| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Page heap. |
| // |
| // See malloc.h for overview. |
| // |
| // When a MSpan is in the heap free list, state == MSpanFree |
| // and heapmap(s->start) == span, heapmap(s->start+s->npages-1) == span. |
| // |
| // When a MSpan is allocated, state == MSpanInUse |
| // and heapmap(i) == span for all s->start <= i < s->start+s->npages. |
| |
| #include "runtime.h" |
| #include "arch_GOARCH.h" |
| #include "malloc.h" |
| |
| static MSpan *MHeap_AllocLocked(MHeap*, uintptr, int32); |
| static bool MHeap_Grow(MHeap*, uintptr); |
| static void MHeap_FreeLocked(MHeap*, MSpan*); |
| static MSpan *MHeap_AllocLarge(MHeap*, uintptr); |
| static MSpan *BestFit(MSpan*, uintptr, MSpan*); |
| |
| static void |
| RecordSpan(void *vh, byte *p) |
| { |
| MHeap *h; |
| MSpan *s; |
| MSpan **all; |
| uint32 cap; |
| |
| h = vh; |
| s = (MSpan*)p; |
| if(h->nspan >= h->nspancap) { |
| cap = 64*1024/sizeof(all[0]); |
| if(cap < h->nspancap*3/2) |
| cap = h->nspancap*3/2; |
| all = (MSpan**)runtime·SysAlloc(cap*sizeof(all[0]), &mstats.other_sys); |
| if(all == nil) |
| runtime·throw("runtime: cannot allocate memory"); |
| if(h->allspans) { |
| runtime·memmove(all, h->allspans, h->nspancap*sizeof(all[0])); |
| // Don't free the old array if it's referenced by sweep. |
| // See the comment in mgc0.c. |
| if(h->allspans != runtime·mheap.sweepspans) |
| runtime·SysFree(h->allspans, h->nspancap*sizeof(all[0]), &mstats.other_sys); |
| } |
| h->allspans = all; |
| h->nspancap = cap; |
| } |
| h->allspans[h->nspan++] = s; |
| } |
| |
| // Initialize the heap; fetch memory using alloc. |
| void |
| runtime·MHeap_Init(MHeap *h) |
| { |
| uint32 i; |
| |
| runtime·FixAlloc_Init(&h->spanalloc, sizeof(MSpan), RecordSpan, h, &mstats.mspan_sys); |
| runtime·FixAlloc_Init(&h->cachealloc, sizeof(MCache), nil, nil, &mstats.mcache_sys); |
| runtime·FixAlloc_Init(&h->specialfinalizeralloc, sizeof(SpecialFinalizer), nil, nil, &mstats.other_sys); |
| runtime·FixAlloc_Init(&h->specialprofilealloc, sizeof(SpecialProfile), nil, nil, &mstats.other_sys); |
| // h->mapcache needs no init |
| for(i=0; i<nelem(h->free); i++) { |
| runtime·MSpanList_Init(&h->free[i]); |
| runtime·MSpanList_Init(&h->busy[i]); |
| } |
| runtime·MSpanList_Init(&h->freelarge); |
| runtime·MSpanList_Init(&h->busylarge); |
| for(i=0; i<nelem(h->central); i++) |
| runtime·MCentral_Init(&h->central[i], i); |
| } |
| |
| void |
| runtime·MHeap_MapSpans(MHeap *h) |
| { |
| uintptr n; |
| |
| // Map spans array, PageSize at a time. |
| n = (uintptr)h->arena_used; |
| n -= (uintptr)h->arena_start; |
| n = n / PageSize * sizeof(h->spans[0]); |
| n = ROUND(n, PhysPageSize); |
| if(h->spans_mapped >= n) |
| return; |
| runtime·SysMap((byte*)h->spans + h->spans_mapped, n - h->spans_mapped, h->arena_reserved, &mstats.other_sys); |
| h->spans_mapped = n; |
| } |
| |
| // Sweeps spans in list until reclaims at least npages into heap. |
| // Returns the actual number of pages reclaimed. |
| static uintptr |
| MHeap_ReclaimList(MHeap *h, MSpan *list, uintptr npages) |
| { |
| MSpan *s; |
| uintptr n; |
| uint32 sg; |
| |
| n = 0; |
| sg = runtime·mheap.sweepgen; |
| retry: |
| for(s = list->next; s != list; s = s->next) { |
| if(s->sweepgen == sg-2 && runtime·cas(&s->sweepgen, sg-2, sg-1)) { |
| runtime·MSpanList_Remove(s); |
| // swept spans are at the end of the list |
| runtime·MSpanList_InsertBack(list, s); |
