| // Inferno's libkern/vlop-arm.s |
| // http://code.google.com/p/inferno-os/source/browse/libkern/vlop-arm.s |
| // |
| // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. |
| // Revisions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com). All rights reserved. |
| // Portions Copyright 2009 The Go Authors. All rights reserved. |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| #include "zasm_GOOS_GOARCH.h" |
| #include "../../cmd/ld/textflag.h" |
| |
| arg=0 |
| |
| /* replaced use of R10 by R11 because the former can be the data segment base register */ |
| |
| TEXT _mulv(SB), NOSPLIT, $0 |
| MOVW 0(FP), R0 |
| MOVW 4(FP), R2 /* l0 */ |
| MOVW 8(FP), R11 /* h0 */ |
| MOVW 12(FP), R4 /* l1 */ |
| MOVW 16(FP), R5 /* h1 */ |
| MULLU R4, R2, (R7,R6) |
| MUL R11, R4, R8 |
| ADD R8, R7 |
| MUL R2, R5, R8 |
| ADD R8, R7 |
| MOVW R6, 0(R(arg)) |
| MOVW R7, 4(R(arg)) |
| RET |
| |
| // trampoline for _sfloat2. passes LR as arg0 and |
| // saves registers R0-R13 and CPSR on the stack. R0-R12 and CPSR flags can |
| // be changed by _sfloat2. |
| TEXT _sfloat(SB), NOSPLIT, $64-0 // 4 arg + 14*4 saved regs + cpsr |
| MOVW R14, 4(R13) |
| MOVW R0, 8(R13) |
| MOVW $12(R13), R0 |
| MOVM.IA.W [R1-R12], (R0) |
| MOVW $68(R13), R1 // correct for frame size |
| MOVW R1, 60(R13) |
| WORD $0xe10f1000 // mrs r1, cpsr |
| MOVW R1, 64(R13) |
| // Disable preemption of this goroutine during _sfloat2 by |
| // m->locks++ and m->locks-- around the call. |
| // Rescheduling this goroutine may cause the loss of the |
| // contents of the software floating point registers in |
| // m->freghi, m->freglo, m->fflag, if the goroutine is moved |
| // to a different m or another goroutine runs on this m. |
| // Rescheduling at ordinary function calls is okay because |
| // all registers are caller save, but _sfloat2 and the things |
| // that it runs are simulating the execution of individual |
| // program instructions, and those instructions do not expect |
| // the floating point registers to be lost. |
| // An alternative would be to move the software floating point |
| // registers into G, but they do not need to be kept at the |
| // usual places a goroutine reschedules (at function calls), |
| // so it would be a waste of 132 bytes per G. |
| MOVW m_locks(m), R1 |
| ADD $1, R1 |
| MOVW R1, m_locks(m) |
| MOVW $1, R1 |
| MOVW R1, m_softfloat(m) |
| BL runtime·_sfloat2(SB) |
| MOVW m_locks(m), R1 |
| SUB $1, R1 |
| MOVW R1, m_locks(m) |
| MOVW $0, R1 |
| MOVW R1, m_softfloat(m) |
| MOVW R0, 0(R13) |
| MOVW 64(R13), R1 |
| WORD $0xe128f001 // msr cpsr_f, r1 |
| MOVW $12(R13), R0 |
| // Restore R1-R8 and R11-R12, but ignore the saved R9 (m) and R10 (g). |
| // Both are maintained by the runtime and always have correct values, |
| // so there is no need to restore old values here. |
| // The g should not have changed, but m may have, if we were preempted |
