| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Garbage collector: type and heap bitmaps. |
| // |
| // Stack, data, and bss bitmaps |
| // |
| // Stack frames and global variables in the data and bss sections are |
| // described by bitmaps with 1 bit per pointer-sized word. A "1" bit |
| // means the word is a live pointer to be visited by the GC (referred to |
| // as "pointer"). A "0" bit means the word should be ignored by GC |
| // (referred to as "scalar", though it could be a dead pointer value). |
| // |
| // Heap bitmaps |
| // |
| // The heap bitmap comprises 1 bit for each pointer-sized word in the heap, |
| // recording whether a pointer is stored in that word or not. This bitmap |
| // is stored at the end of a span for small objects and is unrolled at |
| // runtime from type metadata for all larger objects. Objects without |
| // pointers have neither a bitmap nor associated type metadata. |
| // |
| // Bits in all cases correspond to words in little-endian order. |
| // |
| // For small objects, if s is the mspan for the span starting at "start", |
| // then s.heapBits() returns a slice containing the bitmap for the whole span. |
| // That is, s.heapBits()[0] holds the goarch.PtrSize*8 bits for the first |
| // goarch.PtrSize*8 words from "start" through "start+63*ptrSize" in the span. |
| // On a related note, small objects are always small enough that their bitmap |
| // fits in goarch.PtrSize*8 bits, so writing out bitmap data takes two bitmap |
| // writes at most (because object boundaries don't generally lie on |
| // s.heapBits()[i] boundaries). |
| // |
| // For larger objects, if t is the type for the object starting at "start", |
| // within some span whose mspan is s, then the bitmap at t.GCData is "tiled" |
| // from "start" through "start+s.elemsize". |
| // Specifically, the first bit of t.GCData corresponds to the word at "start", |
| // the second to the word after "start", and so on up to t.PtrBytes. At t.PtrBytes, |
| // we skip to "start+t.Size_" and begin again from there. This process is |
| // repeated until we hit "start+s.elemsize". |
| // This tiling algorithm supports array data, since the type always refers to |
| // the element type of the array. Single objects are considered the same as |
| // single-element arrays. |
| // The tiling algorithm may scan data past the end of the compiler-recognized |
| // object, but any unused data within the allocation slot (i.e. within s.elemsize) |
| // is zeroed, so the GC just observes nil pointers. |
| // Note that this "tiled" bitmap isn't stored anywhere; it is generated on-the-fly. |
| // |
| // For objects without their own span, the type metadata is stored in the first |
| // word before the object at the beginning of the allocation slot. For objects |
| // with their own span, the type metadata is stored in the mspan. |
| // |
| // The bitmap for small unallocated objects in scannable spans is not maintained |
| // (can be junk). |
| |
| package runtime |
| |
| import ( |
| "internal/abi" |
| "internal/goarch" |
| "internal/runtime/atomic" |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| const ( |
| // A malloc header is functionally a single type pointer, but |
| // we need to use 8 here to ensure 8-byte alignment of allocations |
| // on 32-bit platforms. It's wasteful, but a lot of code relies on |
| // 8-byte alignment for 8-byte atomics. |
| mallocHeaderSize = 8 |
| |
| // The minimum object size that has a malloc header, exclusive. |
| // |
| // The size of this value controls overheads from the malloc header. |
| // The minimum size is bound by writeHeapBitsSmall, which assumes that the |
| // pointer bitmap for objects of a size smaller than this doesn't cross |
| // more than one pointer-word boundary. This sets an upper-bound on this |
| // value at the number of bits in a uintptr, multiplied by the pointer |
| // size in bytes. |
| // |
| // We choose a value here that has a natural cutover point in terms of memory |
| // overheads. This value just happens to be the maximum possible value this |
| // can be. |
| // |
| // A span with heap bits in it will have 128 bytes of heap bits on 64-bit |
| // platforms, and 256 bytes of heap bits on 32-bit platforms. The first size |
| // class where malloc headers match this overhead for 64-bit platforms is |
| // 512 bytes (8 KiB / 512 bytes * 8 bytes-per-header = 128 bytes of overhead). |
| // On 32-bit platforms, this same point is the 256 byte size class |
| // (8 KiB / 256 bytes * 8 bytes-per-header = 256 bytes of overhead). |
| // |
| // Guaranteed to be exactly at a size class boundary. The reason this value is |
| // an exclusive minimum is subtle. Suppose we're allocating a 504-byte object |
| // and its rounded up to 512 bytes for the size class. If minSizeForMallocHeader |
| // is 512 and an inclusive minimum, then a comparison against minSizeForMallocHeader |
| // by the two values would produce different results. In other words, the comparison |
| // would not be invariant to size-class rounding. Eschewing this property means a |
| // more complex check or possibly storing additional state to determine whether a |
| // span has malloc headers. |
| minSizeForMallocHeader = goarch.PtrSize * ptrBits |
| ) |
| |
| // heapBitsInSpan returns true if the size of an object implies its ptr/scalar |
| // data is stored at the end of the span, and is accessible via span.heapBits. |
| // |
| // Note: this works for both rounded-up sizes (span.elemsize) and unrounded |
| // type sizes because minSizeForMallocHeader is guaranteed to be at a size |
| // class boundary. |
| // |
| //go:nosplit |
| func heapBitsInSpan(userSize uintptr) bool { |
| // N.B. minSizeForMallocHeader is an exclusive minimum so that this function is |
| // invariant under size-class rounding on its input. |
| return userSize <= minSizeForMallocHeader |
| } |
| |
| // typePointers is an iterator over the pointers in a heap object. |
| // |
| // Iteration through this type implements the tiling algorithm described at the |
| // top of this file. |
| type typePointers struct { |
| // elem is the address of the current array element of type typ being iterated over. |
| // Objects that are not arrays are treated as single-element arrays, in which case |
| // this value does not change. |
| elem uintptr |
| |
| // addr is the address the iterator is currently working from and describes |
| // the address of the first word referenced by mask. |
| addr uintptr |
| |
| // mask is a bitmask where each bit corresponds to pointer-words after addr. |
| // Bit 0 is the pointer-word at addr, Bit 1 is the next word, and so on. |
| // If a bit is 1, then there is a pointer at that word. |
| // nextFast and next mask out bits in this mask as their pointers are processed. |
| mask uintptr |
| |
| // typ is a pointer to the type information for the heap object's type. |
| // This may be nil if the object is in a span where heapBitsInSpan(span.elemsize) is true. |
| typ *_type |
| } |
| |
| // typePointersOf returns an iterator over all heap pointers in the range [addr, addr+size). |
| // |
| // addr and addr+size must be in the range [span.base(), span.limit). |
| // |
| // Note: addr+size must be passed as the limit argument to the iterator's next method on |
| // each iteration. This slightly awkward API is to allow typePointers to be destructured |
| // by the compiler. |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nosplit |
| func (span *mspan) typePointersOf(addr, size uintptr) typePointers { |
| base := span.objBase(addr) |
| tp := span.typePointersOfUnchecked(base) |
| if base == addr && size == span.elemsize { |
| return tp |
| } |
| return tp.fastForward(addr-tp.addr, addr+size) |
| } |
| |
| // typePointersOfUnchecked is like typePointersOf, but assumes addr is the base |
| // of an allocation slot in a span (the start of the object if no header, the |
| // header otherwise). It returns an iterator that generates all pointers |
| // in the range [addr, addr+span.elemsize). |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nosplit |
