| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Garbage collector (GC). |
| // |
| // GC is: |
| // - mark&sweep |
| // - mostly precise (with the exception of some C-allocated objects, assembly frames/arguments, etc) |
| // - parallel (up to MaxGcproc threads) |
| // - partially concurrent (mark is stop-the-world, while sweep is concurrent) |
| // - non-moving/non-compacting |
| // - full (non-partial) |
| // |
| // GC rate. |
| // Next GC is after we've allocated an extra amount of memory proportional to |
| // the amount already in use. The proportion is controlled by GOGC environment variable |
| // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M |
| // (this mark is tracked in next_gc variable). This keeps the GC cost in linear |
| // proportion to the allocation cost. Adjusting GOGC just changes the linear constant |
| // (and also the amount of extra memory used). |
| // |
| // Concurrent sweep. |
| // The sweep phase proceeds concurrently with normal program execution. |
| // The heap is swept span-by-span both lazily (when a goroutine needs another span) |
| // and concurrently in a background goroutine (this helps programs that are not CPU bound). |
| // However, at the end of the stop-the-world GC phase we don't know the size of the live heap, |
| // and so next_gc calculation is tricky and happens as follows. |
| // At the end of the stop-the-world phase next_gc is conservatively set based on total |
| // heap size; all spans are marked as "needs sweeping". |
| // Whenever a span is swept, next_gc is decremented by GOGC*newly_freed_memory. |
| // The background sweeper goroutine simply sweeps spans one-by-one bringing next_gc |
| // closer to the target value. However, this is not enough to avoid over-allocating memory. |
| // Consider that a goroutine wants to allocate a new span for a large object and |
| // there are no free swept spans, but there are small-object unswept spans. |
| // If the goroutine naively allocates a new span, it can surpass the yet-unknown |
| // target next_gc value. In order to prevent such cases (1) when a goroutine needs |
| // to allocate a new small-object span, it sweeps small-object spans for the same |
| // object size until it frees at least one object; (2) when a goroutine needs to |
| // allocate large-object span from heap, it sweeps spans until it frees at least |
| // that many pages into heap. Together these two measures ensure that we don't surpass |
| // target next_gc value by a large margin. There is an exception: if a goroutine sweeps |
| // and frees two nonadjacent one-page spans to the heap, it will allocate a new two-page span, |
| // but there can still be other one-page unswept spans which could be combined into a two-page span. |
| // It's critical to ensure that no operations proceed on unswept spans (that would corrupt |
| // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache, |
| // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it. |
| // When a goroutine explicitly frees an object or sets a finalizer, it ensures that |
| // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish). |
| // The finalizer goroutine is kicked off only when all spans are swept. |
| // When the next GC starts, it sweeps all not-yet-swept spans (if any). |
| |
| #include "runtime.h" |
| #include "arch_GOARCH.h" |
| #include "malloc.h" |
| #include "stack.h" |
| #include "mgc0.h" |
| #include "chan.h" |
| #include "race.h" |
| #include "type.h" |
| #include "typekind.h" |
| #include "funcdata.h" |
| #include "../../cmd/ld/textflag.h" |
| |
| enum { |
| Debug = 0, |
| CollectStats = 0, |
| ConcurrentSweep = 1, |
| |
| WorkbufSize = 16*1024, |
| FinBlockSize = 4*1024, |
| |
| handoffThreshold = 4, |
| IntermediateBufferCapacity = 64, |
| |
| // Bits in type information |
| PRECISE = 1, |
| LOOP = 2, |
| PC_BITS = PRECISE | LOOP, |
| |
| RootData = 0, |
| RootBss = 1, |
| RootFinalizers = 2, |
| RootSpanTypes = 3, |
| RootFlushCaches = 4, |
| RootCount = 5, |
| }; |
| |
| #define GcpercentUnknown (-2) |
| |
| // Initialized from $GOGC. GOGC=off means no gc. |
| static int32 gcpercent = GcpercentUnknown; |
| |
| static FuncVal* poolcleanup; |
| |
| void |
| sync·runtime_registerPoolCleanup(FuncVal *f) |
| { |
| poolcleanup = f; |
| } |
| |
| static void |
| clearpools(void) |
| { |
| P *p, **pp; |
| MCache *c; |
| int32 i; |
| |
| // clear sync.Pool's |
| if(poolcleanup != nil) |
| reflect·call(poolcleanup, nil, 0, 0); |
| |
| for(pp=runtime·allp; p=*pp; pp++) { |
| // clear tinyalloc pool |
| c = p->mcache; |
| if(c != nil) { |
| c->tiny = nil; |
| c->tinysize = 0; |
| } |
| // clear defer pools |
| for(i=0; i<nelem(p->deferpool); i++) |
