| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package flate |
| |
| import "math" |
| |
| // This encoding algorithm, which prioritizes speed over output size, is |
| // based on Snappy's LZ77-style encoder: github.com/golang/snappy |
| |
| const ( |
| tableBits = 14 // Bits used in the table. |
| tableSize = 1 << tableBits // Size of the table. |
| tableMask = tableSize - 1 // Mask for table indices. Redundant, but can eliminate bounds checks. |
| tableShift = 32 - tableBits // Right-shift to get the tableBits most significant bits of a uint32. |
| |
| // Reset the buffer offset when reaching this. |
| // Offsets are stored between blocks as int32 values. |
| // Since the offset we are checking against is at the beginning |
| // of the buffer, we need to subtract the current and input |
| // buffer to not risk overflowing the int32. |
| bufferReset = math.MaxInt32 - maxStoreBlockSize*2 |
| ) |
| |
| func load32(b []byte, i int32) uint32 { |
| b = b[i : i+4 : len(b)] // Help the compiler eliminate bounds checks on the next line. |
| return uint32(b[0]) | uint32(b[1])<<8 | uint32(b[2])<<16 | uint32(b[3])<<24 |
| } |
| |
| func load64(b []byte, i int32) uint64 { |
| b = b[i : i+8 : len(b)] // Help the compiler eliminate bounds checks on the next line. |
| return uint64(b[0]) | uint64(b[1])<<8 | uint64(b[2])<<16 | uint64(b[3])<<24 | |
| uint64(b[4])<<32 | uint64(b[5])<<40 | uint64(b[6])<<48 | uint64(b[7])<<56 |
| } |
| |
| func hash(u uint32) uint32 { |
| return (u * 0x1e35a7bd) >> tableShift |
| } |
| |
| // These constants are defined by the Snappy implementation so that its |
| // assembly implementation can fast-path some 16-bytes-at-a-time copies. They |
| // aren't necessary in the pure Go implementation, as we don't use those same |
| // optimizations, but using the same thresholds doesn't really hurt. |
| const ( |
| inputMargin = 16 - 1 |
| minNonLiteralBlockSize = 1 + 1 + inputMargin |
| ) |
| |
| type tableEntry struct { |
| val uint32 // Value at destination |
| offset int32 |
| } |
| |
| // deflateFast maintains the table for matches, |
| // and the previous byte block for cross block matching. |
| type deflateFast struct { |
| table [tableSize]tableEntry |
| prev []byte // Previous block, zero length if unknown. |
| cur int32 // Current match offset. |
| } |
| |
| func newDeflateFast() *deflateFast { |
| return &deflateFast{cur: maxStoreBlockSize, prev: make([]byte, 0, maxStoreBlockSize)} |
| } |
| |
| // encode encodes a block given in src and appends tokens |
| // to dst and returns the result. |
| func (e *deflateFast) encode(dst []token, src []byte) []token { |
| // Ensure that e.cur doesn't wrap. |
| if e.cur >= bufferReset { |
| e.shiftOffsets() |
| } |
| |
| // This check isn't in the Snappy implementation, but there, the caller |
| // instead of the callee handles this case. |
| if len(src) < minNonLiteralBlockSize { |
| e.cur += maxStoreBlockSize |
| e.prev = e.prev[:0] |
| return emitLiteral(dst, src) |
| } |
| |
| // sLimit is when to stop looking for offset/length copies. The inputMargin |
| // lets us use a fast path for emitLiteral in the main loop, while we are |
| // looking for copies. |
| sLimit := int32(len(src) - inputMargin) |
| |
| // nextEmit is where in src the next emitLiteral should start from. |
| nextEmit := int32(0) |
| s := int32(0) |
| cv := load32(src, s) |
| nextHash := hash(cv) |
| |
| for { |
| // Copied from the C++ snappy implementation: |
| // |
| // Heuristic match skipping: If 32 bytes are scanned with no matches |
| // found, start looking only at every other byte. If 32 more bytes are |
| // scanned (or skipped), look at every third byte, etc.. When a match |
| // is found, immediately go back to looking at every byte. This is a |
| // small loss (~5% performance, ~0.1% density) for compressible data |
| // due to more bookkeeping, but for non-compressible data (such as |
| // JPEG) it's a huge win since the compressor quickly "realizes" the |
| // data is incompressible and doesn't bother looking for matches |
| // everywhere. |
| // |
| // The "skip" variable keeps track of how many bytes there are since |
| // the last match; dividing it by 32 (ie. right-shifting by five) gives |
| // the number of bytes to move ahead for each iteration. |
| skip := int32(32) |
| |
| nextS := s |
| var candidate tableEntry |
| for { |
| s = nextS |
| bytesBetweenHashLookups := skip >> 5 |
| nextS = s + bytesBetweenHashLookups |
| skip += bytesBetweenHashLookups |
| if nextS > sLimit { |
| goto emitRemainder |
| } |
| candidate = e.table[nextHash&tableMask] |
| now := load32(src, nextS) |
| e.table[nextHash&tableMask] = tableEntry{offset: s + e.cur, val: cv} |
| nextHash = hash(now) |
| |
| offset := s - (candidate.offset - e.cur) |
| if offset > maxMatchOffset || cv != candidate.val { |
| // Out of range or not matched. |
| cv = now |
| continue |
| } |
| break |
| } |
| |
| // A 4-byte match has been found. We'll later see if more than 4 bytes |
| // match. But, prior to the match, src[nextEmit:s] are unmatched. Emit |
| // them as literal bytes. |