| func (span *mspan) typePointersOfUnchecked(addr uintptr) typePointers { |
| const doubleCheck = false |
| if doubleCheck && span.objBase(addr) != addr { |
| print("runtime: addr=", addr, " base=", span.objBase(addr), "\n") |
| throw("typePointersOfUnchecked consisting of non-base-address for object") |
| } |
| |
| spc := span.spanclass |
| if spc.noscan() { |
| return typePointers{} |
| } |
| if heapBitsInSpan(span.elemsize) { |
| // Handle header-less objects. |
| return typePointers{elem: addr, addr: addr, mask: span.heapBitsSmallForAddr(addr)} |
| } |
| |
| // All of these objects have a header. |
| var typ *_type |
| if spc.sizeclass() != 0 { |
| // Pull the allocation header from the first word of the object. |
| typ = *(**_type)(unsafe.Pointer(addr)) |
| addr += mallocHeaderSize |
| } else { |
| typ = span.largeType |
| if typ == nil { |
| // Allow a nil type here for delayed zeroing. See mallocgc. |
| return typePointers{} |
| } |
| } |
| gcdata := typ.GCData |
| return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ} |
| } |
| |
| // typePointersOfType is like typePointersOf, but assumes addr points to one or more |
| // contiguous instances of the provided type. The provided type must not be nil and |
| // it must not have its type metadata encoded as a gcprog. |
| // |
| // It returns an iterator that tiles typ.GCData starting from addr. It's the caller's |
| // responsibility to limit iteration. |
| // |
| // nosplit because its callers are nosplit and require all their callees to be nosplit. |
| // |
| //go:nosplit |
| func (span *mspan) typePointersOfType(typ *abi.Type, addr uintptr) typePointers { |
| const doubleCheck = false |
| if doubleCheck && (typ == nil || typ.Kind_&abi.KindGCProg != 0) { |
| throw("bad type passed to typePointersOfType") |
| } |
| if span.spanclass.noscan() { |
| return typePointers{} |
| } |
| // Since we have the type, pretend we have a header. |
| gcdata := typ.GCData |
| return typePointers{elem: addr, addr: addr, mask: readUintptr(gcdata), typ: typ} |
| } |
| |
| // nextFast is the fast path of next. nextFast is written to be inlineable and, |
| // as the name implies, fast. |
| // |
| // Callers that are performance-critical should iterate using the following |
| // pattern: |
| // |
| // for { |
| // var addr uintptr |
| // if tp, addr = tp.nextFast(); addr == 0 { |
| // if tp, addr = tp.next(limit); addr == 0 { |
| // break |
| // } |
| // } |
| // // Use addr. |
| // ... |
| // } |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nosplit |
| func (tp typePointers) nextFast() (typePointers, uintptr) { |
| // TESTQ/JEQ |
| if tp.mask == 0 { |
| return tp, 0 |
| } |
| // BSFQ |
| var i int |
| if goarch.PtrSize == 8 { |
| i = sys.TrailingZeros64(uint64(tp.mask)) |
| } else { |
| i = sys.TrailingZeros32(uint32(tp.mask)) |
| } |
| // BTCQ |
| tp.mask ^= uintptr(1) << (i & (ptrBits - 1)) |
| // LEAQ (XX)(XX*8) |
| return tp, tp.addr + uintptr(i)*goarch.PtrSize |
| } |
| |
| // next advances the pointers iterator, returning the updated iterator and |
| // the address of the next pointer. |
| // |
| // limit must be the same each time it is passed to next. |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nosplit |
| func (tp typePointers) next(limit uintptr) (typePointers, uintptr) { |
| for { |
| if tp.mask != 0 { |
| return tp.nextFast() |
| } |
| |
| // Stop if we don't actually have type information. |
| if tp.typ == nil { |
| return typePointers{}, 0 |
| } |
| |
| // Advance to the next element if necessary. |
| if tp.addr+goarch.PtrSize*ptrBits >= tp.elem+tp.typ.PtrBytes { |
| tp.elem += tp.typ.Size_ |
| tp.addr = tp.elem |
| } else { |
| tp.addr += ptrBits * goarch.PtrSize |
| } |
| |
| // Check if we've exceeded the limit with the last update. |
| if tp.addr >= limit { |
| return typePointers{}, 0 |
| } |
| |
| // Grab more bits and try again. |
| tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8)) |
| if tp.addr+goarch.PtrSize*ptrBits > limit { |
| bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize |
| tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits) |
| } |
| } |
| } |
| |
| // fastForward moves the iterator forward by n bytes. n must be a multiple |
| // of goarch.PtrSize. limit must be the same limit passed to next for this |
| // iterator. |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nosplit |
| func (tp typePointers) fastForward(n, limit uintptr) typePointers { |
| // Basic bounds check. |
| target := tp.addr + n |
| if target >= limit { |
| return typePointers{} |
| } |
| if tp.typ == nil { |
| // Handle small objects. |
| // Clear any bits before the target address. |
| tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1 |
| // Clear any bits past the limit. |
| if tp.addr+goarch.PtrSize*ptrBits > limit { |
| bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize |
| tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits) |
| } |
| return tp |
| } |
| |
| // Move up elem and addr. |
| // Offsets within an element are always at a ptrBits*goarch.PtrSize boundary. |
| if n >= tp.typ.Size_ { |
| // elem needs to be moved to the element containing |
| // tp.addr + n. |
| oldelem := tp.elem |
| tp.elem += (tp.addr - tp.elem + n) / tp.typ.Size_ * tp.typ.Size_ |
| tp.addr = tp.elem + alignDown(n-(tp.elem-oldelem), ptrBits*goarch.PtrSize) |
| } else { |
| tp.addr += alignDown(n, ptrBits*goarch.PtrSize) |
| } |
| |
| if tp.addr-tp.elem >= tp.typ.PtrBytes { |
| // We're starting in the non-pointer area of an array. |
| // Move up to the next element. |
| tp.elem += tp.typ.Size_ |
| tp.addr = tp.elem |
| tp.mask = readUintptr(tp.typ.GCData) |
| |
| // We may have exceeded the limit after this. Bail just like next does. |
| if tp.addr >= limit { |
| return typePointers{} |
| } |
| } else { |
| // Grab the mask, but then clear any bits before the target address and any |
| // bits over the limit. |
| tp.mask = readUintptr(addb(tp.typ.GCData, (tp.addr-tp.elem)/goarch.PtrSize/8)) |
| tp.mask &^= (1 << ((target - tp.addr) / goarch.PtrSize)) - 1 |
| } |
| if tp.addr+goarch.PtrSize*ptrBits > limit { |
| bits := (tp.addr + goarch.PtrSize*ptrBits - limit) / goarch.PtrSize |
| tp.mask &^= ((1 << (bits)) - 1) << (ptrBits - bits) |
| } |
| return tp |
| } |
| |
| // objBase returns the base pointer for the object containing addr in span. |
| // |
| // Assumes that addr points into a valid part of span (span.base() <= addr < span.limit). |
| // |
| //go:nosplit |
| func (span *mspan) objBase(addr uintptr) uintptr { |
| return span.base() + span.objIndex(addr)*span.elemsize |
| } |
| |
| // bulkBarrierPreWrite executes a write barrier |
| // for every pointer slot in the memory range [src, src+size), |
| // using pointer/scalar information from [dst, dst+size). |
| // This executes the write barriers necessary before a memmove. |
| // src, dst, and size must be pointer-aligned. |
| // The range [dst, dst+size) must lie within a single object. |
| // It does not perform the actual writes. |
| // |
| // As a special case, src == 0 indicates that this is being used for a |
| // memclr. bulkBarrierPreWrite will pass 0 for the src of each write |
| // barrier. |
| // |
| // Callers should call bulkBarrierPreWrite immediately before |
| // calling memmove(dst, src, size). This function is marked nosplit |
| // to avoid being preempted; the GC must not stop the goroutine |
| // between the memmove and the execution of the barriers. |
| // The caller is also responsible for cgo pointer checks if this |
| // may be writing Go pointers into non-Go memory. |
| // |
| // Pointer data is not maintained for allocations containing |
| // no pointers at all; any caller of bulkBarrierPreWrite must first |
| // make sure the underlying allocation contains pointers, usually |
| // by checking typ.PtrBytes. |
| // |
| // The typ argument is the type of the space at src and dst (and the |
| // element type if src and dst refer to arrays) and it is optional. |
| // If typ is nil, the barrier will still behave as expected and typ |
| // is used purely as an optimization. However, it must be used with |
| // care. |
| // |