| runtime·unlock(h); |
| n += runtime·MSpan_Sweep(s); |
| runtime·lock(h); |
| if(n >= npages) |
| return n; |
| // the span could have been moved elsewhere |
| goto retry; |
| } |
| if(s->sweepgen == sg-1) { |
| // the span is being sweept by background sweeper, skip |
| continue; |
| } |
| // already swept empty span, |
| // all subsequent ones must also be either swept or in process of sweeping |
| break; |
| } |
| return n; |
| } |
| |
| // Sweeps and reclaims at least npage pages into heap. |
| // Called before allocating npage pages. |
| static void |
| MHeap_Reclaim(MHeap *h, uintptr npage) |
| { |
| uintptr reclaimed, n; |
| |
| // First try to sweep busy spans with large objects of size >= npage, |
| // this has good chances of reclaiming the necessary space. |
| for(n=npage; n < nelem(h->busy); n++) { |
| if(MHeap_ReclaimList(h, &h->busy[n], npage)) |
| return; // Bingo! |
| } |
| |
| // Then -- even larger objects. |
| if(MHeap_ReclaimList(h, &h->busylarge, npage)) |
| return; // Bingo! |
| |
| // Now try smaller objects. |
| // One such object is not enough, so we need to reclaim several of them. |
| reclaimed = 0; |
| for(n=0; n < npage && n < nelem(h->busy); n++) { |
| reclaimed += MHeap_ReclaimList(h, &h->busy[n], npage-reclaimed); |
| if(reclaimed >= npage) |
| return; |
| } |
| |
| // Now sweep everything that is not yet swept. |
| runtime·unlock(h); |
| for(;;) { |
| n = runtime·sweepone(); |
| if(n == -1) // all spans are swept |
| break; |
| reclaimed += n; |
| if(reclaimed >= npage) |
| break; |
| } |
| runtime·lock(h); |
| } |
| |
| // Allocate a new span of npage pages from the heap |
| // and record its size class in the HeapMap and HeapMapCache. |
| MSpan* |
| runtime·MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero) |
| { |
| MSpan *s; |
| |
| runtime·lock(h); |
| mstats.heap_alloc += m->mcache->local_cachealloc; |
| m->mcache->local_cachealloc = 0; |
| s = MHeap_AllocLocked(h, npage, sizeclass); |
| if(s != nil) { |
| mstats.heap_inuse += npage<<PageShift; |
| if(large) { |
| mstats.heap_objects++; |
| mstats.heap_alloc += npage<<PageShift; |
| // Swept spans are at the end of lists. |
| if(s->npages < nelem(h->free)) |
| runtime·MSpanList_InsertBack(&h->busy[s->npages], s); |
| else |
| runtime·MSpanList_InsertBack(&h->busylarge, s); |
| } |
| } |
| runtime·unlock(h); |
| if(s != nil) { |
| if(needzero && s->needzero) |
| runtime·memclr((byte*)(s->start<<PageShift), s->npages<<PageShift); |
| s->needzero = 0; |
| } |
| return s; |
| } |
| |
| static MSpan* |
| MHeap_AllocLocked(MHeap *h, uintptr npage, int32 sizeclass) |
| { |
| uintptr n; |
| MSpan *s, *t; |
| PageID p; |
| |
| // To prevent excessive heap growth, before allocating n pages |
| // we need to sweep and reclaim at least n pages. |
| if(!h->sweepdone) |
| MHeap_Reclaim(h, npage); |
| |
| // Try in fixed-size lists up to max. |
| for(n=npage; n < nelem(h->free); n++) { |
| if(!runtime·MSpanList_IsEmpty(&h->free[n])) { |
| s = h->free[n].next; |
| goto HaveSpan; |
| } |
| } |
| |
| // Best fit in list of large spans. |
| if((s = MHeap_AllocLarge(h, npage)) == nil) { |
| if(!MHeap_Grow(h, npage)) |
| return nil; |
| if((s = MHeap_AllocLarge(h, npage)) == nil) |
| return nil; |
| } |
| |
| HaveSpan: |
| // Mark span in use. |
| if(s->state != MSpanFree) |
| runtime·throw("MHeap_AllocLocked - MSpan not free"); |
| if(s->npages < npage) |
| runtime·throw("MHeap_AllocLocked - bad npages"); |