| // and restarted on a different thread, in which case restoring the old |
| // value is incorrect and will cause serious confusion in the runtime. |
| MOVM.IA.W (R0), [R1-R8] |
| MOVW $52(R13), R0 |
| MOVM.IA.W (R0), [R11-R12] |
| MOVW 8(R13), R0 |
| RET |
| |
| // func udiv(n, d uint32) (q, r uint32) |
| // Reference: |
| // Sloss, Andrew et. al; ARM System Developer's Guide: Designing and Optimizing System Software |
| // Morgan Kaufmann; 1 edition (April 8, 2004), ISBN 978-1558608740 |
| q = 0 // input d, output q |
| r = 1 // input n, output r |
| s = 2 // three temporary variables |
| M = 3 |
| a = 11 |
| // Be careful: R(a) == R11 will be used by the linker for synthesized instructions. |
| TEXT udiv<>(SB),NOSPLIT,$-4 |
| CLZ R(q), R(s) // find normalizing shift |
| MOVW.S R(q)<<R(s), R(a) |
| MOVW $fast_udiv_tab<>-64(SB), R(M) |
| MOVBU.NE R(a)>>25(R(M)), R(a) // index by most significant 7 bits of divisor |
| |
| SUB.S $7, R(s) |
| RSB $0, R(q), R(M) // M = -q |
| MOVW.PL R(a)<<R(s), R(q) |
| |
| // 1st Newton iteration |
| MUL.PL R(M), R(q), R(a) // a = -q*d |
| BMI udiv_by_large_d |
| MULAWT R(a), R(q), R(q), R(q) // q approx q-(q*q*d>>32) |
| TEQ R(M)->1, R(M) // check for d=0 or d=1 |
| |
| // 2nd Newton iteration |
| MUL.NE R(M), R(q), R(a) |
| MOVW.NE $0, R(s) |
| MULAL.NE R(q), R(a), (R(q),R(s)) |
| BEQ udiv_by_0_or_1 |
| |
| // q now accurate enough for a remainder r, 0<=r<3*d |
| MULLU R(q), R(r), (R(q),R(s)) // q = (r * q) >> 32 |
| ADD R(M), R(r), R(r) // r = n - d |
| MULA R(M), R(q), R(r), R(r) // r = n - (q+1)*d |
| |
| // since 0 <= n-q*d < 3*d; thus -d <= r < 2*d |
| CMN R(M), R(r) // t = r-d |
| SUB.CS R(M), R(r), R(r) // if (t<-d || t>=0) r=r+d |
| ADD.CC $1, R(q) |
| ADD.PL R(M)<<1, R(r) |
| ADD.PL $2, R(q) |
| RET |
| |
| udiv_by_large_d: |
| // at this point we know d>=2^(31-6)=2^25 |
| SUB $4, R(a), R(a) |
| RSB $0, R(s), R(s) |
| MOVW R(a)>>R(s), R(q) |
| MULLU R(q), R(r), (R(q),R(s)) |
| MULA R(M), R(q), R(r), R(r) |
| |
| // q now accurate enough for a remainder r, 0<=r<4*d |
| CMN R(r)>>1, R(M) // if(r/2 >= d) |
| ADD.CS R(M)<<1, R(r) |
| ADD.CS $2, R(q) |
| CMN R(r), R(M) |
| ADD.CS R(M), R(r) |
| ADD.CS $1, R(q) |
| RET |
| |
| udiv_by_0_or_1: |
| // carry set if d==1, carry clear if d==0 |
| BCC udiv_by_0 |
| MOVW R(r), R(q) |
| MOVW $0, R(r) |
| RET |
| |
| udiv_by_0: |
| // The ARM toolchain expects it can emit references to DIV and MOD |
| // instructions. The linker rewrites each pseudo-instruction into |
| // a sequence that pushes two values onto the stack and then calls |
| // _divu, _modu, _div, or _mod (below), all of which have a 16-byte |
| // frame plus the saved LR. The traceback routine knows the expanded |
| // stack frame size at the pseudo-instruction call site, but it |
| // doesn't know that the frame has a non-standard layout. In particular, |