| p->deferpool[i] = nil; |
| } |
| } |
| |
| // Holding worldsema grants an M the right to try to stop the world. |
| // The procedure is: |
| // |
| // runtime·semacquire(&runtime·worldsema); |
| // m->gcing = 1; |
| // runtime·stoptheworld(); |
| // |
| // ... do stuff ... |
| // |
| // m->gcing = 0; |
| // runtime·semrelease(&runtime·worldsema); |
| // runtime·starttheworld(); |
| // |
| uint32 runtime·worldsema = 1; |
| |
| typedef struct Obj Obj; |
| struct Obj |
| { |
| byte *p; // data pointer |
| uintptr n; // size of data in bytes |
| uintptr ti; // type info |
| }; |
| |
| typedef struct Workbuf Workbuf; |
| struct Workbuf |
| { |
| #define SIZE (WorkbufSize-sizeof(LFNode)-sizeof(uintptr)) |
| LFNode node; // must be first |
| uintptr nobj; |
| Obj obj[SIZE/sizeof(Obj) - 1]; |
| uint8 _padding[SIZE%sizeof(Obj) + sizeof(Obj)]; |
| #undef SIZE |
| }; |
| |
| typedef struct Finalizer Finalizer; |
| struct Finalizer |
| { |
| FuncVal *fn; |
| void *arg; |
| uintptr nret; |
| Type *fint; |
| PtrType *ot; |
| }; |
| |
| typedef struct FinBlock FinBlock; |
| struct FinBlock |
| { |
| FinBlock *alllink; |
| FinBlock *next; |
| int32 cnt; |
| int32 cap; |
| Finalizer fin[1]; |
| }; |
| |
| extern byte data[]; |
| extern byte edata[]; |
| extern byte bss[]; |
| extern byte ebss[]; |
| |
| extern byte gcdata[]; |
| extern byte gcbss[]; |
| |
| static Lock finlock; // protects the following variables |
| static FinBlock *finq; // list of finalizers that are to be executed |
| static FinBlock *finc; // cache of free blocks |
| static FinBlock *allfin; // list of all blocks |
| bool runtime·fingwait; |
| bool runtime·fingwake; |
| |
| static Lock gclock; |
| static G* fing; |
| |
| static void runfinq(void); |
| static void bgsweep(void); |
| static Workbuf* getempty(Workbuf*); |
| static Workbuf* getfull(Workbuf*); |
| static void putempty(Workbuf*); |
| static Workbuf* handoff(Workbuf*); |
| static void gchelperstart(void); |
| static void flushallmcaches(void); |
| static bool scanframe(Stkframe *frame, void *wbufp); |
| static void addstackroots(G *gp, Workbuf **wbufp); |
| |
| static FuncVal runfinqv = {runfinq}; |
| static FuncVal bgsweepv = {bgsweep}; |
| |
| static struct { |
| uint64 full; // lock-free list of full blocks |
| uint64 empty; // lock-free list of empty blocks |
| byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait |
| uint32 nproc; |
| int64 tstart; |
| volatile uint32 nwait; |
| volatile uint32 ndone; |
| Note alldone; |
| ParFor *markfor; |
| |
| Lock; |
| byte *chunk; |
| uintptr nchunk; |
| } work; |
| |
| enum { |
| GC_DEFAULT_PTR = GC_NUM_INSTR, |
| GC_CHAN, |
| |
| GC_NUM_INSTR2 |
| }; |
| |
| static struct { |
| struct { |
| uint64 sum; |
| uint64 cnt; |
| } ptr; |
| uint64 nbytes; |
| struct { |
| uint64 sum; |
| uint64 cnt; |
| uint64 notype; |
| uint64 typelookup; |
| } obj; |
| uint64 rescan; |
| uint64 rescanbytes; |
| uint64 instr[GC_NUM_INSTR2]; |
| uint64 putempty; |
| uint64 getfull; |
| struct { |
| uint64 foundbit; |
| uint64 foundword; |
| uint64 foundspan; |
| } flushptrbuf; |
| struct { |
| uint64 foundbit; |
| uint64 foundword; |
| uint64 foundspan; |
| } markonly; |
| uint32 nbgsweep; |
| uint32 npausesweep; |
| } gcstats; |
| |
| // markonly marks an object. It returns true if the object |
| // has been marked by this function, false otherwise. |
| // This function doesn't append the object to any buffer. |
| static bool |
| markonly(void *obj) |
| { |
| byte *p; |
| uintptr *bitp, bits, shift, x, xbits, off, j; |
| MSpan *s; |
| PageID k; |
| |
| // Words outside the arena cannot be pointers. |
| if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used) |
| return false; |
| |
| // obj may be a pointer to a live object. |
| // Try to find the beginning of the object. |
| |
| // Round down to word boundary. |
| obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| |
| // Find bits for this word. |
| off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start; |
| bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Pointing at the beginning of a block? |
| if((bits & (bitAllocated|bitBlockBoundary)) != 0) { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.markonly.foundbit, 1); |
| goto found; |
| } |
| |
| // Pointing just past the beginning? |
| // Scan backward a little to find a block boundary. |
| for(j=shift; j-->0; ) { |
| if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { |
| shift = j; |
| bits = xbits>>shift; |
| if(CollectStats) |
| runtime·xadd64(&gcstats.markonly.foundword, 1); |
| goto found; |
| } |
| } |
| |
| // Otherwise consult span table to find beginning. |
| // (Manually inlined copy of MHeap_LookupMaybe.) |
