blob: 9bf6ecbc64674db9be83f2d362ce6dd48bea8810 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "type.h"
#include "defs_GOOS_GOARCH.h"
#include "os_GOOS.h"
#include "../../cmd/ld/textflag.h"
#pragma dynimport runtime·AddVectoredExceptionHandler AddVectoredExceptionHandler "kernel32.dll"
#pragma dynimport runtime·CloseHandle CloseHandle "kernel32.dll"
#pragma dynimport runtime·CreateEvent CreateEventA "kernel32.dll"
#pragma dynimport runtime·CreateThread CreateThread "kernel32.dll"
#pragma dynimport runtime·CreateWaitableTimer CreateWaitableTimerA "kernel32.dll"
#pragma dynimport runtime·CryptAcquireContextW CryptAcquireContextW "advapi32.dll"
#pragma dynimport runtime·CryptGenRandom CryptGenRandom "advapi32.dll"
#pragma dynimport runtime·CryptReleaseContext CryptReleaseContext "advapi32.dll"
#pragma dynimport runtime·DuplicateHandle DuplicateHandle "kernel32.dll"
#pragma dynimport runtime·ExitProcess ExitProcess "kernel32.dll"
#pragma dynimport runtime·FreeEnvironmentStringsW FreeEnvironmentStringsW "kernel32.dll"
#pragma dynimport runtime·GetEnvironmentStringsW GetEnvironmentStringsW "kernel32.dll"
#pragma dynimport runtime·GetProcAddress GetProcAddress "kernel32.dll"
#pragma dynimport runtime·GetStdHandle GetStdHandle "kernel32.dll"
#pragma dynimport runtime·GetSystemInfo GetSystemInfo "kernel32.dll"
#pragma dynimport runtime·GetThreadContext GetThreadContext "kernel32.dll"
#pragma dynimport runtime·LoadLibrary LoadLibraryW "kernel32.dll"
#pragma dynimport runtime·LoadLibraryA LoadLibraryA "kernel32.dll"
#pragma dynimport runtime·NtWaitForSingleObject NtWaitForSingleObject "ntdll.dll"
#pragma dynimport runtime·ResumeThread ResumeThread "kernel32.dll"
#pragma dynimport runtime·SetConsoleCtrlHandler SetConsoleCtrlHandler "kernel32.dll"
#pragma dynimport runtime·SetEvent SetEvent "kernel32.dll"
#pragma dynimport runtime·SetProcessPriorityBoost SetProcessPriorityBoost "kernel32.dll"
#pragma dynimport runtime·SetThreadPriority SetThreadPriority "kernel32.dll"
#pragma dynimport runtime·SetWaitableTimer SetWaitableTimer "kernel32.dll"
#pragma dynimport runtime·Sleep Sleep "kernel32.dll"
#pragma dynimport runtime·SuspendThread SuspendThread "kernel32.dll"
#pragma dynimport runtime·WaitForSingleObject WaitForSingleObject "kernel32.dll"
#pragma dynimport runtime·WriteFile WriteFile "kernel32.dll"
#pragma dynimport runtime·timeBeginPeriod timeBeginPeriod "winmm.dll"
extern void *runtime·AddVectoredExceptionHandler;
extern void *runtime·CloseHandle;
extern void *runtime·CreateEvent;
extern void *runtime·CreateThread;
extern void *runtime·CreateWaitableTimer;
extern void *runtime·CryptAcquireContextW;
extern void *runtime·CryptGenRandom;
extern void *runtime·CryptReleaseContext;
extern void *runtime·DuplicateHandle;
extern void *runtime·ExitProcess;
extern void *runtime·FreeEnvironmentStringsW;
extern void *runtime·GetEnvironmentStringsW;
extern void *runtime·GetProcAddress;
extern void *runtime·GetStdHandle;
extern void *runtime·GetSystemInfo;
extern void *runtime·GetThreadContext;
extern void *runtime·LoadLibrary;
extern void *runtime·LoadLibraryA;
extern void *runtime·NtWaitForSingleObject;
extern void *runtime·ResumeThread;
extern void *runtime·SetConsoleCtrlHandler;
extern void *runtime·SetEvent;
extern void *runtime·SetProcessPriorityBoost;
extern void *runtime·SetThreadPriority;
extern void *runtime·SetWaitableTimer;
extern void *runtime·Sleep;
extern void *runtime·SuspendThread;
extern void *runtime·WaitForSingleObject;
extern void *runtime·WriteFile;
extern void *runtime·timeBeginPeriod;
void *runtime·GetQueuedCompletionStatusEx;
extern uintptr runtime·externalthreadhandlerp;
void runtime·externalthreadhandler(void);
void runtime·sigtramp(void);
static int32
getproccount(void)
{
SystemInfo info;
runtime·stdcall1(runtime·GetSystemInfo, (uintptr)&info);
return info.dwNumberOfProcessors;
}
void
runtime·osinit(void)
{
void *kernel32;
runtime·externalthreadhandlerp = (uintptr)runtime·externalthreadhandler;
runtime·stdcall2(runtime·AddVectoredExceptionHandler, 1, (uintptr)runtime·sigtramp);
runtime·stdcall2(runtime·SetConsoleCtrlHandler, (uintptr)runtime·ctrlhandler, 1);
runtime·stdcall1(runtime·timeBeginPeriod, 1);
runtime·ncpu = getproccount();
// Windows dynamic priority boosting assumes that a process has different types
// of dedicated threads -- GUI, IO, computational, etc. Go processes use
// equivalent threads that all do a mix of GUI, IO, computations, etc.