| // it expects to find a saved LR in the bottom word of the frame. |
| // Unwind the stack back to the pseudo-instruction call site, copy the |
| // saved LR where the traceback routine will look for it, and make it |
| // appear that panicdivide was called from that PC. |
| MOVW 0(R13), LR |
| ADD $20, R13 |
| MOVW 8(R13), R1 // actual saved LR |
| MOVW R1, 0(R13) // expected here for traceback |
| B runtime·panicdivide(SB) |
| |
| TEXT fast_udiv_tab<>(SB),NOSPLIT,$-4 |
| // var tab [64]byte |
| // tab[0] = 255; for i := 1; i <= 63; i++ { tab[i] = (1<<14)/(64+i) } |
| // laid out here as little-endian uint32s |
| WORD $0xf4f8fcff |
| WORD $0xe6eaedf0 |
| WORD $0xdadde0e3 |
| WORD $0xcfd2d4d7 |
| WORD $0xc5c7cacc |
| WORD $0xbcbec0c3 |
| WORD $0xb4b6b8ba |
| WORD $0xacaeb0b2 |
| WORD $0xa5a7a8aa |
| WORD $0x9fa0a2a3 |
| WORD $0x999a9c9d |
| WORD $0x93949697 |
| WORD $0x8e8f9092 |
| WORD $0x898a8c8d |
| WORD $0x85868788 |
| WORD $0x81828384 |
| |
| // The linker will pass numerator in R(TMP), and it also |
| // expects the result in R(TMP) |
| TMP = 11 |
| |
| TEXT _divu(SB), NOSPLIT, $16 |
| MOVW R(q), 4(R13) |
| MOVW R(r), 8(R13) |
| MOVW R(s), 12(R13) |
| MOVW R(M), 16(R13) |
| |
| MOVW R(TMP), R(r) /* numerator */ |
| MOVW 0(FP), R(q) /* denominator */ |
| BL udiv<>(SB) |
| MOVW R(q), R(TMP) |
| MOVW 4(R13), R(q) |
| MOVW 8(R13), R(r) |
| MOVW 12(R13), R(s) |
| MOVW 16(R13), R(M) |
| RET |
| |
| TEXT _modu(SB), NOSPLIT, $16 |
| MOVW R(q), 4(R13) |
| MOVW R(r), 8(R13) |
| MOVW R(s), 12(R13) |
| MOVW R(M), 16(R13) |
| |
| MOVW R(TMP), R(r) /* numerator */ |
| MOVW 0(FP), R(q) /* denominator */ |
| BL udiv<>(SB) |
| MOVW R(r), R(TMP) |
| MOVW 4(R13), R(q) |
| MOVW 8(R13), R(r) |
| MOVW 12(R13), R(s) |
| MOVW 16(R13), R(M) |
| RET |
| |
| TEXT _div(SB),NOSPLIT,$16 |
| MOVW R(q), 4(R13) |
| MOVW R(r), 8(R13) |
| MOVW R(s), 12(R13) |
| MOVW R(M), 16(R13) |
| MOVW R(TMP), R(r) /* numerator */ |
| MOVW 0(FP), R(q) /* denominator */ |
| CMP $0, R(r) |
| BGE d1 |
| RSB $0, R(r), R(r) |
| CMP $0, R(q) |
| BGE d2 |
| RSB $0, R(q), R(q) |
| d0: |
| BL udiv<>(SB) /* none/both neg */ |
| MOVW R(q), R(TMP) |
| B out1 |
| d1: |
| CMP $0, R(q) |
| BGE d0 |
| RSB $0, R(q), R(q) |
| d2: |
| BL udiv<>(SB) /* one neg */ |
| RSB $0, R(q), R(TMP) |
| out1: |
| MOVW 4(R13), R(q) |
| MOVW 8(R13), R(r) |
| MOVW 12(R13), R(s) |
| MOVW 16(R13), R(M) |
| RET |
| |
| TEXT _mod(SB),NOSPLIT,$16 |
| MOVW R(q), 4(R13) |
| MOVW R(r), 8(R13) |
| MOVW R(s), 12(R13) |
| MOVW R(M), 16(R13) |
| MOVW R(TMP), R(r) /* numerator */ |
| MOVW 0(FP), R(q) /* denominator */ |
| CMP $0, R(q) |
| RSB.LT $0, R(q), R(q) |
| CMP $0, R(r) |
| BGE m1 |
| RSB $0, R(r), R(r) |
| BL udiv<>(SB) /* neg numerator */ |
| RSB $0, R(r), R(TMP) |
| B out |
| m1: |
| BL udiv<>(SB) /* pos numerator */ |
| MOVW R(r), R(TMP) |
| out: |
| MOVW 4(R13), R(q) |
| MOVW 8(R13), R(r) |
| MOVW 12(R13), R(s) |
| MOVW 16(R13), R(M) |
| RET |