| runtime·MSpanList_Remove(s); |
| runtime·atomicstore(&s->sweepgen, h->sweepgen); |
| s->state = MSpanInUse; |
| mstats.heap_idle -= s->npages<<PageShift; |
| mstats.heap_released -= s->npreleased<<PageShift; |
| if(s->npreleased > 0) |
| runtime·SysUsed((void*)(s->start<<PageShift), s->npages<<PageShift); |
| s->npreleased = 0; |
| |
| if(s->npages > npage) { |
| // Trim extra and put it back in the heap. |
| t = runtime·FixAlloc_Alloc(&h->spanalloc); |
| runtime·MSpan_Init(t, s->start + npage, s->npages - npage); |
| s->npages = npage; |
| p = t->start; |
| p -= ((uintptr)h->arena_start>>PageShift); |
| if(p > 0) |
| h->spans[p-1] = s; |
| h->spans[p] = t; |
| h->spans[p+t->npages-1] = t; |
| t->needzero = s->needzero; |
| runtime·atomicstore(&t->sweepgen, h->sweepgen); |
| t->state = MSpanInUse; |
| MHeap_FreeLocked(h, t); |
| t->unusedsince = s->unusedsince; // preserve age |
| } |
| s->unusedsince = 0; |
| |
| // Record span info, because gc needs to be |
| // able to map interior pointer to containing span. |
| s->sizeclass = sizeclass; |
| s->elemsize = (sizeclass==0 ? s->npages<<PageShift : runtime·class_to_size[sizeclass]); |
| s->types.compression = MTypes_Empty; |
| p = s->start; |
| p -= ((uintptr)h->arena_start>>PageShift); |
| for(n=0; n<npage; n++) |
| h->spans[p+n] = s; |
| return s; |
| } |
| |
| // Allocate a span of exactly npage pages from the list of large spans. |
| static MSpan* |
| MHeap_AllocLarge(MHeap *h, uintptr npage) |
| { |
| return BestFit(&h->freelarge, npage, nil); |
| } |
| |
| // Search list for smallest span with >= npage pages. |
| // If there are multiple smallest spans, take the one |
| // with the earliest starting address. |
| static MSpan* |
| BestFit(MSpan *list, uintptr npage, MSpan *best) |
| { |
| MSpan *s; |
| |
| for(s=list->next; s != list; s=s->next) { |
| if(s->npages < npage) |
| continue; |
| if(best == nil |
| || s->npages < best->npages |
| || (s->npages == best->npages && s->start < best->start)) |
| best = s; |
| } |
| return best; |
| } |
| |
| // Try to add at least npage pages of memory to the heap, |
| // returning whether it worked. |
| static bool |
| MHeap_Grow(MHeap *h, uintptr npage) |
| { |
| uintptr ask; |
| void *v; |
| MSpan *s; |
| PageID p; |
| |
| // Ask for a big chunk, to reduce the number of mappings |
| // the operating system needs to track; also amortizes |
| // the overhead of an operating system mapping. |
| // Allocate a multiple of 64kB (16 pages). |
| npage = (npage+15)&~15; |
| ask = npage<<PageShift; |
| if(ask < HeapAllocChunk) |
| ask = HeapAllocChunk; |
| |
| v = runtime·MHeap_SysAlloc(h, ask); |
| if(v == nil) { |
| if(ask > (npage<<PageShift)) { |
| ask = npage<<PageShift; |
| v = runtime·MHeap_SysAlloc(h, ask); |
| } |
| if(v == nil) { |
| runtime·printf("runtime: out of memory: cannot allocate %D-byte block (%D in use)\n", (uint64)ask, mstats.heap_sys); |
| return false; |
| } |
| } |
| |
| // Create a fake "in use" span and free it, so that the |
| // right coalescing happens. |
| s = runtime·FixAlloc_Alloc(&h->spanalloc); |
| runtime·MSpan_Init(s, (uintptr)v>>PageShift, ask>>PageShift); |
| p = s->start; |
| p -= ((uintptr)h->arena_start>>PageShift); |
| h->spans[p] = s; |
| h->spans[p + s->npages - 1] = s; |
| runtime·atomicstore(&s->sweepgen, h->sweepgen); |
| s->state = MSpanInUse; |
| MHeap_FreeLocked(h, s); |
| return true; |
| } |
| |
| // Look up the span at the given address. |