| // If typ is not nil, then src and dst must point to one or more values |
| // of type typ. The caller must ensure that the ranges [src, src+size) |
| // and [dst, dst+size) refer to one or more whole values of type src and |
| // dst (leaving off the pointerless tail of the space is OK). If this |
| // precondition is not followed, this function will fail to scan the |
| // right pointers. |
| // |
| // When in doubt, pass nil for typ. That is safe and will always work. |
| // |
| // Callers must perform cgo checks if goexperiment.CgoCheck2. |
| // |
| //go:nosplit |
| func bulkBarrierPreWrite(dst, src, size uintptr, typ *abi.Type) { |
| if (dst|src|size)&(goarch.PtrSize-1) != 0 { |
| throw("bulkBarrierPreWrite: unaligned arguments") |
| } |
| if !writeBarrier.enabled { |
| return |
| } |
| s := spanOf(dst) |
| if s == nil { |
| // If dst is a global, use the data or BSS bitmaps to |
| // execute write barriers. |
| for _, datap := range activeModules() { |
| if datap.data <= dst && dst < datap.edata { |
| bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) |
| return |
| } |
| } |
| for _, datap := range activeModules() { |
| if datap.bss <= dst && dst < datap.ebss { |
| bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) |
| return |
| } |
| } |
| return |
| } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst { |
| // dst was heap memory at some point, but isn't now. |
| // It can't be a global. It must be either our stack, |
| // or in the case of direct channel sends, it could be |
| // another stack. Either way, no need for barriers. |
| // This will also catch if dst is in a freed span, |
| // though that should never have. |
| return |
| } |
| buf := &getg().m.p.ptr().wbBuf |
| |
| // Double-check that the bitmaps generated in the two possible paths match. |
| const doubleCheck = false |
| if doubleCheck { |
| doubleCheckTypePointersOfType(s, typ, dst, size) |
| } |
| |
| var tp typePointers |
| if typ != nil && typ.Kind_&abi.KindGCProg == 0 { |
| tp = s.typePointersOfType(typ, dst) |
| } else { |
| tp = s.typePointersOf(dst, size) |
| } |
| if src == 0 { |
| for { |
| var addr uintptr |
| if tp, addr = tp.next(dst + size); addr == 0 { |
| break |
| } |
| dstx := (*uintptr)(unsafe.Pointer(addr)) |
| p := buf.get1() |
| p[0] = *dstx |
| } |
| } else { |
| for { |
| var addr uintptr |
| if tp, addr = tp.next(dst + size); addr == 0 { |
| break |
| } |
| dstx := (*uintptr)(unsafe.Pointer(addr)) |
| srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst))) |
| p := buf.get2() |
| p[0] = *dstx |
| p[1] = *srcx |
| } |
| } |
| } |
| |
| // bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but |
| // does not execute write barriers for [dst, dst+size). |
| // |
| // In addition to the requirements of bulkBarrierPreWrite |
| // callers need to ensure [dst, dst+size) is zeroed. |
| // |
| // This is used for special cases where e.g. dst was just |
| // created and zeroed with malloc. |
| // |
| // The type of the space can be provided purely as an optimization. |
| // See bulkBarrierPreWrite's comment for more details -- use this |
| // optimization with great care. |
| // |
| //go:nosplit |
| func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr, typ *abi.Type) { |
| if (dst|src|size)&(goarch.PtrSize-1) != 0 { |
| throw("bulkBarrierPreWrite: unaligned arguments") |
| } |
| if !writeBarrier.enabled { |
| return |
| } |
| buf := &getg().m.p.ptr().wbBuf |
| s := spanOf(dst) |
| |
| // Double-check that the bitmaps generated in the two possible paths match. |
| const doubleCheck = false |
| if doubleCheck { |
| doubleCheckTypePointersOfType(s, typ, dst, size) |
| } |
| |
| var tp typePointers |
| if typ != nil && typ.Kind_&abi.KindGCProg == 0 { |
| tp = s.typePointersOfType(typ, dst) |
| } else { |
| tp = s.typePointersOf(dst, size) |
| } |
| for { |
| var addr uintptr |
| if tp, addr = tp.next(dst + size); addr == 0 { |
| break |
| } |
| srcx := (*uintptr)(unsafe.Pointer(addr - dst + src)) |
| p := buf.get1() |
| p[0] = *srcx |
| } |
| } |
| |
| // initHeapBits initializes the heap bitmap for a span. |
| // |
| // TODO(mknyszek): This should set the heap bits for single pointer |
| // allocations eagerly to avoid calling heapSetType at allocation time, |
| // just to write one bit. |
| func (s *mspan) initHeapBits(forceClear bool) { |
| if (!s.spanclass.noscan() && heapBitsInSpan(s.elemsize)) || s.isUserArenaChunk { |
| b := s.heapBits() |
| clear(b) |
| } |
| } |
| |
| // heapBits returns the heap ptr/scalar bits stored at the end of the span for |
| // small object spans and heap arena spans. |
| // |
| // Note that the uintptr of each element means something different for small object |
| // spans and for heap arena spans. Small object spans are easy: they're never interpreted |
| // as anything but uintptr, so they're immune to differences in endianness. However, the |
| // heapBits for user arena spans is exposed through a dummy type descriptor, so the byte |
| // ordering needs to match the same byte ordering the compiler would emit. The compiler always |
| // emits the bitmap data in little endian byte ordering, so on big endian platforms these |
| // uintptrs will have their byte orders swapped from what they normally would be. |
| // |
| // heapBitsInSpan(span.elemsize) or span.isUserArenaChunk must be true. |
| // |
| //go:nosplit |
| func (span *mspan) heapBits() []uintptr { |
| const doubleCheck = false |
| |
| if doubleCheck && !span.isUserArenaChunk { |
| if span.spanclass.noscan() { |
| throw("heapBits called for noscan") |
| } |
| if span.elemsize > minSizeForMallocHeader { |
| throw("heapBits called for span class that should have a malloc header") |
| } |
| } |
| // Find the bitmap at the end of the span. |
| // |
| // Nearly every span with heap bits is exactly one page in size. Arenas are the only exception. |
| if span.npages == 1 { |
| // This will be inlined and constant-folded down. |
| return heapBitsSlice(span.base(), pageSize) |
| } |
| return heapBitsSlice(span.base(), span.npages*pageSize) |
| } |
| |
| // Helper for constructing a slice for the span's heap bits. |
| // |
| //go:nosplit |
| func heapBitsSlice(spanBase, spanSize uintptr) []uintptr { |
| bitmapSize := spanSize / goarch.PtrSize / 8 |
| elems := int(bitmapSize / goarch.PtrSize) |
| var sl notInHeapSlice |
| sl = notInHeapSlice{(*notInHeap)(unsafe.Pointer(spanBase + spanSize - bitmapSize)), elems, elems} |
| return *(*[]uintptr)(unsafe.Pointer(&sl)) |
| } |
| |
| // heapBitsSmallForAddr loads the heap bits for the object stored at addr from span.heapBits. |
| // |
| // addr must be the base pointer of an object in the span. heapBitsInSpan(span.elemsize) |
| // must be true. |
| // |
| //go:nosplit |
| func (span *mspan) heapBitsSmallForAddr(addr uintptr) uintptr { |
| spanSize := span.npages * pageSize |
| bitmapSize := spanSize / goarch.PtrSize / 8 |
| hbits := (*byte)(unsafe.Pointer(span.base() + spanSize - bitmapSize)) |
| |
| // These objects are always small enough that their bitmaps |
| // fit in a single word, so just load the word or two we need. |
| // |
| // Mirrors mspan.writeHeapBitsSmall. |
| // |
| // We should be using heapBits(), but unfortunately it introduces |
| // both bounds checks panics and throw which causes us to exceed |
| // the nosplit limit in quite a few cases. |
| i := (addr - span.base()) / goarch.PtrSize / ptrBits |
| j := (addr - span.base()) / goarch.PtrSize % ptrBits |
| bits := span.elemsize / goarch.PtrSize |
| word0 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+0)))) |
| word1 := (*uintptr)(unsafe.Pointer(addb(hbits, goarch.PtrSize*(i+1)))) |
| |
| var read uintptr |
| if j+bits > ptrBits { |
| // Two reads. |
| bits0 := ptrBits - j |
| bits1 := bits - bits0 |
| read = *word0 >> j |
| read |= (*word1 & ((1 << bits1) - 1)) << bits0 |
| } else { |
| // One read. |
| read = (*word0 >> j) & ((1 << bits) - 1) |
| } |
| return read |
| } |
| |
| // writeHeapBitsSmall writes the heap bits for small objects whose ptr/scalar data is |
| // stored as a bitmap at the end of the span. |
| // |
| // Assumes dataSize is <= ptrBits*goarch.PtrSize. x must be a pointer into the span. |