| k = (uintptr)obj>>PageShift; |
| x = k; |
| x -= (uintptr)runtime·mheap.arena_start>>PageShift; |
| s = runtime·mheap.spans[x]; |
| if(s == nil || k < s->start || obj >= s->limit || s->state != MSpanInUse) |
| return false; |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| obj = p; |
| } else { |
| uintptr size = s->elemsize; |
| int32 i = ((byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (uintptr*)obj - (uintptr*)runtime·mheap.arena_start; |
| bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| if(CollectStats) |
| runtime·xadd64(&gcstats.markonly.foundspan, 1); |
| |
| found: |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // Only care about allocated and not marked. |
| if((bits & (bitAllocated|bitMarked)) != bitAllocated) |
| return false; |
| if(work.nproc == 1) |
| *bitp |= bitMarked<<shift; |
| else { |
| for(;;) { |
| x = *bitp; |
| if(x & (bitMarked<<shift)) |
| return false; |
| if(runtime·casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift)))) |
| break; |
| } |
| } |
| |
| // The object is now marked |
| return true; |
| } |
| |
| // PtrTarget is a structure used by intermediate buffers. |
| // The intermediate buffers hold GC data before it |
| // is moved/flushed to the work buffer (Workbuf). |
| // The size of an intermediate buffer is very small, |
| // such as 32 or 64 elements. |
| typedef struct PtrTarget PtrTarget; |
| struct PtrTarget |
| { |
| void *p; |
| uintptr ti; |
| }; |
| |
| typedef struct Scanbuf Scanbuf; |
| struct Scanbuf |
| { |
| struct { |
| PtrTarget *begin; |
| PtrTarget *end; |
| PtrTarget *pos; |
| } ptr; |
| struct { |
| Obj *begin; |
| Obj *end; |
| Obj *pos; |
| } obj; |
| Workbuf *wbuf; |
| Obj *wp; |
| uintptr nobj; |
| }; |
| |
| typedef struct BufferList BufferList; |
| struct BufferList |
| { |
| PtrTarget ptrtarget[IntermediateBufferCapacity]; |
| Obj obj[IntermediateBufferCapacity]; |
| uint32 busy; |
| byte pad[CacheLineSize]; |
| }; |
| #pragma dataflag NOPTR |
| static BufferList bufferList[MaxGcproc]; |
| |
| static Type *itabtype; |
| |
| static void enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj); |
| |
| // flushptrbuf moves data from the PtrTarget buffer to the work buffer. |
| // The PtrTarget buffer contains blocks irrespective of whether the blocks have been marked or scanned, |
| // while the work buffer contains blocks which have been marked |
| // and are prepared to be scanned by the garbage collector. |
| // |
| // _wp, _wbuf, _nobj are input/output parameters and are specifying the work buffer. |
| // |
| // A simplified drawing explaining how the todo-list moves from a structure to another: |
| // |
| // scanblock |
| // (find pointers) |
| // Obj ------> PtrTarget (pointer targets) |
| // ↑ | |
| // | | |
| // `----------' |
| // flushptrbuf |
| // (find block start, mark and enqueue) |
| static void |
| flushptrbuf(Scanbuf *sbuf) |
| { |
| byte *p, *arena_start, *obj; |
| uintptr size, *bitp, bits, shift, j, x, xbits, off, nobj, ti, n; |
| MSpan *s; |
| PageID k; |
| Obj *wp; |
| Workbuf *wbuf; |
| PtrTarget *ptrbuf; |
| PtrTarget *ptrbuf_end; |
| |
| arena_start = runtime·mheap.arena_start; |
| |
| wp = sbuf->wp; |
| wbuf = sbuf->wbuf; |
| nobj = sbuf->nobj; |
| |
| ptrbuf = sbuf->ptr.begin; |
| ptrbuf_end = sbuf->ptr.pos; |
| n = ptrbuf_end - sbuf->ptr.begin; |
| sbuf->ptr.pos = sbuf->ptr.begin; |
| |
| if(CollectStats) { |
| runtime·xadd64(&gcstats.ptr.sum, n); |
| runtime·xadd64(&gcstats.ptr.cnt, 1); |
| } |
| |
| // If buffer is nearly full, get a new one. |
| if(wbuf == nil || nobj+n >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = wbuf->obj; |
| nobj = 0; |
| |
| if(n >= nelem(wbuf->obj)) |
| runtime·throw("ptrbuf has to be smaller than WorkBuf"); |
| } |
| |
| while(ptrbuf < ptrbuf_end) { |
| obj = ptrbuf->p; |
| ti = ptrbuf->ti; |
| ptrbuf++; |
| |
| // obj belongs to interval [mheap.arena_start, mheap.arena_used). |
| if(Debug > 1) { |
| if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used) |
| runtime·throw("object is outside of mheap"); |
| } |
| |
| // obj may be a pointer to a live object. |
| // Try to find the beginning of the object. |
| |
| // Round down to word boundary. |
| if(((uintptr)obj & ((uintptr)PtrSize-1)) != 0) { |
| obj = (void*)((uintptr)obj & ~((uintptr)PtrSize-1)); |
| ti = 0; |
| } |
| |
| // Find bits for this word. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| |
| // Pointing at the beginning of a block? |
| if((bits & (bitAllocated|bitBlockBoundary)) != 0) { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.flushptrbuf.foundbit, 1); |
| goto found; |
| } |
| |
| ti = 0; |
| |
| // Pointing just past the beginning? |