| // Address is guaranteed to be in map |
| // and is guaranteed to be start or end of span. |
| MSpan* |
| runtime·MHeap_Lookup(MHeap *h, void *v) |
| { |
| uintptr p; |
| |
| p = (uintptr)v; |
| p -= (uintptr)h->arena_start; |
| return h->spans[p >> PageShift]; |
| } |
| |
| // Look up the span at the given address. |
| // Address is *not* guaranteed to be in map |
| // and may be anywhere in the span. |
| // Map entries for the middle of a span are only |
| // valid for allocated spans. Free spans may have |
| // other garbage in their middles, so we have to |
| // check for that. |
| MSpan* |
| runtime·MHeap_LookupMaybe(MHeap *h, void *v) |
| { |
| MSpan *s; |
| PageID p, q; |
| |
| if((byte*)v < h->arena_start || (byte*)v >= h->arena_used) |
| return nil; |
| p = (uintptr)v>>PageShift; |
| q = p; |
| q -= (uintptr)h->arena_start >> PageShift; |
| s = h->spans[q]; |
| if(s == nil || p < s->start || v >= s->limit || s->state != MSpanInUse) |
| return nil; |
| return s; |
| } |
| |
| // Free the span back into the heap. |
| void |
| runtime·MHeap_Free(MHeap *h, MSpan *s, int32 acct) |
| { |
| runtime·lock(h); |
| mstats.heap_alloc += m->mcache->local_cachealloc; |
| m->mcache->local_cachealloc = 0; |
| mstats.heap_inuse -= s->npages<<PageShift; |
| if(acct) { |
| mstats.heap_alloc -= s->npages<<PageShift; |
| mstats.heap_objects--; |
| } |
| MHeap_FreeLocked(h, s); |
| runtime·unlock(h); |
| } |
| |
| static void |
| MHeap_FreeLocked(MHeap *h, MSpan *s) |
| { |
| MSpan *t; |
| PageID p; |
| |
| s->types.compression = MTypes_Empty; |
| |
| if(s->state != MSpanInUse || s->ref != 0 || s->sweepgen != h->sweepgen) { |
| runtime·printf("MHeap_FreeLocked - span %p ptr %p state %d ref %d sweepgen %d/%d\n", |
| s, s->start<<PageShift, s->state, s->ref, s->sweepgen, h->sweepgen); |
| runtime·throw("MHeap_FreeLocked - invalid free"); |
| } |
| mstats.heap_idle += s->npages<<PageShift; |
| s->state = MSpanFree; |
| runtime·MSpanList_Remove(s); |
| // Stamp newly unused spans. The scavenger will use that |
| // info to potentially give back some pages to the OS. |
| s->unusedsince = runtime·nanotime(); |
| s->npreleased = 0; |
| |
| // Coalesce with earlier, later spans. |
| p = s->start; |
| p -= (uintptr)h->arena_start >> PageShift; |
| if(p > 0 && (t = h->spans[p-1]) != nil && t->state != MSpanInUse) { |
| s->start = t->start; |
| s->npages += t->npages; |
| s->npreleased = t->npreleased; // absorb released pages |
| s->needzero |= t->needzero; |
| p -= t->npages; |
| h->spans[p] = s; |
| runtime·MSpanList_Remove(t); |
| t->state = MSpanDead; |
| runtime·FixAlloc_Free(&h->spanalloc, t); |
| } |
| if((p+s->npages)*sizeof(h->spans[0]) < h->spans_mapped && (t = h->spans[p+s->npages]) != nil && t->state != MSpanInUse) { |
| s->npages += t->npages; |
| s->npreleased += t->npreleased; |
| s->needzero |= t->needzero; |
| h->spans[p + s->npages - 1] = s; |
| runtime·MSpanList_Remove(t); |
| t->state = MSpanDead; |
| runtime·FixAlloc_Free(&h->spanalloc, t); |
| } |
| |
| // Insert s into appropriate list. |
| if(s->npages < nelem(h->free)) |
| runtime·MSpanList_Insert(&h->free[s->npages], s); |
| else |
| runtime·MSpanList_Insert(&h->freelarge, s); |
| } |
| |
| static void |
| forcegchelper(Note *note) |
| { |
| runtime·gc(1); |
| runtime·notewakeup(note); |
| } |
| |
| static uintptr |
| scavengelist(MSpan *list, uint64 now, uint64 limit) |
| { |
| uintptr released, sumreleased; |