| // heapBitsInSpan(dataSize) must be true. dataSize must be >= typ.Size_. |
| // |
| //go:nosplit |
| func (span *mspan) writeHeapBitsSmall(x, dataSize uintptr, typ *_type) (scanSize uintptr) { |
| // The objects here are always really small, so a single load is sufficient. |
| src0 := readUintptr(typ.GCData) |
| |
| // Create repetitions of the bitmap if we have a small array. |
| bits := span.elemsize / goarch.PtrSize |
| scanSize = typ.PtrBytes |
| src := src0 |
| switch typ.Size_ { |
| case goarch.PtrSize: |
| src = (1 << (dataSize / goarch.PtrSize)) - 1 |
| default: |
| for i := typ.Size_; i < dataSize; i += typ.Size_ { |
| src |= src0 << (i / goarch.PtrSize) |
| scanSize += typ.Size_ |
| } |
| } |
| |
| // Since we're never writing more than one uintptr's worth of bits, we're either going |
| // to do one or two writes. |
| dst := span.heapBits() |
| o := (x - span.base()) / goarch.PtrSize |
| i := o / ptrBits |
| j := o % ptrBits |
| if j+bits > ptrBits { |
| // Two writes. |
| bits0 := ptrBits - j |
| bits1 := bits - bits0 |
| dst[i+0] = dst[i+0]&(^uintptr(0)>>bits0) | (src << j) |
| dst[i+1] = dst[i+1]&^((1<<bits1)-1) | (src >> bits0) |
| } else { |
| // One write. |
| dst[i] = (dst[i] &^ (((1 << bits) - 1) << j)) | (src << j) |
| } |
| |
| const doubleCheck = false |
| if doubleCheck { |
| srcRead := span.heapBitsSmallForAddr(x) |
| if srcRead != src { |
| print("runtime: x=", hex(x), " i=", i, " j=", j, " bits=", bits, "\n") |
| print("runtime: dataSize=", dataSize, " typ.Size_=", typ.Size_, " typ.PtrBytes=", typ.PtrBytes, "\n") |
| print("runtime: src0=", hex(src0), " src=", hex(src), " srcRead=", hex(srcRead), "\n") |
| throw("bad pointer bits written for small object") |
| } |
| } |
| return |
| } |
| |
| // heapSetType records that the new allocation [x, x+size) |
| // holds in [x, x+dataSize) one or more values of type typ. |
| // (The number of values is given by dataSize / typ.Size.) |
| // If dataSize < size, the fragment [x+dataSize, x+size) is |
| // recorded as non-pointer data. |
| // It is known that the type has pointers somewhere; |
| // malloc does not call heapSetType when there are no pointers. |
| // |
| // There can be read-write races between heapSetType and things |
| // that read the heap metadata like scanobject. However, since |
| // heapSetType is only used for objects that have not yet been |
| // made reachable, readers will ignore bits being modified by this |
| // function. This does mean this function cannot transiently modify |
| // shared memory that belongs to neighboring objects. Also, on weakly-ordered |
| // machines, callers must execute a store/store (publication) barrier |
| // between calling this function and making the object reachable. |
| func heapSetType(x, dataSize uintptr, typ *_type, header **_type, span *mspan) (scanSize uintptr) { |
| const doubleCheck = false |
| |
| gctyp := typ |
| if header == nil { |
| if doubleCheck && (!heapBitsInSpan(dataSize) || !heapBitsInSpan(span.elemsize)) { |
| throw("tried to write heap bits, but no heap bits in span") |
| } |
| // Handle the case where we have no malloc header. |
| scanSize = span.writeHeapBitsSmall(x, dataSize, typ) |
| } else { |
| if typ.Kind_&abi.KindGCProg != 0 { |
| // Allocate space to unroll the gcprog. This space will consist of |
| // a dummy _type value and the unrolled gcprog. The dummy _type will |
| // refer to the bitmap, and the mspan will refer to the dummy _type. |
| if span.spanclass.sizeclass() != 0 { |
| throw("GCProg for type that isn't large") |
| } |
| spaceNeeded := alignUp(unsafe.Sizeof(_type{}), goarch.PtrSize) |
| heapBitsOff := spaceNeeded |
| spaceNeeded += alignUp(typ.PtrBytes/goarch.PtrSize/8, goarch.PtrSize) |
| npages := alignUp(spaceNeeded, pageSize) / pageSize |
| var progSpan *mspan |
| systemstack(func() { |
| progSpan = mheap_.allocManual(npages, spanAllocPtrScalarBits) |
| memclrNoHeapPointers(unsafe.Pointer(progSpan.base()), progSpan.npages*pageSize) |
| }) |
| // Write a dummy _type in the new space. |
| // |
| // We only need to write size, PtrBytes, and GCData, since that's all |
| // the GC cares about. |
| gctyp = (*_type)(unsafe.Pointer(progSpan.base())) |
| gctyp.Size_ = typ.Size_ |
| gctyp.PtrBytes = typ.PtrBytes |
| gctyp.GCData = (*byte)(add(unsafe.Pointer(progSpan.base()), heapBitsOff)) |
| gctyp.TFlag = abi.TFlagUnrolledBitmap |
| |
| // Expand the GC program into space reserved at the end of the new span. |
| runGCProg(addb(typ.GCData, 4), gctyp.GCData) |
| } |
| |
| // Write out the header. |
| *header = gctyp |
| scanSize = span.elemsize |
| } |
| |
| if doubleCheck { |
| doubleCheckHeapPointers(x, dataSize, gctyp, header, span) |
| |
| // To exercise the less common path more often, generate |
| // a random interior pointer and make sure iterating from |
| // that point works correctly too. |
| maxIterBytes := span.elemsize |
| if header == nil { |
| maxIterBytes = dataSize |
| } |
| off := alignUp(uintptr(cheaprand())%dataSize, goarch.PtrSize) |
| size := dataSize - off |
| if size == 0 { |
| off -= goarch.PtrSize |
| size += goarch.PtrSize |
| } |
| interior := x + off |
| size -= alignDown(uintptr(cheaprand())%size, goarch.PtrSize) |
| if size == 0 { |
| size = goarch.PtrSize |
| } |
| // Round up the type to the size of the type. |
| size = (size + gctyp.Size_ - 1) / gctyp.Size_ * gctyp.Size_ |
| if interior+size > x+maxIterBytes { |
| size = x + maxIterBytes - interior |
| } |
| doubleCheckHeapPointersInterior(x, interior, size, dataSize, gctyp, header, span) |
| } |
| return |
| } |
| |
| func doubleCheckHeapPointers(x, dataSize uintptr, typ *_type, header **_type, span *mspan) { |
| // Check that scanning the full object works. |
| tp := span.typePointersOfUnchecked(span.objBase(x)) |
| maxIterBytes := span.elemsize |
| if header == nil { |
| maxIterBytes = dataSize |
| } |
| bad := false |
| for i := uintptr(0); i < maxIterBytes; i += goarch.PtrSize { |
| // Compute the pointer bit we want at offset i. |
| want := false |
| if i < span.elemsize { |
| off := i % typ.Size_ |
| if off < typ.PtrBytes { |
| j := off / goarch.PtrSize |
| want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 |
| } |
| } |
| if want { |
| var addr uintptr |
| tp, addr = tp.next(x + span.elemsize) |
| if addr == 0 { |
| println("runtime: found bad iterator") |
| } |
| if addr != x+i { |
| print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n") |
| bad = true |
| } |
| } |
| } |
| if !bad { |
| var addr uintptr |
| tp, addr = tp.next(x + span.elemsize) |
| if addr == 0 { |
| return |
| } |
| println("runtime: extra pointer:", hex(addr)) |
| } |
| print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, " hasGCProg=", typ.Kind_&abi.KindGCProg != 0, "\n") |
| print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, "\n") |
| print("runtime: typ=", unsafe.Pointer(typ), " typ.PtrBytes=", typ.PtrBytes, "\n") |
| print("runtime: limit=", hex(x+span.elemsize), "\n") |
| tp = span.typePointersOfUnchecked(x) |
| dumpTypePointers(tp) |
| for { |
| var addr uintptr |
| if tp, addr = tp.next(x + span.elemsize); addr == 0 { |
| println("runtime: would've stopped here") |
| dumpTypePointers(tp) |
| break |
| } |
| print("runtime: addr=", hex(addr), "\n") |
| dumpTypePointers(tp) |
| } |
| throw("heapSetType: pointer entry not correct") |
| } |
| |
| func doubleCheckHeapPointersInterior(x, interior, size, dataSize uintptr, typ *_type, header **_type, span *mspan) { |
| bad := false |
| if interior < x { |
| print("runtime: interior=", hex(interior), " x=", hex(x), "\n") |
| throw("found bad interior pointer") |
| } |
| off := interior - x |
| tp := span.typePointersOf(interior, size) |
| for i := off; i < off+size; i += goarch.PtrSize { |
| // Compute the pointer bit we want at offset i. |
| want := false |
| if i < span.elemsize { |
| off := i % typ.Size_ |
| if off < typ.PtrBytes { |
| j := off / goarch.PtrSize |
| want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 |
| } |
| } |
| if want { |
| var addr uintptr |
| tp, addr = tp.next(interior + size) |
| if addr == 0 { |
| println("runtime: found bad iterator") |
| bad = true |