| // Scan backward a little to find a block boundary. |
| for(j=shift; j-->0; ) { |
| if(((xbits>>j) & (bitAllocated|bitBlockBoundary)) != 0) { |
| obj = (byte*)obj - (shift-j)*PtrSize; |
| shift = j; |
| bits = xbits>>shift; |
| if(CollectStats) |
| runtime·xadd64(&gcstats.flushptrbuf.foundword, 1); |
| goto found; |
| } |
| } |
| |
| // Otherwise consult span table to find beginning. |
| // (Manually inlined copy of MHeap_LookupMaybe.) |
| k = (uintptr)obj>>PageShift; |
| x = k; |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime·mheap.spans[x]; |
| if(s == nil || k < s->start || obj >= s->limit || s->state != MSpanInUse) |
| continue; |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass == 0) { |
| obj = p; |
| } else { |
| size = s->elemsize; |
| int32 i = ((byte*)obj - p)/size; |
| obj = p+i*size; |
| } |
| |
| // Now that we know the object header, reload bits. |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| xbits = *bitp; |
| bits = xbits >> shift; |
| if(CollectStats) |
| runtime·xadd64(&gcstats.flushptrbuf.foundspan, 1); |
| |
| found: |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // Only care about allocated and not marked. |
| if((bits & (bitAllocated|bitMarked)) != bitAllocated) |
| continue; |
| if(work.nproc == 1) |
| *bitp |= bitMarked<<shift; |
| else { |
| for(;;) { |
| x = *bitp; |
| if(x & (bitMarked<<shift)) |
| goto continue_obj; |
| if(runtime·casp((void**)bitp, (void*)x, (void*)(x|(bitMarked<<shift)))) |
| break; |
| } |
| } |
| |
| // If object has no pointers, don't need to scan further. |
| if((bits & bitScan) == 0) |
| continue; |
| |
| // Ask span about size class. |
| // (Manually inlined copy of MHeap_Lookup.) |
| x = (uintptr)obj >> PageShift; |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime·mheap.spans[x]; |
| |
| PREFETCH(obj); |
| |
| *wp = (Obj){obj, s->elemsize, ti}; |
| wp++; |
| nobj++; |
| continue_obj:; |
| } |
| |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + nobj; |
| } |
| |
| sbuf->wp = wp; |
| sbuf->wbuf = wbuf; |
| sbuf->nobj = nobj; |
| } |
| |
| static void |
| flushobjbuf(Scanbuf *sbuf) |
| { |
| uintptr nobj, off; |
| Obj *wp, obj; |
| Workbuf *wbuf; |
| Obj *objbuf; |
| Obj *objbuf_end; |
| |
| wp = sbuf->wp; |
| wbuf = sbuf->wbuf; |
| nobj = sbuf->nobj; |
| |
| objbuf = sbuf->obj.begin; |
| objbuf_end = sbuf->obj.pos; |
| sbuf->obj.pos = sbuf->obj.begin; |
| |
| while(objbuf < objbuf_end) { |
| obj = *objbuf++; |
| |
| // Align obj.b to a word boundary. |
| off = (uintptr)obj.p & (PtrSize-1); |
| if(off != 0) { |
| obj.p += PtrSize - off; |
| obj.n -= PtrSize - off; |
| obj.ti = 0; |
| } |
| |
| if(obj.p == nil || obj.n == 0) |
| continue; |
| |
| // If buffer is full, get a new one. |
| if(wbuf == nil || nobj >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = wbuf->obj; |
| nobj = 0; |
| } |
| |
| *wp = obj; |
| wp++; |
| nobj++; |
| } |
| |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + nobj; |
| } |
| |
| sbuf->wp = wp; |
| sbuf->wbuf = wbuf; |
| sbuf->nobj = nobj; |
| } |
| |
| // Program that scans the whole block and treats every block element as a potential pointer |
| static uintptr defaultProg[2] = {PtrSize, GC_DEFAULT_PTR}; |
| |
| // Hchan program |
| static uintptr chanProg[2] = {0, GC_CHAN}; |
| |
| // Local variables of a program fragment or loop |
| typedef struct Frame Frame; |
| struct Frame { |
| uintptr count, elemsize, b; |
| uintptr *loop_or_ret; |
| }; |
| |
| // Sanity check for the derived type info objti. |
| static void |
| checkptr(void *obj, uintptr objti) |
| { |
| uintptr *pc1, *pc2, type, tisize, i, j, x; |
| byte *objstart; |
| Type *t; |
| MSpan *s; |
| |
| if(!Debug) |
| runtime·throw("checkptr is debug only"); |
| |
| if(obj < runtime·mheap.arena_start || obj >= runtime·mheap.arena_used) |
| return; |
| type = runtime·gettype(obj); |
| t = (Type*)(type & ~(uintptr)(PtrSize-1)); |
| if(t == nil) |
| return; |
| x = (uintptr)obj >> PageShift; |
| x -= (uintptr)(runtime·mheap.arena_start)>>PageShift; |
| s = runtime·mheap.spans[x]; |
| objstart = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass != 0) { |
| i = ((byte*)obj - objstart)/s->elemsize; |
| objstart += i*s->elemsize; |
| } |
| tisize = *(uintptr*)objti; |
| // Sanity check for object size: it should fit into the memory block. |
| if((byte*)obj + tisize > objstart + s->elemsize) { |
| runtime·printf("object of type '%S' at %p/%p does not fit in block %p/%p\n", |
| *t->string, obj, tisize, objstart, s->elemsize); |
| runtime·throw("invalid gc type info"); |
| } |
| if(obj != objstart) |
| return; |
| // If obj points to the beginning of the memory block, |
| // check type info as well. |
| if(t->string == nil || |