| MSpan *s; |
| |
| if(runtime·MSpanList_IsEmpty(list)) |
| return 0; |
| |
| sumreleased = 0; |
| for(s=list->next; s != list; s=s->next) { |
| if((now - s->unusedsince) > limit && s->npreleased != s->npages) { |
| released = (s->npages - s->npreleased) << PageShift; |
| mstats.heap_released += released; |
| sumreleased += released; |
| s->npreleased = s->npages; |
| runtime·SysUnused((void*)(s->start << PageShift), s->npages << PageShift); |
| } |
| } |
| return sumreleased; |
| } |
| |
| static void |
| scavenge(int32 k, uint64 now, uint64 limit) |
| { |
| uint32 i; |
| uintptr sumreleased; |
| MHeap *h; |
| |
| h = &runtime·mheap; |
| sumreleased = 0; |
| for(i=0; i < nelem(h->free); i++) |
| sumreleased += scavengelist(&h->free[i], now, limit); |
| sumreleased += scavengelist(&h->freelarge, now, limit); |
| |
| if(runtime·debug.gctrace > 0) { |
| if(sumreleased > 0) |
| runtime·printf("scvg%d: %D MB released\n", k, (uint64)sumreleased>>20); |
| runtime·printf("scvg%d: inuse: %D, idle: %D, sys: %D, released: %D, consumed: %D (MB)\n", |
| k, mstats.heap_inuse>>20, mstats.heap_idle>>20, mstats.heap_sys>>20, |
| mstats.heap_released>>20, (mstats.heap_sys - mstats.heap_released)>>20); |
| } |
| } |
| |
| static FuncVal forcegchelperv = {(void(*)(void))forcegchelper}; |
| |
| // Release (part of) unused memory to OS. |
| // Goroutine created at startup. |
| // Loop forever. |
| void |
| runtime·MHeap_Scavenger(void) |
| { |
| MHeap *h; |
| uint64 tick, now, forcegc, limit; |
| int64 unixnow; |
| int32 k; |
| Note note, *notep; |
| |
| g->issystem = true; |
| g->isbackground = true; |
| |
| // If we go two minutes without a garbage collection, force one to run. |
| forcegc = 2*60*1e9; |
| // If a span goes unused for 5 minutes after a garbage collection, |
| // we hand it back to the operating system. |
| limit = 5*60*1e9; |
| // Make wake-up period small enough for the sampling to be correct. |
| if(forcegc < limit) |
| tick = forcegc/2; |
| else |
| tick = limit/2; |
| |
| h = &runtime·mheap; |
| for(k=0;; k++) { |
| runtime·noteclear(¬e); |
| runtime·notetsleepg(¬e, tick); |
| |
| runtime·lock(h); |
| unixnow = runtime·unixnanotime(); |
| if(unixnow - mstats.last_gc > forcegc) { |
| runtime·unlock(h); |
| // The scavenger can not block other goroutines, |
| // otherwise deadlock detector can fire spuriously. |
| // GC blocks other goroutines via the runtime·worldsema. |
| runtime·noteclear(¬e); |
| notep = ¬e; |
| runtime·newproc1(&forcegchelperv, (byte*)¬ep, sizeof(notep), 0, runtime·MHeap_Scavenger); |
| runtime·notetsleepg(¬e, -1); |
| if(runtime·debug.gctrace > 0) |
| runtime·printf("scvg%d: GC forced\n", k); |
| runtime·lock(h); |
| } |
| now = runtime·nanotime(); |
| scavenge(k, now, limit); |
| runtime·unlock(h); |
| } |
| } |
| |
| void |
| runtime∕debug·freeOSMemory(void) |
| { |
| runtime·gc(2); // force GC and do eager sweep |
| runtime·lock(&runtime·mheap); |
| scavenge(-1, ~(uintptr)0, 0); |
| runtime·unlock(&runtime·mheap); |
| } |
| |
| // Initialize a new span with the given start and npages. |
| void |
| runtime·MSpan_Init(MSpan *span, PageID start, uintptr npages) |
| { |
| span->next = nil; |
| span->prev = nil; |
| span->start = start; |
| span->npages = npages; |
| span->freelist = nil; |
| span->ref = 0; |
| span->sizeclass = 0; |
| span->incache = false; |
| span->elemsize = 0; |
| span->state = MSpanDead; |
| span->unusedsince = 0; |