// In such context dynamic priority boosting does nothing but harm, so we turn it off.
runtime·stdcall2(runtime·SetProcessPriorityBoost, -1, 1);
kernel32 = runtime·stdcall1(runtime·LoadLibraryA, (uintptr)"kernel32.dll");
if(kernel32 != nil) {
runtime·GetQueuedCompletionStatusEx = runtime·stdcall2(runtime·GetProcAddress, (uintptr)kernel32, (uintptr)"GetQueuedCompletionStatusEx");
}
}
#pragma textflag NOSPLIT
void
runtime·get_random_data(byte **rnd, int32 *rnd_len)
{
uintptr handle;
*rnd = nil;
*rnd_len = 0;
if(runtime·stdcall5(runtime·CryptAcquireContextW, (uintptr)&handle, (uintptr)nil, (uintptr)nil,
1 /* PROV_RSA_FULL */,
0xf0000000U /* CRYPT_VERIFYCONTEXT */) != 0) {
static byte random_data[HashRandomBytes];
if(runtime·stdcall3(runtime·CryptGenRandom, handle, HashRandomBytes, (uintptr)&random_data[0])) {
*rnd = random_data;
*rnd_len = HashRandomBytes;
}
runtime·stdcall2(runtime·CryptReleaseContext, handle, 0);
}
}
void
runtime·goenvs(void)
{
extern Slice syscall·envs;
uint16 *env;
String *s;
int32 i, n;
uint16 *p;
env = runtime·stdcall0(runtime·GetEnvironmentStringsW);
n = 0;
for(p=env; *p; n++)
p += runtime·findnullw(p)+1;
s = runtime·mallocgc(n*sizeof s[0], nil, 0);
p = env;
for(i=0; i<n; i++) {
s[i] = runtime·gostringw(p);
p += runtime·findnullw(p)+1;
}
syscall·envs.array = (byte*)s;
syscall·envs.len = n;
syscall·envs.cap = n;
runtime·stdcall1(runtime·FreeEnvironmentStringsW, (uintptr)env);
}
void
runtime·exit(int32 code)
{
runtime·stdcall1(runtime·ExitProcess, code);
}
int32
runtime·write(uintptr fd, void *buf, int32 n)
{
void *handle;
uint32 written;
written = 0;
switch(fd) {
case 1:
handle = runtime·stdcall1(runtime·GetStdHandle, -11);
break;
case 2:
handle = runtime·stdcall1(runtime·GetStdHandle, -12);
break;
default:
// assume fd is real windows handle.