| // Gob allocates unsafe pointers for indirection. |
| (runtime·strcmp(t->string->str, (byte*)"unsafe.Pointer") && |
| // Runtime and gc think differently about closures. |
| runtime·strstr(t->string->str, (byte*)"struct { F uintptr") != t->string->str)) { |
| pc1 = (uintptr*)objti; |
| pc2 = (uintptr*)t->gc; |
| // A simple best-effort check until first GC_END. |
| for(j = 1; pc1[j] != GC_END && pc2[j] != GC_END; j++) { |
| if(pc1[j] != pc2[j]) { |
| runtime·printf("invalid gc type info for '%s', type info %p [%d]=%p, block info %p [%d]=%p\n", |
| t->string ? (int8*)t->string->str : (int8*)"?", pc1, (int32)j, pc1[j], pc2, (int32)j, pc2[j]); |
| runtime·throw("invalid gc type info"); |
| } |
| } |
| } |
| } |
| |
| // scanblock scans a block of n bytes starting at pointer b for references |
| // to other objects, scanning any it finds recursively until there are no |
| // unscanned objects left. Instead of using an explicit recursion, it keeps |
| // a work list in the Workbuf* structures and loops in the main function |
| // body. Keeping an explicit work list is easier on the stack allocator and |
| // more efficient. |
| static void |
| scanblock(Workbuf *wbuf, bool keepworking) |
| { |
| byte *b, *arena_start, *arena_used; |
| uintptr n, i, end_b, elemsize, size, ti, objti, count, type, nobj; |
| uintptr *pc, precise_type, nominal_size; |
| uintptr *chan_ret, chancap; |
| void *obj; |
| Type *t, *et; |
| Slice *sliceptr; |
| String *stringptr; |
| Frame *stack_ptr, stack_top, stack[GC_STACK_CAPACITY+4]; |
| BufferList *scanbuffers; |
| Scanbuf sbuf; |
| Eface *eface; |
| Iface *iface; |
| Hchan *chan; |
| ChanType *chantype; |
| Obj *wp; |
| |
| if(sizeof(Workbuf) % WorkbufSize != 0) |
| runtime·throw("scanblock: size of Workbuf is suboptimal"); |
| |
| // Memory arena parameters. |
| arena_start = runtime·mheap.arena_start; |
| arena_used = runtime·mheap.arena_used; |
| |
| stack_ptr = stack+nelem(stack)-1; |
| |
| precise_type = false; |
| nominal_size = 0; |
| |
| if(wbuf) { |
| nobj = wbuf->nobj; |
| wp = &wbuf->obj[nobj]; |
| } else { |
| nobj = 0; |
| wp = nil; |
| } |
| |
| // Initialize sbuf |
| scanbuffers = &bufferList[m->helpgc]; |
| |
| sbuf.ptr.begin = sbuf.ptr.pos = &scanbuffers->ptrtarget[0]; |
| sbuf.ptr.end = sbuf.ptr.begin + nelem(scanbuffers->ptrtarget); |
| |
| sbuf.obj.begin = sbuf.obj.pos = &scanbuffers->obj[0]; |
| sbuf.obj.end = sbuf.obj.begin + nelem(scanbuffers->obj); |
| |
| sbuf.wbuf = wbuf; |
| sbuf.wp = wp; |
| sbuf.nobj = nobj; |
| |
| // (Silence the compiler) |
| chan = nil; |
| chantype = nil; |
| chan_ret = nil; |
| |
| goto next_block; |
| |
| for(;;) { |
| // Each iteration scans the block b of length n, queueing pointers in |
| // the work buffer. |
| |
| if(CollectStats) { |
| runtime·xadd64(&gcstats.nbytes, n); |
| runtime·xadd64(&gcstats.obj.sum, sbuf.nobj); |
| runtime·xadd64(&gcstats.obj.cnt, 1); |
| } |
| |
| if(ti != 0) { |
| if(Debug > 1) { |
| runtime·printf("scanblock %p %D ti %p\n", b, (int64)n, ti); |
| } |
| pc = (uintptr*)(ti & ~(uintptr)PC_BITS); |
| precise_type = (ti & PRECISE); |
| stack_top.elemsize = pc[0]; |
| if(!precise_type) |
| nominal_size = pc[0]; |
| if(ti & LOOP) { |
| stack_top.count = 0; // 0 means an infinite number of iterations |
| stack_top.loop_or_ret = pc+1; |
| } else { |
| stack_top.count = 1; |
| } |
| if(Debug) { |
| // Simple sanity check for provided type info ti: |
| // The declared size of the object must be not larger than the actual size |
| // (it can be smaller due to inferior pointers). |
| // It's difficult to make a comprehensive check due to inferior pointers, |
| // reflection, gob, etc. |
| if(pc[0] > n) { |
| runtime·printf("invalid gc type info: type info size %p, block size %p\n", pc[0], n); |
| runtime·throw("invalid gc type info"); |
| } |
| } |
| } else if(UseSpanType) { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.obj.notype, 1); |
| |
| type = runtime·gettype(b); |
| if(type != 0) { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.obj.typelookup, 1); |
| |
| t = (Type*)(type & ~(uintptr)(PtrSize-1)); |
| switch(type & (PtrSize-1)) { |
| case TypeInfo_SingleObject: |
| pc = (uintptr*)t->gc; |
| precise_type = true; // type information about 'b' is precise |
| stack_top.count = 1; |
| stack_top.elemsize = pc[0]; |
| break; |
| case TypeInfo_Array: |
| pc = (uintptr*)t->gc; |
| if(pc[0] == 0) |
| goto next_block; |
| precise_type = true; // type information about 'b' is precise |
| stack_top.count = 0; // 0 means an infinite number of iterations |
| stack_top.elemsize = pc[0]; |
| stack_top.loop_or_ret = pc+1; |
| break; |
| case TypeInfo_Chan: |
| chan = (Hchan*)b; |