| span->npreleased = 0; |
| span->types.compression = MTypes_Empty; |
| span->specialLock.key = 0; |
| span->specials = nil; |
| span->needzero = 0; |
| span->freebuf = nil; |
| } |
| |
| // Initialize an empty doubly-linked list. |
| void |
| runtime·MSpanList_Init(MSpan *list) |
| { |
| list->state = MSpanListHead; |
| list->next = list; |
| list->prev = list; |
| } |
| |
| void |
| runtime·MSpanList_Remove(MSpan *span) |
| { |
| if(span->prev == nil && span->next == nil) |
| return; |
| span->prev->next = span->next; |
| span->next->prev = span->prev; |
| span->prev = nil; |
| span->next = nil; |
| } |
| |
| bool |
| runtime·MSpanList_IsEmpty(MSpan *list) |
| { |
| return list->next == list; |
| } |
| |
| void |
| runtime·MSpanList_Insert(MSpan *list, MSpan *span) |
| { |
| if(span->next != nil || span->prev != nil) { |
| runtime·printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev); |
| runtime·throw("MSpanList_Insert"); |
| } |
| span->next = list->next; |
| span->prev = list; |
| span->next->prev = span; |
| span->prev->next = span; |
| } |
| |
| void |
| runtime·MSpanList_InsertBack(MSpan *list, MSpan *span) |
| { |
| if(span->next != nil || span->prev != nil) { |
| runtime·printf("failed MSpanList_Insert %p %p %p\n", span, span->next, span->prev); |
| runtime·throw("MSpanList_Insert"); |
| } |
| span->next = list; |
| span->prev = list->prev; |
| span->next->prev = span; |
| span->prev->next = span; |
| } |
| |
| // Adds the special record s to the list of special records for |
| // the object p. All fields of s should be filled in except for |
| // offset & next, which this routine will fill in. |
| // Returns true if the special was successfully added, false otherwise. |
| // (The add will fail only if a record with the same p and s->kind |
| // already exists.) |
| static bool |
| addspecial(void *p, Special *s) |
| { |
| MSpan *span; |
| Special **t, *x; |
| uintptr offset; |
| byte kind; |
| |
| span = runtime·MHeap_LookupMaybe(&runtime·mheap, p); |
| if(span == nil) |
| runtime·throw("addspecial on invalid pointer"); |
| |
| // Ensure that the span is swept. |
| // GC accesses specials list w/o locks. And it's just much safer. |
| m->locks++; |
| runtime·MSpan_EnsureSwept(span); |
| |
| offset = (uintptr)p - (span->start << PageShift); |
| kind = s->kind; |
| |
| runtime·lock(&span->specialLock); |
| |
| // Find splice point, check for existing record. |
| t = &span->specials; |
| while((x = *t) != nil) { |
| if(offset == x->offset && kind == x->kind) { |
| runtime·unlock(&span->specialLock); |
| m->locks--; |
| return false; // already exists |
| } |
| if(offset < x->offset || (offset == x->offset && kind < x->kind)) |
| break; |
| t = &x->next; |
| } |
| // Splice in record, fill in offset. |
| s->offset = offset; |
| s->next = x; |
| *t = s; |
| runtime·unlock(&span->specialLock); |
| m->locks--; |
| return true; |
| } |
| |
| // Removes the Special record of the given kind for the object p. |
| // Returns the record if the record existed, nil otherwise. |
| // The caller must FixAlloc_Free the result. |
| static Special* |
| removespecial(void *p, byte kind) |
| { |
| MSpan *span; |
| Special *s, **t; |
| uintptr offset; |
| |
| span = runtime·MHeap_LookupMaybe(&runtime·mheap, p); |
| if(span == nil) |
| runtime·throw("removespecial on invalid pointer"); |
| |
| // Ensure that the span is swept. |
| // GC accesses specials list w/o locks. And it's just much safer. |