handle = (void*)fd;
break;
}
runtime·stdcall5(runtime·WriteFile, (uintptr)handle, (uintptr)buf, n, (uintptr)&written, 0);
return written;
}
#define INFINITE ((uintptr)0xFFFFFFFF)
#pragma textflag NOSPLIT
int32
runtime·semasleep(int64 ns)
{
// store ms in ns to save stack space
if(ns < 0)
ns = INFINITE;
else {
ns = runtime·timediv(ns, 1000000, nil);
if(ns == 0)
ns = 1;
}
if(runtime·stdcall2(runtime·WaitForSingleObject, (uintptr)g->m->waitsema, ns) != 0)
return -1; // timeout
return 0;
}
void
runtime·semawakeup(M *mp)
{
runtime·stdcall1(runtime·SetEvent, mp->waitsema);
}
uintptr
runtime·semacreate(void)
{
return (uintptr)runtime·stdcall4(runtime·CreateEvent, 0, 0, 0, 0);
}
#define STACK_SIZE_PARAM_IS_A_RESERVATION ((uintptr)0x00010000)
void
runtime·newosproc(M *mp, void *stk)
{
void *thandle;
USED(stk);
thandle = runtime·stdcall6(runtime·CreateThread,
(uintptr)nil, 0x20000, (uintptr)runtime·tstart_stdcall, (uintptr)mp,
STACK_SIZE_PARAM_IS_A_RESERVATION, (uintptr)nil);
if(thandle == nil) {
runtime·printf("runtime: failed to create new OS thread (have %d already; errno=%d)\n", runtime·mcount(), runtime·getlasterror());
runtime·throw("runtime.newosproc");
}
}
// Called to initialize a new m (including the bootstrap m).
// Called on the parent thread (main thread in case of bootstrap), can allocate memory.
void
runtime·mpreinit(M *mp)
{
USED(mp);
}
// Called to initialize a new m (including the bootstrap m).
// Called on the new thread, can not allocate memory.
void
runtime·minit(void)
{
void *thandle;
// -1 = current process, -2 = current thread
runtime·stdcall7(runtime·DuplicateHandle, -1, -2, -1, (uintptr)&thandle, 0, 0, DUPLICATE_SAME_ACCESS);
runtime·atomicstorep(&g->m->thread, thandle);
}
// Called from dropm to undo the effect of an minit.
void
runtime·unminit(void)
{
}
// Described in http://www.dcl.hpi.uni-potsdam.de/research/WRK/2007/08/getting-os-information-the-kuser_shared_data-structure/
typedef struct KSYSTEM_TIME {
uint32 LowPart;
int32 High1Time;
int32 High2Time;
} KSYSTEM_TIME;
const KSYSTEM_TIME* INTERRUPT_TIME = (KSYSTEM_TIME*)0x7ffe0008;
const KSYSTEM_TIME* SYSTEM_TIME = (KSYSTEM_TIME*)0x7ffe0014;
#pragma textflag NOSPLIT
int64
runtime·systime(KSYSTEM_TIME *timeaddr)
{
KSYSTEM_TIME t;
int32 i;
for(i = 1; i < 10000; i++) {
// these fields must be read in that order (see URL above)
t.High1Time = timeaddr->High1Time;
t.LowPart = timeaddr->LowPart;
t.High2Time = timeaddr->High2Time;
if(t.High1Time == t.High2Time)
return (int64)t.High1Time<<32 | t.LowPart;
if((i%100) == 0)
runtime·osyield();
}
runtime·throw("interrupt/system time is changing too fast");
return 0;
}
#pragma textflag NOSPLIT
int64
runtime·nanotime(void)
{
return runtime·systime(INTERRUPT_TIME) * 100LL;
}
void
time·now(int64 sec, int32 usec)
{
int64 ns;
// SystemTime is 100s of nanoseconds since January 1, 1601.
// Convert to nanoseconds since January 1, 1970.
ns = (runtime·systime(SYSTEM_TIME) - 116444736000000000LL) * 100LL;
sec = ns / 1000000000LL;
usec = ns - sec * 1000000000LL;
FLUSH(&sec);
FLUSH(&usec);
}
// Calling stdcall on os stack.