| } |
| if addr != x+i { |
| print("runtime: addr=", hex(addr), " x+i=", hex(x+i), "\n") |
| bad = true |
| } |
| } |
| } |
| if !bad { |
| var addr uintptr |
| tp, addr = tp.next(interior + size) |
| if addr == 0 { |
| return |
| } |
| println("runtime: extra pointer:", hex(addr)) |
| } |
| print("runtime: hasHeader=", header != nil, " typ.Size_=", typ.Size_, "\n") |
| print("runtime: x=", hex(x), " dataSize=", dataSize, " elemsize=", span.elemsize, " interior=", hex(interior), " size=", size, "\n") |
| print("runtime: limit=", hex(interior+size), "\n") |
| tp = span.typePointersOf(interior, size) |
| dumpTypePointers(tp) |
| for { |
| var addr uintptr |
| if tp, addr = tp.next(interior + size); addr == 0 { |
| println("runtime: would've stopped here") |
| dumpTypePointers(tp) |
| break |
| } |
| print("runtime: addr=", hex(addr), "\n") |
| dumpTypePointers(tp) |
| } |
| |
| print("runtime: want: ") |
| for i := off; i < off+size; i += goarch.PtrSize { |
| // Compute the pointer bit we want at offset i. |
| want := false |
| if i < dataSize { |
| off := i % typ.Size_ |
| if off < typ.PtrBytes { |
| j := off / goarch.PtrSize |
| want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 |
| } |
| } |
| if want { |
| print("1") |
| } else { |
| print("0") |
| } |
| } |
| println() |
| |
| throw("heapSetType: pointer entry not correct") |
| } |
| |
| //go:nosplit |
| func doubleCheckTypePointersOfType(s *mspan, typ *_type, addr, size uintptr) { |
| if typ == nil || typ.Kind_&abi.KindGCProg != 0 { |
| return |
| } |
| if typ.Kind_&abi.KindMask == abi.Interface { |
| // Interfaces are unfortunately inconsistently handled |
| // when it comes to the type pointer, so it's easy to |
| // produce a lot of false positives here. |
| return |
| } |
| tp0 := s.typePointersOfType(typ, addr) |
| tp1 := s.typePointersOf(addr, size) |
| failed := false |
| for { |
| var addr0, addr1 uintptr |
| tp0, addr0 = tp0.next(addr + size) |
| tp1, addr1 = tp1.next(addr + size) |
| if addr0 != addr1 { |
| failed = true |
| break |
| } |
| if addr0 == 0 { |
| break |
| } |
| } |
| if failed { |
| tp0 := s.typePointersOfType(typ, addr) |
| tp1 := s.typePointersOf(addr, size) |
| print("runtime: addr=", hex(addr), " size=", size, "\n") |
| print("runtime: type=", toRType(typ).string(), "\n") |
| dumpTypePointers(tp0) |
| dumpTypePointers(tp1) |
| for { |
| var addr0, addr1 uintptr |
| tp0, addr0 = tp0.next(addr + size) |
| tp1, addr1 = tp1.next(addr + size) |
| print("runtime: ", hex(addr0), " ", hex(addr1), "\n") |
| if addr0 == 0 && addr1 == 0 { |
| break |
| } |
| } |
| throw("mismatch between typePointersOfType and typePointersOf") |
| } |
| } |
| |
| func dumpTypePointers(tp typePointers) { |
| print("runtime: tp.elem=", hex(tp.elem), " tp.typ=", unsafe.Pointer(tp.typ), "\n") |
| print("runtime: tp.addr=", hex(tp.addr), " tp.mask=") |
| for i := uintptr(0); i < ptrBits; i++ { |
| if tp.mask&(uintptr(1)<<i) != 0 { |
| print("1") |
| } else { |
| print("0") |
| } |
| } |
| println() |
| } |
| |
| // addb returns the byte pointer p+n. |
| // |
| //go:nowritebarrier |
| //go:nosplit |
| func addb(p *byte, n uintptr) *byte { |
| // Note: wrote out full expression instead of calling add(p, n) |
| // to reduce the number of temporaries generated by the |
| // compiler for this trivial expression during inlining. |
| return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n)) |
| } |
| |
| // subtractb returns the byte pointer p-n. |
| // |
| //go:nowritebarrier |
| //go:nosplit |
| func subtractb(p *byte, n uintptr) *byte { |
| // Note: wrote out full expression instead of calling add(p, -n) |
| // to reduce the number of temporaries generated by the |
| // compiler for this trivial expression during inlining. |
| return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n)) |
| } |
| |
| // add1 returns the byte pointer p+1. |
| // |
| //go:nowritebarrier |
| //go:nosplit |
| func add1(p *byte) *byte { |
| // Note: wrote out full expression instead of calling addb(p, 1) |
| // to reduce the number of temporaries generated by the |
| // compiler for this trivial expression during inlining. |
| return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1)) |
| } |
| |
| // subtract1 returns the byte pointer p-1. |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nowritebarrier |
| //go:nosplit |
| func subtract1(p *byte) *byte { |
| // Note: wrote out full expression instead of calling subtractb(p, 1) |
| // to reduce the number of temporaries generated by the |
| // compiler for this trivial expression during inlining. |
| return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1)) |
| } |
| |
| // markBits provides access to the mark bit for an object in the heap. |
| // bytep points to the byte holding the mark bit. |
| // mask is a byte with a single bit set that can be &ed with *bytep |
| // to see if the bit has been set. |
| // *m.byte&m.mask != 0 indicates the mark bit is set. |
| // index can be used along with span information to generate |
| // the address of the object in the heap. |
| // We maintain one set of mark bits for allocation and one for |
| // marking purposes. |
| type markBits struct { |
| bytep *uint8 |
| mask uint8 |
| index uintptr |
| } |
| |
| //go:nosplit |
| func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits { |
| bytep, mask := s.allocBits.bitp(allocBitIndex) |
| return markBits{bytep, mask, allocBitIndex} |
| } |
| |
| // refillAllocCache takes 8 bytes s.allocBits starting at whichByte |
| // and negates them so that ctz (count trailing zeros) instructions |
| // can be used. It then places these 8 bytes into the cached 64 bit |
| // s.allocCache. |
| func (s *mspan) refillAllocCache(whichByte uint16) { |
| bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(uintptr(whichByte)))) |
| aCache := uint64(0) |
| aCache |= uint64(bytes[0]) |
| aCache |= uint64(bytes[1]) << (1 * 8) |
| aCache |= uint64(bytes[2]) << (2 * 8) |
| aCache |= uint64(bytes[3]) << (3 * 8) |
| aCache |= uint64(bytes[4]) << (4 * 8) |
| aCache |= uint64(bytes[5]) << (5 * 8) |
| aCache |= uint64(bytes[6]) << (6 * 8) |
| aCache |= uint64(bytes[7]) << (7 * 8) |
| s.allocCache = ^aCache |
| } |
| |
| // nextFreeIndex returns the index of the next free object in s at |
| // or after s.freeindex. |
| // There are hardware instructions that can be used to make this |
| // faster if profiling warrants it. |
| func (s *mspan) nextFreeIndex() uint16 { |
| sfreeindex := s.freeindex |
| snelems := s.nelems |
| if sfreeindex == snelems { |
| return sfreeindex |
| } |
| if sfreeindex > snelems { |
| throw("s.freeindex > s.nelems") |
| } |
| |
| aCache := s.allocCache |
| |
| bitIndex := sys.TrailingZeros64(aCache) |
| for bitIndex == 64 { |
| // Move index to start of next cached bits. |
| sfreeindex = (sfreeindex + 64) &^ (64 - 1) |
| if sfreeindex >= snelems { |
| s.freeindex = snelems |
| return snelems |
| } |
| whichByte := sfreeindex / 8 |
| // Refill s.allocCache with the next 64 alloc bits. |
| s.refillAllocCache(whichByte) |
| aCache = s.allocCache |
| bitIndex = sys.TrailingZeros64(aCache) |
| // nothing available in cached bits |
| // grab the next 8 bytes and try again. |
| } |
| result := sfreeindex + uint16(bitIndex) |
| if result >= snelems { |
| s.freeindex = snelems |
| return snelems |
| } |
| |
| s.allocCache >>= uint(bitIndex + 1) |
| sfreeindex = result + 1 |
| |
| if sfreeindex%64 == 0 && sfreeindex != snelems { |
| // We just incremented s.freeindex so it isn't 0. |
| // As each 1 in s.allocCache was encountered and used for allocation |
| // it was shifted away. At this point s.allocCache contains all 0s. |
| // Refill s.allocCache so that it corresponds |
| // to the bits at s.allocBits starting at s.freeindex. |
| whichByte := sfreeindex / 8 |
| s.refillAllocCache(whichByte) |
| } |
| s.freeindex = sfreeindex |
| return result |
| } |
| |
| // isFree reports whether the index'th object in s is unallocated. |
| // |
| // The caller must ensure s.state is mSpanInUse, and there must have |
| // been no preemption points since ensuring this (which could allow a |