| chantype = (ChanType*)t; |
| chan_ret = nil; |
| pc = chanProg; |
| break; |
| default: |
| if(Debug > 1) |
| runtime·printf("scanblock %p %D type %p %S\n", b, (int64)n, type, *t->string); |
| runtime·throw("scanblock: invalid type"); |
| return; |
| } |
| if(Debug > 1) |
| runtime·printf("scanblock %p %D type %p %S pc=%p\n", b, (int64)n, type, *t->string, pc); |
| } else { |
| pc = defaultProg; |
| if(Debug > 1) |
| runtime·printf("scanblock %p %D unknown type\n", b, (int64)n); |
| } |
| } else { |
| pc = defaultProg; |
| if(Debug > 1) |
| runtime·printf("scanblock %p %D no span types\n", b, (int64)n); |
| } |
| |
| if(IgnorePreciseGC) |
| pc = defaultProg; |
| |
| pc++; |
| stack_top.b = (uintptr)b; |
| end_b = (uintptr)b + n - PtrSize; |
| |
| for(;;) { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.instr[pc[0]], 1); |
| |
| obj = nil; |
| objti = 0; |
| switch(pc[0]) { |
| case GC_PTR: |
| obj = *(void**)(stack_top.b + pc[1]); |
| objti = pc[2]; |
| if(Debug > 2) |
| runtime·printf("gc_ptr @%p: %p ti=%p\n", stack_top.b+pc[1], obj, objti); |
| pc += 3; |
| if(Debug) |
| checkptr(obj, objti); |
| break; |
| |
| case GC_SLICE: |
| sliceptr = (Slice*)(stack_top.b + pc[1]); |
| if(Debug > 2) |
| runtime·printf("gc_slice @%p: %p/%D/%D\n", sliceptr, sliceptr->array, (int64)sliceptr->len, (int64)sliceptr->cap); |
| if(sliceptr->cap != 0) { |
| obj = sliceptr->array; |
| // Can't use slice element type for scanning, |
| // because if it points to an array embedded |
| // in the beginning of a struct, |
| // we will scan the whole struct as the slice. |
| // So just obtain type info from heap. |
| } |
| pc += 3; |
| break; |
| |
| case GC_APTR: |
| obj = *(void**)(stack_top.b + pc[1]); |
| if(Debug > 2) |
| runtime·printf("gc_aptr @%p: %p\n", stack_top.b+pc[1], obj); |
| pc += 2; |
| break; |
| |
| case GC_STRING: |
| stringptr = (String*)(stack_top.b + pc[1]); |
| if(Debug > 2) |
| runtime·printf("gc_string @%p: %p/%D\n", stack_top.b+pc[1], stringptr->str, (int64)stringptr->len); |
| if(stringptr->len != 0) |
| markonly(stringptr->str); |
| pc += 2; |
| continue; |
| |
| case GC_EFACE: |
| eface = (Eface*)(stack_top.b + pc[1]); |
| pc += 2; |
| if(Debug > 2) |
| runtime·printf("gc_eface @%p: %p %p\n", stack_top.b+pc[1], eface->type, eface->data); |
| if(eface->type == nil) |
| continue; |
| |
| // eface->type |
| t = eface->type; |
| if((void*)t >= arena_start && (void*)t < arena_used) { |
| *sbuf.ptr.pos++ = (PtrTarget){t, 0}; |
| if(sbuf.ptr.pos == sbuf.ptr.end) |
| flushptrbuf(&sbuf); |
| } |
| |
| // eface->data |
| if(eface->data >= arena_start && eface->data < arena_used) { |
| if(t->size <= sizeof(void*)) { |
| if((t->kind & KindNoPointers)) |
| continue; |
| |
| obj = eface->data; |
| if((t->kind & ~KindNoPointers) == KindPtr) { |
| // Only use type information if it is a pointer-containing type. |
| // This matches the GC programs written by cmd/gc/reflect.c's |
| // dgcsym1 in case TPTR32/case TPTR64. See rationale there. |
| et = ((PtrType*)t)->elem; |
| if(!(et->kind & KindNoPointers)) |
| objti = (uintptr)((PtrType*)t)->elem->gc; |
| } |
| } else { |
| obj = eface->data; |
| objti = (uintptr)t->gc; |
| } |
| } |
| break; |
| |
| case GC_IFACE: |
| iface = (Iface*)(stack_top.b + pc[1]); |
| pc += 2; |
| if(Debug > 2) |
| runtime·printf("gc_iface @%p: %p/%p %p\n", stack_top.b+pc[1], iface->tab, nil, iface->data); |
| if(iface->tab == nil) |
| continue; |
| |
| // iface->tab |
| if((void*)iface->tab >= arena_start && (void*)iface->tab < arena_used) { |
| *sbuf.ptr.pos++ = (PtrTarget){iface->tab, (uintptr)itabtype->gc}; |
| if(sbuf.ptr.pos == sbuf.ptr.end) |
| flushptrbuf(&sbuf); |
| } |
| |
| // iface->data |
| if(iface->data >= arena_start && iface->data < arena_used) { |
| t = iface->tab->type; |
| if(t->size <= sizeof(void*)) { |
| if((t->kind & KindNoPointers)) |
| continue; |
| |
| obj = iface->data; |
| if((t->kind & ~KindNoPointers) == KindPtr) { |
| // Only use type information if it is a pointer-containing type. |
| // This matches the GC programs written by cmd/gc/reflect.c's |
| // dgcsym1 in case TPTR32/case TPTR64. See rationale there. |
| et = ((PtrType*)t)->elem; |
| if(!(et->kind & KindNoPointers)) |
| objti = (uintptr)((PtrType*)t)->elem->gc; |
| } |
| } else { |
| obj = iface->data; |
| objti = (uintptr)t->gc; |
| } |
| } |
| break; |
| |
| case GC_DEFAULT_PTR: |
| while(stack_top.b <= end_b) { |
| obj = *(byte**)stack_top.b; |
| if(Debug > 2) |
| runtime·printf("gc_default_ptr @%p: %p\n", stack_top.b, obj); |
| stack_top.b += PtrSize; |
| if(obj >= arena_start && obj < arena_used) { |
| *sbuf.ptr.pos++ = (PtrTarget){obj, 0}; |
| if(sbuf.ptr.pos == sbuf.ptr.end) |
| flushptrbuf(&sbuf); |