#pragma textflag NOSPLIT
static void*
stdcall(void *fn)
{
g->m->libcall.fn = fn;
if(g->m->profilehz != 0) {
// leave pc/sp for cpu profiler
g->m->libcallg = g;
g->m->libcallpc = (uintptr)runtime·getcallerpc(&fn);
// sp must be the last, because once async cpu profiler finds
// all three values to be non-zero, it will use them
g->m->libcallsp = (uintptr)runtime·getcallersp(&fn);
}
runtime·asmcgocall(runtime·asmstdcall, &g->m->libcall);
g->m->libcallsp = 0;
return (void*)g->m->libcall.r1;
}
#pragma textflag NOSPLIT
void*
runtime·stdcall0(void *fn)
{
g->m->libcall.n = 0;
g->m->libcall.args = &fn; // it's unused but must be non-nil, otherwise crashes
return stdcall(fn);
}
#pragma textflag NOSPLIT
void*
runtime·stdcall1(void *fn, uintptr a0)
{
USED(a0);
g->m->libcall.n = 1;
g->m->libcall.args = &a0;
return stdcall(fn);
}
#pragma textflag NOSPLIT
void*
runtime·stdcall2(void *fn, uintptr a0, uintptr a1)
{
USED(a0, a1);
g->m->libcall.n = 2;
g->m->libcall.args = &a0;
return stdcall(fn);
}
#pragma textflag NOSPLIT
void*
runtime·stdcall3(void *fn, uintptr a0, uintptr a1, uintptr a2)
{
USED(a0, a1, a2);
g->m->libcall.n = 3;
g->m->libcall.args = &a0;
return stdcall(fn);
}
#pragma textflag NOSPLIT
void*
runtime·stdcall4(void *fn, uintptr a0, uintptr a1, uintptr a2, uintptr a3)
{
USED(a0, a1, a2, a3);
g->m->libcall.n = 4;
g->m->libcall.args = &a0;
return stdcall(fn);
}
#pragma textflag NOSPLIT
void*
runtime·stdcall5(void *fn, uintptr a0, uintptr a1, uintptr a2, uintptr a3, uintptr a4)
{
USED(a0, a1, a2, a3, a4);
g->m->libcall.n = 5;
g->m->libcall.args = &a0;
return stdcall(fn);
}
#pragma textflag NOSPLIT
void*
runtime·stdcall6(void *fn, uintptr a0, uintptr a1, uintptr a2, uintptr a3, uintptr a4, uintptr a5)
{
USED(a0, a1, a2, a3, a4, a5);
g->m->libcall.n = 6;
g->m->libcall.args = &a0;
return stdcall(fn);
}
#pragma textflag NOSPLIT
void*
runtime·stdcall7(void *fn, uintptr a0, uintptr a1, uintptr a2, uintptr a3, uintptr a4, uintptr a5, uintptr a6)
{
USED(a0, a1, a2, a3, a4, a5, a6);
g->m->libcall.n = 7;
g->m->libcall.args = &a0;
return stdcall(fn);
}
extern void runtime·usleep1(uint32);
#pragma textflag NOSPLIT
void
runtime·osyield(void)
{
runtime·usleep1(1);
}
#pragma textflag NOSPLIT
void
runtime·usleep(uint32 us)
{
// Have 1us units; want 100ns units.
runtime·usleep1(10*us);
}
uint32
runtime·issigpanic(uint32 code)
{
switch(code) {
case EXCEPTION_ACCESS_VIOLATION:
case EXCEPTION_INT_DIVIDE_BY_ZERO:
case EXCEPTION_INT_OVERFLOW:
case EXCEPTION_FLT_DENORMAL_OPERAND:
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
case EXCEPTION_FLT_INEXACT_RESULT:
case EXCEPTION_FLT_OVERFLOW:
case EXCEPTION_FLT_UNDERFLOW:
return 1;
}
return 0;
}
void
runtime·sigpanic(void)
{
if(!runtime·canpanic(g))
runtime·throw("unexpected signal during runtime execution");
switch(g->sig) {
case EXCEPTION_ACCESS_VIOLATION:
if(g->sigcode1 < 0x1000 || g->paniconfault) {
if(g->sigpc == 0)
runtime·panicstring("call of nil func value");
runtime·panicstring("invalid memory address or nil pointer dereference");
}
runtime·printf("unexpected fault address %p\n", g->sigcode1);
runtime·throw("fault");
case EXCEPTION_INT_DIVIDE_BY_ZERO:
runtime·panicstring("integer divide by zero");
case EXCEPTION_INT_OVERFLOW:
runtime·panicstring("integer overflow");
case EXCEPTION_FLT_DENORMAL_OPERAND:
case EXCEPTION_FLT_DIVIDE_BY_ZERO:
case EXCEPTION_FLT_INEXACT_RESULT:
