGOTO, subst.retlabel, nil) |
| |
| m.Ninit.Set(subst.list(n.Ninit)) |
| |
| if len(subst.retvars) != 0 && n.List.Len() != 0 { |
| as := nod(OAS2, nil, nil) |
| |
| // Make a shallow copy of retvars. |
| // Otherwise OINLCALL.Rlist will be the same list, |
| // and later walk and typecheck may clobber it. |
| for _, n := range subst.retvars { |
| as.List.Append(n) |
| } |
| as.Rlist.Set(subst.list(n.List)) |
| as = typecheck(as, Etop) |
| m.Ninit.Append(as) |
| } |
| |
| typecheckslice(m.Ninit.Slice(), Etop) |
| m = typecheck(m, Etop) |
| |
| // dump("Return after substitution", m); |
| return m |
| |
| case OGOTO, OLABEL: |
| m := nod(OXXX, nil, nil) |
| *m = *n |
| m.Ninit.Set(nil) |
| p := fmt.Sprintf("%s·%d", n.Left.Sym.Name, inlgen) |
| m.Left = newname(lookup(p)) |
| |
| return m |
| } |
| |
| m := nod(OXXX, nil, nil) |
| *m = *n |
| m.Ninit.Set(nil) |
| |
| if n.Op == OCLOSURE { |
| Fatalf("cannot inline function containing closure: %+v", n) |
| } |
| |
| m.Left = subst.node(n.Left) |
| m.Right = subst.node(n.Right) |
| m.List.Set(subst.list(n.List)) |
| m.Rlist.Set(subst.list(n.Rlist)) |
| m.Ninit.Set(append(m.Ninit.Slice(), subst.list(n.Ninit)...)) |
| m.Nbody.Set(subst.list(n.Nbody)) |
| |
| return m |
| } |
| |
| // setPos is a visitor to update position info with a new inlining index. |
| type setPos struct { |
| bases map[*src.PosBase]*src.PosBase |
| newInlIndex int |
| } |
| |
| func (s *setPos) nodelist(ll Nodes) { |
| for _, n := range ll.Slice() { |
| s.node(n) |
| } |
| } |
| |
| func (s *setPos) node(n *Node) { |
| if n == nil { |
| return |
| } |
| if n.Op == OLITERAL || n.Op == OTYPE { |
| if n.Sym != nil { |
| // This node is not a copy, so don't clobber position. |
| return |
| } |
| } |
| |
| // don't clobber names, unless they're freshly synthesized |
| if n.Op != ONAME || !n.Pos.IsKnown() { |
| n.Pos = s.updatedPos(n) |
| } |
| |
| s.node(n.Left) |
| s.node(n.Right) |
| s.nodelist(n.List) |
| s.nodelist(n.Rlist) |
| s.nodelist(n.Ninit) |
| s.nodelist(n.Nbody) |
| } |
| |
| func (s *setPos) updatedPos(n *Node) src.XPos { |
| pos := Ctxt.PosTable.Pos(n.Pos) |
| oldbase := pos.Base() // can be nil |
| newbase := s.bases[oldbase] |
| if newbase == nil { |
| newbase = src.NewInliningBase(oldbase, s.newInlIndex) |
| pos.SetBase(newbase) |
| s.bases[oldbase] = newbase |
| } |
| pos.SetBase(newbase) |
| return Ctxt.PosTable.XPos(pos) |
| } |
| |
| func (n *Node) isMethodCalledAsFunction() bool { |
| return n.Left.Op == ONAME && n.Left.Left != nil && n.Left.Left.Op == OTYPE && n.Left.Right != nil && n.Left.Right.Op == ONAME |
| } |