| // GC transition, which would allow the state to change). |
| func (s *mspan) isFree(index uintptr) bool { |
| if index < uintptr(s.freeIndexForScan) { |
| return false |
| } |
| bytep, mask := s.allocBits.bitp(index) |
| return *bytep&mask == 0 |
| } |
| |
| // divideByElemSize returns n/s.elemsize. |
| // n must be within [0, s.npages*_PageSize), |
| // or may be exactly s.npages*_PageSize |
| // if s.elemsize is from sizeclasses.go. |
| // |
| // nosplit, because it is called by objIndex, which is nosplit |
| // |
| //go:nosplit |
| func (s *mspan) divideByElemSize(n uintptr) uintptr { |
| const doubleCheck = false |
| |
| // See explanation in mksizeclasses.go's computeDivMagic. |
| q := uintptr((uint64(n) * uint64(s.divMul)) >> 32) |
| |
| if doubleCheck && q != n/s.elemsize { |
| println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q) |
| throw("bad magic division") |
| } |
| return q |
| } |
| |
| // nosplit, because it is called by other nosplit code like findObject |
| // |
| //go:nosplit |
| func (s *mspan) objIndex(p uintptr) uintptr { |
| return s.divideByElemSize(p - s.base()) |
| } |
| |
| func markBitsForAddr(p uintptr) markBits { |
| s := spanOf(p) |
| objIndex := s.objIndex(p) |
| return s.markBitsForIndex(objIndex) |
| } |
| |
| func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { |
| bytep, mask := s.gcmarkBits.bitp(objIndex) |
| return markBits{bytep, mask, objIndex} |
| } |
| |
| func (s *mspan) markBitsForBase() markBits { |
| return markBits{&s.gcmarkBits.x, uint8(1), 0} |
| } |
| |
| // isMarked reports whether mark bit m is set. |
| func (m markBits) isMarked() bool { |
| return *m.bytep&m.mask != 0 |
| } |
| |
| // setMarked sets the marked bit in the markbits, atomically. |
| func (m markBits) setMarked() { |
| // Might be racing with other updates, so use atomic update always. |
| // We used to be clever here and use a non-atomic update in certain |
| // cases, but it's not worth the risk. |
| atomic.Or8(m.bytep, m.mask) |
| } |
| |
| // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. |
| func (m markBits) setMarkedNonAtomic() { |
| *m.bytep |= m.mask |
| } |
| |
| // clearMarked clears the marked bit in the markbits, atomically. |
| func (m markBits) clearMarked() { |
| // Might be racing with other updates, so use atomic update always. |
| // We used to be clever here and use a non-atomic update in certain |
| // cases, but it's not worth the risk. |
| atomic.And8(m.bytep, ^m.mask) |
| } |
| |
| // markBitsForSpan returns the markBits for the span base address base. |
| func markBitsForSpan(base uintptr) (mbits markBits) { |
| mbits = markBitsForAddr(base) |
| if mbits.mask != 1 { |
| throw("markBitsForSpan: unaligned start") |
| } |
| return mbits |
| } |
| |
| // advance advances the markBits to the next object in the span. |
| func (m *markBits) advance() { |
| if m.mask == 1<<7 { |
| m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) |
| m.mask = 1 |
| } else { |
| m.mask = m.mask << 1 |
| } |
| m.index++ |
| } |
| |
| // clobberdeadPtr is a special value that is used by the compiler to |
| // clobber dead stack slots, when -clobberdead flag is set. |
| const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32)) |
| |
| // badPointer throws bad pointer in heap panic. |
| func badPointer(s *mspan, p, refBase, refOff uintptr) { |
| // Typically this indicates an incorrect use |
| // of unsafe or cgo to store a bad pointer in |
| // the Go heap. It may also indicate a runtime |
| // bug. |
| // |
| // TODO(austin): We could be more aggressive |
| // and detect pointers to unallocated objects |
| // in allocated spans. |
| printlock() |
| print("runtime: pointer ", hex(p)) |
| if s != nil { |
| state := s.state.get() |
| if state != mSpanInUse { |
| print(" to unallocated span") |
| } else { |
| print(" to unused region of span") |
| } |
| print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state) |
| } |
| print("\n") |
| if refBase != 0 { |
| print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") |
| gcDumpObject("object", refBase, refOff) |
| } |
| getg().m.traceback = 2 |
| throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") |
| } |
| |
| // findObject returns the base address for the heap object containing |
| // the address p, the object's span, and the index of the object in s. |
| // If p does not point into a heap object, it returns base == 0. |
| // |
| // If p points is an invalid heap pointer and debug.invalidptr != 0, |
| // findObject panics. |
| // |
| // refBase and refOff optionally give the base address of the object |
| // in which the pointer p was found and the byte offset at which it |
| // was found. These are used for error reporting. |
| // |
| // It is nosplit so it is safe for p to be a pointer to the current goroutine's stack. |
| // Since p is a uintptr, it would not be adjusted if the stack were to move. |
| // |
| //go:nosplit |
| func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) { |
| s = spanOf(p) |
| // If s is nil, the virtual address has never been part of the heap. |
| // This pointer may be to some mmap'd region, so we allow it. |
| if s == nil { |
| if (GOARCH == "amd64" || GOARCH == "arm64") && p == clobberdeadPtr && debug.invalidptr != 0 { |
| // Crash if clobberdeadPtr is seen. Only on AMD64 and ARM64 for now, |
| // as they are the only platform where compiler's clobberdead mode is |
| // implemented. On these platforms clobberdeadPtr cannot be a valid address. |
| badPointer(s, p, refBase, refOff) |
| } |
| return |
| } |
| // If p is a bad pointer, it may not be in s's bounds. |
| // |
| // Check s.state to synchronize with span initialization |
| // before checking other fields. See also spanOfHeap. |
| if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit { |
| // Pointers into stacks are also ok, the runtime manages these explicitly. |
| if state == mSpanManual { |
| return |
| } |
| // The following ensures that we are rigorous about what data |
| // structures hold valid pointers. |
| if debug.invalidptr != 0 { |
| badPointer(s, p, refBase, refOff) |
| } |
| return |
| } |
| |
| objIndex = s.objIndex(p) |
| base = s.base() + objIndex*s.elemsize |
| return |
| } |
| |
| // reflect_verifyNotInHeapPtr reports whether converting the not-in-heap pointer into a unsafe.Pointer is ok. |
| // |
| //go:linkname reflect_verifyNotInHeapPtr reflect.verifyNotInHeapPtr |
| func reflect_verifyNotInHeapPtr(p uintptr) bool { |
| // Conversion to a pointer is ok as long as findObject above does not call badPointer. |
| // Since we're already promised that p doesn't point into the heap, just disallow heap |
| // pointers and the special clobbered pointer. |
| return spanOf(p) == nil && p != clobberdeadPtr |
| } |
| |
| const ptrBits = 8 * goarch.PtrSize |
| |
| // bulkBarrierBitmap executes write barriers for copying from [src, |
| // src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is |
| // assumed to start maskOffset bytes into the data covered by the |
| // bitmap in bits (which may not be a multiple of 8). |
| // |
| // This is used by bulkBarrierPreWrite for writes to data and BSS. |
| // |
| //go:nosplit |
| func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) { |
| word := maskOffset / goarch.PtrSize |
| bits = addb(bits, word/8) |
| mask := uint8(1) << (word % 8) |
| |
| buf := &getg().m.p.ptr().wbBuf |
| for i := uintptr(0); i < size; i += goarch.PtrSize { |
| if mask == 0 { |
| bits = addb(bits, 1) |
| if *bits == 0 { |
| // Skip 8 words. |
| i += 7 * goarch.PtrSize |
| continue |
| } |
| mask = 1 |
| } |
| if *bits&mask != 0 { |
| dstx := (*uintptr)(unsafe.Pointer(dst + i)) |
| if src == 0 { |
| p := buf.get1() |
| p[0] = *dstx |
| } else { |
| srcx := (*uintptr)(unsafe.Pointer(src + i)) |
| p := buf.get2() |
| p[0] = *dstx |
| p[1] = *srcx |
| } |
| } |
| mask <<= 1 |
| } |
| } |
| |
| // typeBitsBulkBarrier executes a write barrier for every |
| // pointer that would be copied from [src, src+size) to [dst, |
| // dst+size) by a memmove using the type bitmap to locate those |
| // pointer slots. |
| // |
| // The type typ must correspond exactly to [src, src+size) and [dst, dst+size). |