case EXCEPTION_FLT_OVERFLOW:
case EXCEPTION_FLT_UNDERFLOW:
runtime·panicstring("floating point error");
}
runtime·throw("fault");
}
void
runtime·initsig(void)
{
// following line keeps sigtramp alive at link stage
// if there's a better way please write it here
void *p = runtime·sigtramp;
USED(p);
}
uint32
runtime·ctrlhandler1(uint32 type)
{
int32 s;
switch(type) {
case CTRL_C_EVENT:
case CTRL_BREAK_EVENT:
s = SIGINT;
break;
default:
return 0;
}
if(runtime·sigsend(s))
return 1;
runtime·exit(2); // SIGINT, SIGTERM, etc
return 0;
}
extern void runtime·dosigprof(Context *r, G *gp, M *mp);
extern void runtime·profileloop(void);
static void *profiletimer;
static void
profilem(M *mp)
{
extern M runtime·m0;
extern uint32 runtime·tls0[];
byte rbuf[sizeof(Context)+15];
Context *r;
void *tls;
G *gp;
tls = mp->tls;
if(mp == &runtime·m0)
tls = runtime·tls0;
gp = *(G**)tls;
// align Context to 16 bytes
r = (Context*)((uintptr)(&rbuf[15]) & ~15);
r->ContextFlags = CONTEXT_CONTROL;
runtime·stdcall2(runtime·GetThreadContext, (uintptr)mp->thread, (uintptr)r);
runtime·dosigprof(r, gp, mp);
}
void
runtime·profileloop1(void)
{
M *mp, *allm;
void *thread;
runtime·stdcall2(runtime·SetThreadPriority, -2, THREAD_PRIORITY_HIGHEST);
for(;;) {
runtime·stdcall2(runtime·WaitForSingleObject, (uintptr)profiletimer, -1);
allm = runtime·atomicloadp(&runtime·allm);
for(mp = allm; mp != nil; mp = mp->alllink) {
thread = runtime·atomicloadp(&mp->thread);
// Do not profile threads blocked on Notes,
// this includes idle worker threads,
// idle timer thread, idle heap scavenger, etc.
if(thread == nil || mp->profilehz == 0 || mp->blocked)
continue;
runtime·stdcall1(runtime·SuspendThread, (uintptr)thread);
if(mp->profilehz != 0 && !mp->blocked)
profilem(mp);
runtime·stdcall1(runtime·ResumeThread, (uintptr)thread);
}
}
}
void
runtime·resetcpuprofiler(int32 hz)
{
static Mutex lock;
void *timer, *thread;
int32 ms;
int64 due;
runtime·lock(&lock);
if(profiletimer == nil) {
timer = runtime·stdcall3(runtime·CreateWaitableTimer, (uintptr)nil, (uintptr)nil, (uintptr)nil);
runtime·atomicstorep(&profiletimer, timer);
thread = runtime·stdcall6(runtime·CreateThread,
(uintptr)nil, (uintptr)nil, (uintptr)runtime·profileloop, (uintptr)nil, (uintptr)nil, (uintptr)nil);
runtime·stdcall2(runtime·SetThreadPriority, (uintptr)thread, THREAD_PRIORITY_HIGHEST);
runtime·stdcall1(runtime·CloseHandle, (uintptr)thread);
}
runtime·unlock(&lock);
ms = 0;
due = 1LL<<63;
if(hz > 0) {
ms = 1000 / hz;
if(ms == 0)
ms = 1;
due = ms * -10000;
}
runtime·stdcall6(runtime·SetWaitableTimer,
(uintptr)profiletimer, (uintptr)&due, ms, (uintptr)nil, (uintptr)nil, (uintptr)nil);
runtime·atomicstore((uint32*)&g->m->profilehz, hz);
}
uintptr
runtime·memlimit(void)
{
return 0;
}
#pragma dataflag NOPTR
int8 runtime·badsignalmsg[] = "runtime: signal received on thread not created by Go.\n";
int32 runtime·badsignallen = sizeof runtime·badsignalmsg - 1;
void
runtime·crash(void)
{
// TODO: This routine should do whatever is needed
// to make the Windows program abort/crash as it
// would if Go was not intercepting signals.
// On Unix the routine would remove the custom signal
// handler and then raise a signal (like SIGABRT).
// Something like that should happen here.
// It's okay to leave this empty for now: if crash returns
// the ordinary exit-after-panic happens.
}