blob: a92a41c5cebca054e3ac58e3f782aa8425390166 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package gc
import (
"bufio"
"bytes"
"cmd/compile/internal/types"
"cmd/internal/bio"
"fmt"
"unicode"
"unicode/utf8"
)
var (
Debug_export int // if set, print debugging information about export data
)
func exportf(format string, args ...interface{}) {
fmt.Fprintf(bout, format, args...)
if Debug_export != 0 {
fmt.Printf(format, args...)
}
}
var asmlist []*Node
// Mark n's symbol as exported
func exportsym(n *Node) {
if n == nil || n.Sym == nil {
return
}
if n.Sym.Export() || n.Sym.Package() {
if n.Sym.Package() {
Fatalf("export/package mismatch: %v", n.Sym)
}
return
}
n.Sym.SetExport(true)
if Debug['E'] != 0 {
fmt.Printf("export symbol %v\n", n.Sym)
}
// Ensure original types are on exportlist before type aliases.
if IsAlias(n.Sym) {
exportlist = append(exportlist, asNode(n.Sym.Def))
}
exportlist = append(exportlist, n)
}
func exportname(s string) bool {
if r := s[0]; r < utf8.RuneSelf {
return 'A' <= r && r <= 'Z'
}
r, _ := utf8.DecodeRuneInString(s)
return unicode.IsUpper(r)
}
func initname(s string) bool {
return s == "init"
}
// exportedsym reports whether a symbol will be visible
// to files that import our package.
func exportedsym(sym *types.Sym) bool {
// Builtins are visible everywhere.
if sym.Pkg == builtinpkg || sym.Origpkg == builtinpkg {
return true
}
return sym.Pkg == localpkg && exportname(sym.Name)
}
func autoexport(n *Node, ctxt Class) {
if n == nil || n.Sym == nil {
return
}
if (ctxt != PEXTERN && ctxt != PFUNC) || dclcontext != PEXTERN {
return
}
if n.Type != nil && n.Type.IsKind(TFUNC) && n.Type.Recv() != nil { // method
return
}
if exportname(n.Sym.Name) || initname(n.Sym.Name) {
exportsym(n)
}
if asmhdr != "" && n.Sym.Pkg == localpkg && !n.Sym.Asm() {
n.Sym.SetAsm(true)
asmlist = append(asmlist, n)
}
}
// Look for anything we need for the inline body
func reexportdeplist(ll Nodes) {
for _, n := range ll.Slice() {
reexportdep(n)
}
}
func reexportdep(n *Node) {
if n == nil {
return
}
//print("reexportdep %+hN\n", n);
switch n.Op {
case ONAME:
switch n.Class() {
// methods will be printed along with their type
// nodes for T.Method expressions
case PFUNC:
if n.Left != nil && n.Left.Op == OTYPE {
break
}
// nodes for method calls.
if n.Type == nil || n.IsMethod() {
break
}
fallthrough
case PEXTERN:
if n.Sym != nil && !exportedsym(n.Sym) {
if Debug['E'] != 0 {
fmt.Printf("reexport name %v\n", n.Sym)
}
exportlist = append(exportlist, n)
}
}
// Local variables in the bodies need their type.
case ODCL:
t := n.Left.Type
if t != types.Types[t.Etype] && t != types.Idealbool && t != types.Idealstring {
if t.IsPtr() {
t = t.Elem()
}
if t != nil && t.Sym != nil && t.Sym.Def != nil && !exportedsym(t.Sym) {
if Debug['E'] != 0 {
fmt.Printf("reexport type %v from declaration\n", t.Sym)
}
exportlist = append(exportlist, asNode(t.Sym.Def))
}
}
case OLITERAL:
t := n.Type
if t != types.Types[n.Type.Etype] && t != types.Idealbool && t != types.Idealstring {
if t.IsPtr() {
t = t.Elem()
}
if t != nil && t.Sym != nil && t.Sym.Def != nil && !exportedsym(t.Sym) {
if Debug['E'] != 0 {
fmt.Printf("reexport literal type %v\n", t.Sym)
}
exportlist = append(exportlist, asNode(t.Sym.Def))
}
}
fallthrough
case OTYPE:
if n.Sym != nil && n.Sym.Def != nil && !exportedsym(n.Sym) {
if Debug['E'] != 0 {
fmt.Printf("reexport literal/type %v\n", n.Sym)
}
exportlist = append(exportlist, n)
}
// for operations that need a type when rendered, put the type on the export list.
case OCONV,
OCONVIFACE,
OCONVNOP,
ORUNESTR,
OARRAYBYTESTR,
OARRAYRUNESTR,
OSTRARRAYBYTE,
OSTRARRAYRUNE,
ODOTTYPE,
ODOTTYPE2,
OSTRUCTLIT,
OARRAYLIT,
OSLICELIT,
OPTRLIT,
OMAKEMAP,
OMAKESLICE,
OMAKECHAN:
t := n.Type
switch t.Etype {
case TARRAY, TCHAN, TPTR32, TPTR64, TSLICE:
if t.Sym == nil {
t = t.Elem()
}
}
if t != nil && t.Sym != nil && t.Sym.Def != nil && !exportedsym(t.Sym) {
if Debug['E'] != 0 {
fmt.Printf("reexport type for expression %v\n", t.Sym)
}
exportlist = append(exportlist, asNode(t.Sym.Def))
}
}
reexportdep(n.Left)
reexportdep(n.Right)
reexportdeplist(n.List)
reexportdeplist(n.Rlist)
reexportdeplist(n.Ninit)
reexportdeplist(n.Nbody)
}
// methodbyname sorts types by symbol name.