| // dst, src, and size must be pointer-aligned. |
| // The type typ must have a plain bitmap, not a GC program. |
| // The only use of this function is in channel sends, and the |
| // 64 kB channel element limit takes care of this for us. |
| // |
| // Must not be preempted because it typically runs right before memmove, |
| // and the GC must observe them as an atomic action. |
| // |
| // Callers must perform cgo checks if goexperiment.CgoCheck2. |
| // |
| //go:nosplit |
| func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) { |
| if typ == nil { |
| throw("runtime: typeBitsBulkBarrier without type") |
| } |
| if typ.Size_ != size { |
| println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " of size ", typ.Size_, " but memory size", size) |
| throw("runtime: invalid typeBitsBulkBarrier") |
| } |
| if typ.Kind_&abi.KindGCProg != 0 { |
| println("runtime: typeBitsBulkBarrier with type ", toRType(typ).string(), " with GC prog") |
| throw("runtime: invalid typeBitsBulkBarrier") |
| } |
| if !writeBarrier.enabled { |
| return |
| } |
| ptrmask := typ.GCData |
| buf := &getg().m.p.ptr().wbBuf |
| var bits uint32 |
| for i := uintptr(0); i < typ.PtrBytes; i += goarch.PtrSize { |
| if i&(goarch.PtrSize*8-1) == 0 { |
| bits = uint32(*ptrmask) |
| ptrmask = addb(ptrmask, 1) |
| } else { |
| bits = bits >> 1 |
| } |
| if bits&1 != 0 { |
| dstx := (*uintptr)(unsafe.Pointer(dst + i)) |
| srcx := (*uintptr)(unsafe.Pointer(src + i)) |
| p := buf.get2() |
| p[0] = *dstx |
| p[1] = *srcx |
| } |
| } |
| } |
| |
| // countAlloc returns the number of objects allocated in span s by |
| // scanning the mark bitmap. |
| func (s *mspan) countAlloc() int { |
| count := 0 |
| bytes := divRoundUp(uintptr(s.nelems), 8) |
| // Iterate over each 8-byte chunk and count allocations |
| // with an intrinsic. Note that newMarkBits guarantees that |
| // gcmarkBits will be 8-byte aligned, so we don't have to |
| // worry about edge cases, irrelevant bits will simply be zero. |
| for i := uintptr(0); i < bytes; i += 8 { |
| // Extract 64 bits from the byte pointer and get a OnesCount. |
| // Note that the unsafe cast here doesn't preserve endianness, |
| // but that's OK. We only care about how many bits are 1, not |
| // about the order we discover them in. |
| mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i))) |
| count += sys.OnesCount64(mrkBits) |
| } |
| return count |
| } |
| |
| // Read the bytes starting at the aligned pointer p into a uintptr. |
| // Read is little-endian. |
| func readUintptr(p *byte) uintptr { |
| x := *(*uintptr)(unsafe.Pointer(p)) |
| if goarch.BigEndian { |
| if goarch.PtrSize == 8 { |
| return uintptr(sys.Bswap64(uint64(x))) |
| } |
| return uintptr(sys.Bswap32(uint32(x))) |
| } |
| return x |
| } |
| |
| var debugPtrmask struct { |
| lock mutex |
| data *byte |
| } |
| |
| // progToPointerMask returns the 1-bit pointer mask output by the GC program prog. |
| // size the size of the region described by prog, in bytes. |
| // The resulting bitvector will have no more than size/goarch.PtrSize bits. |
| func progToPointerMask(prog *byte, size uintptr) bitvector { |
| n := (size/goarch.PtrSize + 7) / 8 |
| x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] |
| x[len(x)-1] = 0xa1 // overflow check sentinel |
| n = runGCProg(prog, &x[0]) |
| if x[len(x)-1] != 0xa1 { |
| throw("progToPointerMask: overflow") |
| } |
| return bitvector{int32(n), &x[0]} |
| } |
| |
| // Packed GC pointer bitmaps, aka GC programs. |
| // |
| // For large types containing arrays, the type information has a |
| // natural repetition that can be encoded to save space in the |
| // binary and in the memory representation of the type information. |
| // |
| // The encoding is a simple Lempel-Ziv style bytecode machine |
| // with the following instructions: |
| // |
| // 00000000: stop |
| // 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes |
| // 10000000 n c: repeat the previous n bits c times; n, c are varints |
| // 1nnnnnnn c: repeat the previous n bits c times; c is a varint |
| |
| // runGCProg returns the number of 1-bit entries written to memory. |
| func runGCProg(prog, dst *byte) uintptr { |
| dstStart := dst |
| |
| // Bits waiting to be written to memory. |
| var bits uintptr |
| var nbits uintptr |
| |
| p := prog |
| Run: |
| for { |
| // Flush accumulated full bytes. |
| // The rest of the loop assumes that nbits <= 7. |
| for ; nbits >= 8; nbits -= 8 { |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| } |
| |
| // Process one instruction. |
| inst := uintptr(*p) |
| p = add1(p) |
| n := inst & 0x7F |
| if inst&0x80 == 0 { |
| // Literal bits; n == 0 means end of program. |
| if n == 0 { |
| // Program is over. |
| break Run |
| } |
| nbyte := n / 8 |
| for i := uintptr(0); i < nbyte; i++ { |
| bits |= uintptr(*p) << nbits |
| p = add1(p) |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| } |
| if n %= 8; n > 0 { |
| bits |= uintptr(*p) << nbits |
| p = add1(p) |
| nbits += n |
| } |
| continue Run |
| } |
| |
| // Repeat. If n == 0, it is encoded in a varint in the next bytes. |
| if n == 0 { |
| for off := uint(0); ; off += 7 { |
| x := uintptr(*p) |
| p = add1(p) |
| n |= (x & 0x7F) << off |
| if x&0x80 == 0 { |
| break |
| } |
| } |
| } |
| |
| // Count is encoded in a varint in the next bytes. |
| c := uintptr(0) |
| for off := uint(0); ; off += 7 { |
| x := uintptr(*p) |
| p = add1(p) |
| c |= (x & 0x7F) << off |
| if x&0x80 == 0 { |
| break |
| } |
| } |
| c *= n // now total number of bits to copy |
| |
| // If the number of bits being repeated is small, load them |
| // into a register and use that register for the entire loop |
| // instead of repeatedly reading from memory. |
| // Handling fewer than 8 bits here makes the general loop simpler. |
| // The cutoff is goarch.PtrSize*8 - 7 to guarantee that when we add |
| // the pattern to a bit buffer holding at most 7 bits (a partial byte) |
| // it will not overflow. |
| src := dst |
| const maxBits = goarch.PtrSize*8 - 7 |
| if n <= maxBits { |
| // Start with bits in output buffer. |
| pattern := bits |
| npattern := nbits |
| |
| // If we need more bits, fetch them from memory. |
| src = subtract1(src) |
| for npattern < n { |
| pattern <<= 8 |
| pattern |= uintptr(*src) |
| src = subtract1(src) |
| npattern += 8 |
| } |
| |
| // We started with the whole bit output buffer, |
| // and then we loaded bits from whole bytes. |
| // Either way, we might now have too many instead of too few. |
| // Discard the extra. |
| if npattern > n { |
| pattern >>= npattern - n |
| npattern = n |
| } |
| |
| // Replicate pattern to at most maxBits. |
| if npattern == 1 { |
| // One bit being repeated. |
| // If the bit is 1, make the pattern all 1s. |
| // If the bit is 0, the pattern is already all 0s, |
| // but we can claim that the number of bits |
| // in the word is equal to the number we need (c), |
| // because right shift of bits will zero fill. |
| if pattern == 1 { |
| pattern = 1<<maxBits - 1 |
| npattern = maxBits |
| } else { |
| npattern = c |
| } |
| } else { |
| b := pattern |
| nb := npattern |
| if nb+nb <= maxBits { |
| // Double pattern until the whole uintptr is filled. |
| for nb <= goarch.PtrSize*8 { |
| b |= b << nb |
| nb += nb |
| } |
| // Trim away incomplete copy of original pattern in high bits. |
| // TODO(rsc): Replace with table lookup or loop on systems without divide? |
| nb = maxBits / npattern * npattern |
| b &= 1<<nb - 1 |
| pattern = b |
| npattern = nb |
| } |
| } |
| |
| // Add pattern to bit buffer and flush bit buffer, c/npattern times. |
| // Since pattern contains >8 bits, there will be full bytes to flush |
| // on each iteration. |
| for ; c >= npattern; c -= npattern { |
| bits |= pattern << nbits |
| nbits += npattern |
| for nbits >= 8 { |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| nbits -= 8 |
| } |
| } |
| |
| // Add final fragment to bit buffer. |
| if c > 0 { |
| pattern &= 1<<c - 1 |
| bits |= pattern << nbits |
| nbits += c |
| } |
| continue Run |
| } |
| |
| // Repeat; n too large to fit in a register. |