| } |
| } |
| goto next_block; |
| |
| case GC_END: |
| if(--stack_top.count != 0) { |
| // Next iteration of a loop if possible. |
| stack_top.b += stack_top.elemsize; |
| if(stack_top.b + stack_top.elemsize <= end_b+PtrSize) { |
| pc = stack_top.loop_or_ret; |
| continue; |
| } |
| i = stack_top.b; |
| } else { |
| // Stack pop if possible. |
| if(stack_ptr+1 < stack+nelem(stack)) { |
| pc = stack_top.loop_or_ret; |
| stack_top = *(++stack_ptr); |
| continue; |
| } |
| i = (uintptr)b + nominal_size; |
| } |
| if(!precise_type) { |
| // Quickly scan [b+i,b+n) for possible pointers. |
| for(; i<=end_b; i+=PtrSize) { |
| if(*(byte**)i != nil) { |
| // Found a value that may be a pointer. |
| // Do a rescan of the entire block. |
| enqueue((Obj){b, n, 0}, &sbuf.wbuf, &sbuf.wp, &sbuf.nobj); |
| if(CollectStats) { |
| runtime·xadd64(&gcstats.rescan, 1); |
| runtime·xadd64(&gcstats.rescanbytes, n); |
| } |
| break; |
| } |
| } |
| } |
| goto next_block; |
| |
| case GC_ARRAY_START: |
| i = stack_top.b + pc[1]; |
| count = pc[2]; |
| elemsize = pc[3]; |
| pc += 4; |
| |
| // Stack push. |
| *stack_ptr-- = stack_top; |
| stack_top = (Frame){count, elemsize, i, pc}; |
| continue; |
| |
| case GC_ARRAY_NEXT: |
| if(--stack_top.count != 0) { |
| stack_top.b += stack_top.elemsize; |
| pc = stack_top.loop_or_ret; |
| } else { |
| // Stack pop. |
| stack_top = *(++stack_ptr); |
| pc += 1; |
| } |
| continue; |
| |
| case GC_CALL: |
| // Stack push. |
| *stack_ptr-- = stack_top; |
| stack_top = (Frame){1, 0, stack_top.b + pc[1], pc+3 /*return address*/}; |
| pc = (uintptr*)((byte*)pc + *(int32*)(pc+2)); // target of the CALL instruction |
| continue; |
| |
| case GC_REGION: |
| obj = (void*)(stack_top.b + pc[1]); |
| size = pc[2]; |
| objti = pc[3]; |
| pc += 4; |
| |
| if(Debug > 2) |
| runtime·printf("gc_region @%p: %D %p\n", stack_top.b+pc[1], (int64)size, objti); |
| *sbuf.obj.pos++ = (Obj){obj, size, objti}; |
| if(sbuf.obj.pos == sbuf.obj.end) |
| flushobjbuf(&sbuf); |
| continue; |
| |
| case GC_CHAN_PTR: |
| chan = *(Hchan**)(stack_top.b + pc[1]); |
| if(Debug > 2 && chan != nil) |
| runtime·printf("gc_chan_ptr @%p: %p/%D/%D %p\n", stack_top.b+pc[1], chan, (int64)chan->qcount, (int64)chan->dataqsiz, pc[2]); |
| if(chan == nil) { |
| pc += 3; |
| continue; |
| } |
| if(markonly(chan)) { |
| chantype = (ChanType*)pc[2]; |
| if(!(chantype->elem->kind & KindNoPointers)) { |
| // Start chanProg. |
| chan_ret = pc+3; |
| pc = chanProg+1; |
| continue; |
| } |
| } |
| pc += 3; |
| continue; |
| |
| case GC_CHAN: |
| // There are no heap pointers in struct Hchan, |
| // so we can ignore the leading sizeof(Hchan) bytes. |
| if(!(chantype->elem->kind & KindNoPointers)) { |
| // Channel's buffer follows Hchan immediately in memory. |
| // Size of buffer (cap(c)) is second int in the chan struct. |
| chancap = ((uintgo*)chan)[1]; |
| if(chancap > 0) { |
| // TODO(atom): split into two chunks so that only the |
| // in-use part of the circular buffer is scanned. |
| // (Channel routines zero the unused part, so the current |
| // code does not lead to leaks, it's just a little inefficient.) |
| *sbuf.obj.pos++ = (Obj){(byte*)chan+runtime·Hchansize, chancap*chantype->elem->size, |
| (uintptr)chantype->elem->gc | PRECISE | LOOP}; |
| if(sbuf.obj.pos == sbuf.obj.end) |
| flushobjbuf(&sbuf); |
| } |
| } |
| if(chan_ret == nil) |
| goto next_block; |
| pc = chan_ret; |
| continue; |
| |
| default: |
| runtime·printf("runtime: invalid GC instruction %p at %p\n", pc[0], pc); |
| runtime·throw("scanblock: invalid GC instruction"); |
| return; |
| } |
| |
| if(obj >= arena_start && obj < arena_used) { |
| *sbuf.ptr.pos++ = (PtrTarget){obj, objti}; |
| if(sbuf.ptr.pos == sbuf.ptr.end) |
| flushptrbuf(&sbuf); |
| } |
| } |
| |
| next_block: |
| // Done scanning [b, b+n). Prepare for the next iteration of |
| // the loop by setting b, n, ti to the parameters for the next block. |
| |
| if(sbuf.nobj == 0) { |
| flushptrbuf(&sbuf); |
| flushobjbuf(&sbuf); |
| |
| if(sbuf.nobj == 0) { |
| if(!keepworking) { |
| if(sbuf.wbuf) |
| putempty(sbuf.wbuf); |
| return; |
| } |
| // Emptied our buffer: refill. |
| sbuf.wbuf = getfull(sbuf.wbuf); |
| if(sbuf.wbuf == nil) |
| return; |
| sbuf.nobj = sbuf.wbuf->nobj; |
| sbuf.wp = sbuf.wbuf->obj + sbuf.wbuf->nobj; |
| } |
| } |
| |
| // Fetch b from the work buffer. |
| --sbuf.wp; |
| b = sbuf.wp->p; |
| n = sbuf.wp->n; |
| ti = sbuf.wp->ti; |
| sbuf.nobj--; |
| } |
| } |
| |
| // Append obj to the work buffer. |
| // _wbuf, _wp, _nobj are input/output parameters and are specifying the work buffer. |
| static void |
| enqueue(Obj obj, Workbuf **_wbuf, Obj **_wp, uintptr *_nobj) |
| { |