type methodbyname []*types.Field
func (x methodbyname) Len() int { return len(x) }
func (x methodbyname) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
func (x methodbyname) Less(i, j int) bool { return x[i].Sym.Name < x[j].Sym.Name }
func dumpexport() {
if buildid != "" {
exportf("build id %q\n", buildid)
}
size := 0 // size of export section without enclosing markers
// The linker also looks for the $$ marker - use char after $$ to distinguish format.
exportf("\n$$B\n") // indicate binary export format
if debugFormat {
// save a copy of the export data
var copy bytes.Buffer
bcopy := bufio.NewWriter(&copy)
size = export(bcopy, Debug_export != 0)
bcopy.Flush() // flushing to bytes.Buffer cannot fail
if n, err := bout.Write(copy.Bytes()); n != size || err != nil {
Fatalf("error writing export data: got %d bytes, want %d bytes, err = %v", n, size, err)
}
// export data must contain no '$' so that we can find the end by searching for "$$"
// TODO(gri) is this still needed?
if bytes.IndexByte(copy.Bytes(), '$') >= 0 {
Fatalf("export data contains $")
}
// verify that we can read the copied export data back in
// (use empty package map to avoid collisions)
types.CleanroomDo(func() {
Import(types.NewPkg("", ""), bufio.NewReader(&copy)) // must not die
})
} else {
size = export(bout.Writer, Debug_export != 0)
}
exportf("\n$$\n")
if Debug_export != 0 {
fmt.Printf("export data size = %d bytes\n", size)
}
}
// importsym declares symbol s as an imported object representable by op.
// pkg is the package being imported
func importsym(pkg *types.Pkg, s *types.Sym, op Op) {
if asNode(s.Def) != nil && asNode(s.Def).Op != op {
pkgstr := fmt.Sprintf("during import %q", pkg.Path)
redeclare(s, pkgstr)
}
// mark the symbol so it is not reexported
if asNode(s.Def) == nil {
if exportname(s.Name) || initname(s.Name) {
s.SetExport(true)
} else {
s.SetPackage(true) // package scope
}
}
}
// pkgtype returns the named type declared by symbol s.
// If no such type has been declared yet, a forward declaration is returned.
// pkg is the package being imported
func pkgtype(pkg *types.Pkg, s *types.Sym) *types.Type {
importsym(pkg, s, OTYPE)
if asNode(s.Def) == nil || asNode(s.Def).Op != OTYPE {
t := types.New(TFORW)
t.Sym = s
s.Def = asTypesNode(typenod(t))
asNode(s.Def).Name = new(Name)
}
if asNode(s.Def).Type == nil {
Fatalf("pkgtype %v", s)
}
return asNode(s.Def).Type
}
// importconst declares symbol s as an imported constant with type t and value n.
// pkg is the package being imported
func importconst(pkg *types.Pkg, s *types.Sym, t *types.Type, n *Node) {
importsym(pkg, s, OLITERAL)
n = convlit(n, t)
if asNode(s.Def) != nil { // TODO: check if already the same.
return
}
if n.Op != OLITERAL {
yyerror("expression must be a constant")
return
}
if n.Sym != nil {
n1 := *n
n = &n1
}
n.Orig = newname(s)
n.Sym = s
declare(n, PEXTERN)
if Debug['E'] != 0 {
fmt.Printf("import const %v\n", s)
}
}
// importvar declares symbol s as an imported variable with type t.
// pkg is the package being imported
func importvar(pkg *types.Pkg, s *types.Sym, t *types.Type) {
importsym(pkg, s, ONAME)
if asNode(s.Def) != nil && asNode(s.Def).Op == ONAME {
if eqtype(t, asNode(s.Def).Type) {
return
}
yyerror("inconsistent definition for var %v during import\n\t%v (in %q)\n\t%v (in %q)", s, asNode(s.Def).Type, s.Importdef.Path, t, pkg.Path)
}
n := newname(s)
s.Importdef = pkg
n.Type = t
declare(n, PEXTERN)
if Debug['E'] != 0 {
fmt.Printf("import var %v %L\n", s, t)
}
}
// importalias declares symbol s as an imported type alias with type t.
// pkg is the package being imported
func importalias(pkg *types.Pkg, s *types.Sym, t *types.Type) {
importsym(pkg, s, OTYPE)
if asNode(s.Def) != nil && asNode(s.Def).Op == OTYPE {
if eqtype(t, asNode(s.Def).Type) {
return
}
yyerror("inconsistent definition for type alias %v during import\n\t%v (in %q)\n\t%v (in %q)", s, asNode(s.Def).Type, s.Importdef.Path, t, pkg.Path)
}
n := newname(s)
n.Op = OTYPE
s.Importdef = pkg
n.Type = t
declare(n, PEXTERN)
if Debug['E'] != 0 {
fmt.Printf("import type %v = %L\n", s, t)
}
}
func dumpasmhdr() {
b, err := bio.Create(asmhdr)
if err != nil {
Fatalf("%v", err)
}
fmt.Fprintf(b, "// generated by compile -asmhdr from package %s\n\n", localpkg.Name)
for _, n := range asmlist {
if n.Sym.IsBlank() {
continue
}
switch n.Op {
case OLITERAL:
fmt.Fprintf(b, "#define const_%s %#v\n", n.Sym.Name, n.Val())
case OTYPE:
t := n.Type
if !t.IsStruct() || t.StructType().Map != nil || t.IsFuncArgStruct() {
break
}
fmt.Fprintf(b, "#define %s__size %d\n", t.Sym.Name, int(t.Width))
for _, t := range t.Fields().Slice() {
if !t.Sym.IsBlank() {
fmt.Fprintf(b, "#define %s_%s %d\n", n.Sym.Name, t.Sym.Name, int(t.Offset))
}
}
}
}
b.Close()
}