| // Since nbits <= 7, we know the first few bytes of repeated data |
| // are already written to memory. |
| off := n - nbits // n > nbits because n > maxBits and nbits <= 7 |
| // Leading src fragment. |
| src = subtractb(src, (off+7)/8) |
| if frag := off & 7; frag != 0 { |
| bits |= uintptr(*src) >> (8 - frag) << nbits |
| src = add1(src) |
| nbits += frag |
| c -= frag |
| } |
| // Main loop: load one byte, write another. |
| // The bits are rotating through the bit buffer. |
| for i := c / 8; i > 0; i-- { |
| bits |= uintptr(*src) << nbits |
| src = add1(src) |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| } |
| // Final src fragment. |
| if c %= 8; c > 0 { |
| bits |= (uintptr(*src) & (1<<c - 1)) << nbits |
| nbits += c |
| } |
| } |
| |
| // Write any final bits out, using full-byte writes, even for the final byte. |
| totalBits := (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits |
| nbits += -nbits & 7 |
| for ; nbits > 0; nbits -= 8 { |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| } |
| return totalBits |
| } |
| |
| // materializeGCProg allocates space for the (1-bit) pointer bitmask |
| // for an object of size ptrdata. Then it fills that space with the |
| // pointer bitmask specified by the program prog. |
| // The bitmask starts at s.startAddr. |
| // The result must be deallocated with dematerializeGCProg. |
| func materializeGCProg(ptrdata uintptr, prog *byte) *mspan { |
| // Each word of ptrdata needs one bit in the bitmap. |
| bitmapBytes := divRoundUp(ptrdata, 8*goarch.PtrSize) |
| // Compute the number of pages needed for bitmapBytes. |
| pages := divRoundUp(bitmapBytes, pageSize) |
| s := mheap_.allocManual(pages, spanAllocPtrScalarBits) |
| runGCProg(addb(prog, 4), (*byte)(unsafe.Pointer(s.startAddr))) |
| return s |
| } |
| func dematerializeGCProg(s *mspan) { |
| mheap_.freeManual(s, spanAllocPtrScalarBits) |
| } |
| |
| func dumpGCProg(p *byte) { |
| nptr := 0 |
| for { |
| x := *p |
| p = add1(p) |
| if x == 0 { |
| print("\t", nptr, " end\n") |
| break |
| } |
| if x&0x80 == 0 { |
| print("\t", nptr, " lit ", x, ":") |
| n := int(x+7) / 8 |
| for i := 0; i < n; i++ { |
| print(" ", hex(*p)) |
| p = add1(p) |
| } |
| print("\n") |
| nptr += int(x) |
| } else { |
| nbit := int(x &^ 0x80) |
| if nbit == 0 { |
| for nb := uint(0); ; nb += 7 { |
| x := *p |
| p = add1(p) |
| nbit |= int(x&0x7f) << nb |
| if x&0x80 == 0 { |
| break |
| } |
| } |
| } |
| count := 0 |
| for nb := uint(0); ; nb += 7 { |
| x := *p |
| p = add1(p) |
| count |= int(x&0x7f) << nb |
| if x&0x80 == 0 { |
| break |
| } |
| } |
| print("\t", nptr, " repeat ", nbit, " × ", count, "\n") |
| nptr += nbit * count |
| } |
| } |
| } |
| |
| // Testing. |
| |
| // reflect_gcbits returns the GC type info for x, for testing. |
| // The result is the bitmap entries (0 or 1), one entry per byte. |
| // |
| //go:linkname reflect_gcbits reflect.gcbits |
| func reflect_gcbits(x any) []byte { |
| return getgcmask(x) |
| } |
| |
| // Returns GC type info for the pointer stored in ep for testing. |
| // If ep points to the stack, only static live information will be returned |
| // (i.e. not for objects which are only dynamically live stack objects). |
| func getgcmask(ep any) (mask []byte) { |
| e := *efaceOf(&ep) |
| p := e.data |
| t := e._type |
| |
| var et *_type |
| if t.Kind_&abi.KindMask != abi.Pointer { |
| throw("bad argument to getgcmask: expected type to be a pointer to the value type whose mask is being queried") |
| } |
| et = (*ptrtype)(unsafe.Pointer(t)).Elem |
| |
| // data or bss |
| for _, datap := range activeModules() { |
| // data |
| if datap.data <= uintptr(p) && uintptr(p) < datap.edata { |
| bitmap := datap.gcdatamask.bytedata |
| n := et.Size_ |
| mask = make([]byte, n/goarch.PtrSize) |
| for i := uintptr(0); i < n; i += goarch.PtrSize { |
| off := (uintptr(p) + i - datap.data) / goarch.PtrSize |
| mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 |
| } |
| return |
| } |
| |
| // bss |
| if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { |
| bitmap := datap.gcbssmask.bytedata |
| n := et.Size_ |
| mask = make([]byte, n/goarch.PtrSize) |
| for i := uintptr(0); i < n; i += goarch.PtrSize { |
| off := (uintptr(p) + i - datap.bss) / goarch.PtrSize |
| mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 |
| } |
| return |
| } |
| } |
| |
| // heap |
| if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { |
| if s.spanclass.noscan() { |
| return nil |
| } |
| limit := base + s.elemsize |
| |
| // Move the base up to the iterator's start, because |
| // we want to hide evidence of a malloc header from the |
| // caller. |
| tp := s.typePointersOfUnchecked(base) |
| base = tp.addr |
| |
| // Unroll the full bitmap the GC would actually observe. |
| maskFromHeap := make([]byte, (limit-base)/goarch.PtrSize) |
| for { |
| var addr uintptr |
| if tp, addr = tp.next(limit); addr == 0 { |
| break |
| } |
| maskFromHeap[(addr-base)/goarch.PtrSize] = 1 |
| } |
| |
| // Double-check that every part of the ptr/scalar we're not |
| // showing the caller is zeroed. This keeps us honest that |
| // that information is actually irrelevant. |
| for i := limit; i < s.elemsize; i++ { |
| if *(*byte)(unsafe.Pointer(i)) != 0 { |
| throw("found non-zeroed tail of allocation") |
| } |
| } |
| |
| // Callers (and a check we're about to run) expects this mask |
| // to end at the last pointer. |
| for len(maskFromHeap) > 0 && maskFromHeap[len(maskFromHeap)-1] == 0 { |
| maskFromHeap = maskFromHeap[:len(maskFromHeap)-1] |
| } |
| |
| if et.Kind_&abi.KindGCProg == 0 { |
| // Unroll again, but this time from the type information. |
| maskFromType := make([]byte, (limit-base)/goarch.PtrSize) |
| tp = s.typePointersOfType(et, base) |
| for { |
| var addr uintptr |
| if tp, addr = tp.next(limit); addr == 0 { |
| break |
| } |
| maskFromType[(addr-base)/goarch.PtrSize] = 1 |
| } |
| |
| // Validate that the prefix of maskFromType is equal to |
| // maskFromHeap. maskFromType may contain more pointers than |
| // maskFromHeap produces because maskFromHeap may be able to |
| // get exact type information for certain classes of objects. |
| // With maskFromType, we're always just tiling the type bitmap |
| // through to the elemsize. |
| // |
| // It's OK if maskFromType has pointers in elemsize that extend |
| // past the actual populated space; we checked above that all |
| // that space is zeroed, so just the GC will just see nil pointers. |
| differs := false |
| for i := range maskFromHeap { |
| if maskFromHeap[i] != maskFromType[i] { |
| differs = true |
| break |
| } |
| } |
| |
| if differs { |
| print("runtime: heap mask=") |
| for _, b := range maskFromHeap { |
| print(b) |
| } |
| println() |
| print("runtime: type mask=") |
| for _, b := range maskFromType { |
| print(b) |
| } |
| println() |
| print("runtime: type=", toRType(et).string(), "\n") |
| throw("found two different masks from two different methods") |
| } |
| } |
| |
| // Select the heap mask to return. We may not have a type mask. |
| mask = maskFromHeap |
| |
| // Make sure we keep ep alive. We may have stopped referencing |
| // ep's data pointer sometime before this point and it's possible |
| // for that memory to get freed. |
| KeepAlive(ep) |
| return |
| } |
| |
| // stack |
| if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi { |
| found := false |
| var u unwinder |
| for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() { |
| if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp { |
| found = true |
| break |
| } |
| } |
| if found { |
| locals, _, _ := u.frame.getStackMap(false) |
| if locals.n == 0 { |
| return |
| } |
| size := uintptr(locals.n) * goarch.PtrSize |
| n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_ |
| mask = make([]byte, n/goarch.PtrSize) |
| for i := uintptr(0); i < n; i += goarch.PtrSize { |
| off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize |
| mask[i/goarch.PtrSize] = locals.ptrbit(off) |
| } |
| } |
| return |
| } |
| |
| // otherwise, not something the GC knows about. |
| // possibly read-only data, like malloc(0). |
| // must not have pointers |
| return |
| } |