| m->locks++; |
| runtime·MSpan_EnsureSwept(span); |
| |
| offset = (uintptr)p - (span->start << PageShift); |
| |
| runtime·lock(&span->specialLock); |
| t = &span->specials; |
| while((s = *t) != nil) { |
| // This function is used for finalizers only, so we don't check for |
| // "interior" specials (p must be exactly equal to s->offset). |
| if(offset == s->offset && kind == s->kind) { |
| *t = s->next; |
| runtime·unlock(&span->specialLock); |
| m->locks--; |
| return s; |
| } |
| t = &s->next; |
| } |
| runtime·unlock(&span->specialLock); |
| m->locks--; |
| return nil; |
| } |
| |
| // Adds a finalizer to the object p. Returns true if it succeeded. |
| bool |
| runtime·addfinalizer(void *p, FuncVal *f, uintptr nret, Type *fint, PtrType *ot) |
| { |
| SpecialFinalizer *s; |
| |
| runtime·lock(&runtime·mheap.speciallock); |
| s = runtime·FixAlloc_Alloc(&runtime·mheap.specialfinalizeralloc); |
| runtime·unlock(&runtime·mheap.speciallock); |
| s->kind = KindSpecialFinalizer; |
| s->fn = f; |
| s->nret = nret; |
| s->fint = fint; |
| s->ot = ot; |
| if(addspecial(p, s)) |
| return true; |
| |
| // There was an old finalizer |
| runtime·lock(&runtime·mheap.speciallock); |
| runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, s); |
| runtime·unlock(&runtime·mheap.speciallock); |
| return false; |
| } |
| |
| // Removes the finalizer (if any) from the object p. |
| void |
| runtime·removefinalizer(void *p) |
| { |
| SpecialFinalizer *s; |
| |
| s = (SpecialFinalizer*)removespecial(p, KindSpecialFinalizer); |
| if(s == nil) |
| return; // there wasn't a finalizer to remove |
| runtime·lock(&runtime·mheap.speciallock); |
| runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, s); |
| runtime·unlock(&runtime·mheap.speciallock); |
| } |
| |
| // Set the heap profile bucket associated with addr to b. |
| void |
| runtime·setprofilebucket(void *p, Bucket *b) |
| { |
| SpecialProfile *s; |
| |
| runtime·lock(&runtime·mheap.speciallock); |
| s = runtime·FixAlloc_Alloc(&runtime·mheap.specialprofilealloc); |
| runtime·unlock(&runtime·mheap.speciallock); |
| s->kind = KindSpecialProfile; |
| s->b = b; |
| if(!addspecial(p, s)) |
| runtime·throw("setprofilebucket: profile already set"); |
| } |
| |
| // Do whatever cleanup needs to be done to deallocate s. It has |
| // already been unlinked from the MSpan specials list. |
| // Returns true if we should keep working on deallocating p. |
| bool |
| runtime·freespecial(Special *s, void *p, uintptr size, bool freed) |
| { |
| SpecialFinalizer *sf; |
| SpecialProfile *sp; |
| |
| switch(s->kind) { |
| case KindSpecialFinalizer: |
| sf = (SpecialFinalizer*)s; |
| runtime·queuefinalizer(p, sf->fn, sf->nret, sf->fint, sf->ot); |
| runtime·lock(&runtime·mheap.speciallock); |
| runtime·FixAlloc_Free(&runtime·mheap.specialfinalizeralloc, sf); |
| runtime·unlock(&runtime·mheap.speciallock); |
| return false; // don't free p until finalizer is done |
| case KindSpecialProfile: |
| sp = (SpecialProfile*)s; |
| runtime·MProf_Free(sp->b, size, freed); |
| runtime·lock(&runtime·mheap.speciallock); |
| runtime·FixAlloc_Free(&runtime·mheap.specialprofilealloc, sp); |
| runtime·unlock(&runtime·mheap.speciallock); |
| return true; |
| default: |
| runtime·throw("bad special kind"); |
| return true; |
| } |
| } |
| |
| // Free all special records for p. |
| void |
| runtime·freeallspecials(MSpan *span, void *p, uintptr size) |
| { |