| dst = emitLiteral(dst, src[nextEmit:s]) |
| |
| // Call emitCopy, and then see if another emitCopy could be our next |
| // move. Repeat until we find no match for the input immediately after |
| // what was consumed by the last emitCopy call. |
| // |
| // If we exit this loop normally then we need to call emitLiteral next, |
| // though we don't yet know how big the literal will be. We handle that |
| // by proceeding to the next iteration of the main loop. We also can |
| // exit this loop via goto if we get close to exhausting the input. |
| for { |
| // Invariant: we have a 4-byte match at s, and no need to emit any |
| // literal bytes prior to s. |
| |
| // Extend the 4-byte match as long as possible. |
| // |
| s += 4 |
| t := candidate.offset - e.cur + 4 |
| l := e.matchLen(s, t, src) |
| |
| // matchToken is flate's equivalent of Snappy's emitCopy. (length,offset) |
| dst = append(dst, matchToken(uint32(l+4-baseMatchLength), uint32(s-t-baseMatchOffset))) |
| s += l |
| nextEmit = s |
| if s >= sLimit { |
| goto emitRemainder |
| } |
| |
| // We could immediately start working at s now, but to improve |
| // compression we first update the hash table at s-1 and at s. If |
| // another emitCopy is not our next move, also calculate nextHash |
| // at s+1. At least on GOARCH=amd64, these three hash calculations |
| // are faster as one load64 call (with some shifts) instead of |
| // three load32 calls. |
| x := load64(src, s-1) |
| prevHash := hash(uint32(x)) |
| e.table[prevHash&tableMask] = tableEntry{offset: e.cur + s - 1, val: uint32(x)} |
| x >>= 8 |
| currHash := hash(uint32(x)) |
| candidate = e.table[currHash&tableMask] |
| e.table[currHash&tableMask] = tableEntry{offset: e.cur + s, val: uint32(x)} |
| |
| offset := s - (candidate.offset - e.cur) |
| if offset > maxMatchOffset || uint32(x) != candidate.val { |
| cv = uint32(x >> 8) |
| nextHash = hash(cv) |
| s++ |
| break |
| } |
| } |
| } |
| |
| emitRemainder: |
| if int(nextEmit) < len(src) { |
| dst = emitLiteral(dst, src[nextEmit:]) |
| } |
| e.cur += int32(len(src)) |
| e.prev = e.prev[:len(src)] |
| copy(e.prev, src) |
| return dst |
| } |
| |
| func emitLiteral(dst []token, lit []byte) []token { |
| for _, v := range lit { |
| dst = append(dst, literalToken(uint32(v))) |
| } |
| return dst |
| } |
| |
| // matchLen returns the match length between src[s:] and src[t:]. |
| // t can be negative to indicate the match is starting in e.prev. |
| // We assume that src[s-4:s] and src[t-4:t] already match. |
| func (e *deflateFast) matchLen(s, t int32, src []byte) int32 { |
| s1 := int(s) + maxMatchLength - 4 |
| if s1 > len(src) { |
| s1 = len(src) |
| } |
| |
| // If we are inside the current block |
| if t >= 0 { |
| b := src[t:] |
| a := src[s:s1] |
| b = b[:len(a)] |
| // Extend the match to be as long as possible. |
| for i := range a { |
| if a[i] != b[i] { |
| return int32(i) |
| } |
| } |
| return int32(len(a)) |
| } |
| |
| // We found a match in the previous block. |
| tp := int32(len(e.prev)) + t |
| if tp < 0 { |
| return 0 |
| } |
| |
| // Extend the match to be as long as possible. |
| a := src[s:s1] |
| b := e.prev[tp:] |
| if len(b) > len(a) { |
| b = b[:len(a)] |
| } |
| a = a[:len(b)] |
| for i := range b { |
| if a[i] != b[i] { |
| return int32(i) |
| } |
| } |
| |
| // If we reached our limit, we matched everything we are |
| // allowed to in the previous block and we return. |
| n := int32(len(b)) |
| if int(s+n) == s1 { |
| return n |
| } |
| |
| // Continue looking for more matches in the current block. |
| a = src[s+n : s1] |
| b = src[:len(a)] |
| for i := range a { |
| if a[i] != b[i] { |
| return int32(i) + n |
| } |
| } |
| return int32(len(a)) + n |
| } |
| |
| // Reset resets the encoding history. |
| // This ensures that no matches are made to the previous block. |
| func (e *deflateFast) reset() { |
| e.prev = e.prev[:0] |
| // Bump the offset, so all matches will fail distance check. |
| // Nothing should be >= e.cur in the table. |
| e.cur += maxMatchOffset |
| |
| // Protect against e.cur wraparound. |
| if e.cur >= bufferReset { |
| e.shiftOffsets() |
| } |
| } |
| |
| // shiftOffsets will shift down all match offset. |
| // This is only called in rare situations to prevent integer overflow. |
| // |
| // See https://golang.org/issue/18636 and https://github.com/golang/go/issues/34121. |
| func (e *deflateFast) shiftOffsets() { |
| if len(e.prev) == 0 { |
| // We have no history; just clear the table. |
| for i := range e.table[:] { |
| e.table[i] = tableEntry{} |
| } |
| e.cur = maxMatchOffset + 1 |
| return |
| } |
| |
| // Shift down everything in the table that isn't already too far away. |
| for i := range e.table[:] { |
| v := e.table[i].offset - e.cur + maxMatchOffset + 1 |
| if v < 0 { |
| // We want to reset e.cur to maxMatchOffset + 1, so we need to shift |
| // all table entries down by (e.cur - (maxMatchOffset + 1)). |
| // Because we ignore matches > maxMatchOffset, we can cap |
| // any negative offsets at 0. |
| v = 0 |
| } |
| e.table[i].offset = v |
| } |
| e.cur = maxMatchOffset + 1 |
| } |