| Special *s, **t, *list; |
| uintptr offset; |
| |
| if(span->sweepgen != runtime·mheap.sweepgen) |
| runtime·throw("runtime: freeallspecials: unswept span"); |
| // first, collect all specials into the list; then, free them |
| // this is required to not cause deadlock between span->specialLock and proflock |
| list = nil; |
| offset = (uintptr)p - (span->start << PageShift); |
| runtime·lock(&span->specialLock); |
| t = &span->specials; |
| while((s = *t) != nil) { |
| if(offset + size <= s->offset) |
| break; |
| if(offset <= s->offset) { |
| *t = s->next; |
| s->next = list; |
| list = s; |
| } else |
| t = &s->next; |
| } |
| runtime·unlock(&span->specialLock); |
| |
| while(list != nil) { |
| s = list; |
| list = s->next; |
| if(!runtime·freespecial(s, p, size, true)) |
| runtime·throw("can't explicitly free an object with a finalizer"); |
| } |
| } |
| |
| // Split an allocated span into two equal parts. |
| void |
| runtime·MHeap_SplitSpan(MHeap *h, MSpan *s) |
| { |
| MSpan *t; |
| MCentral *c; |
| uintptr i; |
| uintptr npages; |
| PageID p; |
| |
| if(s->state != MSpanInUse) |
| runtime·throw("MHeap_SplitSpan on a free span"); |
| if(s->sizeclass != 0 && s->ref != 1) |
| runtime·throw("MHeap_SplitSpan doesn't have an allocated object"); |
| npages = s->npages; |
| |
| // remove the span from whatever list it is in now |
| if(s->sizeclass > 0) { |
| // must be in h->central[x].empty |
| c = &h->central[s->sizeclass]; |
| runtime·lock(c); |
| runtime·MSpanList_Remove(s); |
| runtime·unlock(c); |
| runtime·lock(h); |
| } else { |
| // must be in h->busy/busylarge |
| runtime·lock(h); |
| runtime·MSpanList_Remove(s); |
| } |
| // heap is locked now |
| |
| if(npages == 1) { |
| // convert span of 1 PageSize object to a span of 2 PageSize/2 objects. |
| s->ref = 2; |
| s->sizeclass = runtime·SizeToClass(PageSize/2); |
| s->elemsize = PageSize/2; |
| } else { |
| // convert span of n>1 pages into two spans of n/2 pages each. |
| if((s->npages & 1) != 0) |
| runtime·throw("MHeap_SplitSpan on an odd size span"); |
| |
| // compute position in h->spans |
| p = s->start; |
| p -= (uintptr)h->arena_start >> PageShift; |
| |
| // Allocate a new span for the first half. |
| t = runtime·FixAlloc_Alloc(&h->spanalloc); |
| runtime·MSpan_Init(t, s->start, npages/2); |
| t->limit = (byte*)((t->start + npages/2) << PageShift); |
| t->state = MSpanInUse; |
| t->elemsize = npages << (PageShift - 1); |
| t->sweepgen = s->sweepgen; |
| if(t->elemsize <= MaxSmallSize) { |
| t->sizeclass = runtime·SizeToClass(t->elemsize); |
| t->ref = 1; |
| } |
| |
| // the old span holds the second half. |
| s->start += npages/2; |
| s->npages = npages/2; |
| s->elemsize = npages << (PageShift - 1); |
| if(s->elemsize <= MaxSmallSize) { |
| s->sizeclass = runtime·SizeToClass(s->elemsize); |
| s->ref = 1; |
| } |
| |
| // update span lookup table |
| for(i = p; i < p + npages/2; i++) |
| h->spans[i] = t; |
| } |
| |
| // place the span into a new list |
| if(s->sizeclass > 0) { |
| runtime·unlock(h); |
| c = &h->central[s->sizeclass]; |
| runtime·lock(c); |
| // swept spans are at the end of the list |
| runtime·MSpanList_InsertBack(&c->empty, s); |
| runtime·unlock(c); |
| } else { |
| // Swept spans are at the end of lists. |
| if(s->npages < nelem(h->free)) |
| runtime·MSpanList_InsertBack(&h->busy[s->npages], s); |
| else |
| runtime·MSpanList_InsertBack(&h->busylarge, s); |
| runtime·unlock(h); |
| } |
| } |