| uintptr nobj, off; |
| Obj *wp; |
| Workbuf *wbuf; |
| |
| if(Debug > 1) |
| runtime·printf("append obj(%p %D %p)\n", obj.p, (int64)obj.n, obj.ti); |
| |
| // Align obj.b to a word boundary. |
| off = (uintptr)obj.p & (PtrSize-1); |
| if(off != 0) { |
| obj.p += PtrSize - off; |
| obj.n -= PtrSize - off; |
| obj.ti = 0; |
| } |
| |
| if(obj.p == nil || obj.n == 0) |
| return; |
| |
| // Load work buffer state |
| wp = *_wp; |
| wbuf = *_wbuf; |
| nobj = *_nobj; |
| |
| // If another proc wants a pointer, give it some. |
| if(work.nwait > 0 && nobj > handoffThreshold && work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = wbuf->obj + nobj; |
| } |
| |
| // If buffer is full, get a new one. |
| if(wbuf == nil || nobj >= nelem(wbuf->obj)) { |
| if(wbuf != nil) |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| wp = wbuf->obj; |
| nobj = 0; |
| } |
| |
| *wp = obj; |
| wp++; |
| nobj++; |
| |
| // Save work buffer state |
| *_wp = wp; |
| *_wbuf = wbuf; |
| *_nobj = nobj; |
| } |
| |
| static void |
| enqueue1(Workbuf **wbufp, Obj obj) |
| { |
| Workbuf *wbuf; |
| |
| wbuf = *wbufp; |
| if(wbuf->nobj >= nelem(wbuf->obj)) |
| *wbufp = wbuf = getempty(wbuf); |
| wbuf->obj[wbuf->nobj++] = obj; |
| } |
| |
| static void |
| markroot(ParFor *desc, uint32 i) |
| { |
| Workbuf *wbuf; |
| FinBlock *fb; |
| MHeap *h; |
| MSpan **allspans, *s; |
| uint32 spanidx, sg; |
| G *gp; |
| void *p; |
| |
| USED(&desc); |
| wbuf = getempty(nil); |
| // Note: if you add a case here, please also update heapdump.c:dumproots. |
| switch(i) { |
| case RootData: |
| enqueue1(&wbuf, (Obj){data, edata - data, (uintptr)gcdata}); |
| break; |
| |
| case RootBss: |
| enqueue1(&wbuf, (Obj){bss, ebss - bss, (uintptr)gcbss}); |
| break; |
| |
| case RootFinalizers: |
| for(fb=allfin; fb; fb=fb->alllink) |
| enqueue1(&wbuf, (Obj){(byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), 0}); |
| break; |
| |
| case RootSpanTypes: |
| // mark span types and MSpan.specials (to walk spans only once) |
| h = &runtime·mheap; |
| sg = h->sweepgen; |
| allspans = h->allspans; |
| for(spanidx=0; spanidx<runtime·mheap.nspan; spanidx++) { |
| Special *sp; |
| SpecialFinalizer *spf; |
| |
| s = allspans[spanidx]; |
| if(s->sweepgen != sg) { |
| runtime·printf("sweep %d %d\n", s->sweepgen, sg); |
| runtime·throw("gc: unswept span"); |
| } |
| if(s->state != MSpanInUse) |
| continue; |
| // The garbage collector ignores type pointers stored in MSpan.types: |
| // - Compiler-generated types are stored outside of heap. |
| // - The reflect package has runtime-generated types cached in its data structures. |
| // The garbage collector relies on finding the references via that cache. |
| if(s->types.compression == MTypes_Words || s->types.compression == MTypes_Bytes) |
| markonly((byte*)s->types.data); |
| for(sp = s->specials; sp != nil; sp = sp->next) { |
| if(sp->kind != KindSpecialFinalizer) |
| continue; |
| // don't mark finalized object, but scan it so we |
| // retain everything it points to. |
| spf = (SpecialFinalizer*)sp; |
| // A finalizer can be set for an inner byte of an object, find object beginning. |
| p = (void*)((s->start << PageShift) + spf->offset/s->elemsize*s->elemsize); |
| enqueue1(&wbuf, (Obj){p, s->elemsize, 0}); |
| enqueue1(&wbuf, (Obj){(void*)&spf->fn, PtrSize, 0}); |
| enqueue1(&wbuf, (Obj){(void*)&spf->fint, PtrSize, 0}); |
| enqueue1(&wbuf, (Obj){(void*)&spf->ot, PtrSize, 0}); |
| } |
| } |
| break; |
| |
| case RootFlushCaches: |
| flushallmcaches(); |
| break; |
| |
| default: |
| // the rest is scanning goroutine stacks |
| if(i - RootCount >= runtime·allglen) |
| runtime·throw("markroot: bad index"); |
| gp = runtime·allg[i - RootCount]; |
| // remember when we've first observed the G blocked |
| // needed only to output in traceback |
| if((gp->status == Gwaiting || gp->status == Gsyscall) && gp->waitsince == 0) |
| gp->waitsince = work.tstart; |
| addstackroots(gp, &wbuf); |
| break; |
| |
| } |
| |
| if(wbuf) |
| scanblock(wbuf, false); |
| } |
| |
| // Get an empty work buffer off the work.empty list, |
| // allocating new buffers as needed. |
| static Workbuf* |
| getempty(Workbuf *b) |
| { |
| if(b != nil) |
| runtime·lfstackpush(&work.full, &b->node); |
| b = (Workbuf*)runtime·lfstackpop(&work.empty); |
| if(b == nil) { |
| // Need to allocate. |
| runtime·lock(&work); |
| if(work.nchunk < sizeof *b) { |
| work.nchunk = 1<<20; |
| work.chunk = runtime·SysAlloc(work.nchunk, &mstats.gc_sys); |
| if(work.chunk == nil) |
| runtime·throw("runtime: cannot allocate memory"); |
| } |
| b = (Workbuf*)work.chunk; |
| work.chunk += sizeof *b; |
| work.nchunk -= sizeof *b; |
| runtime·unlock(&work); |
| } |
| b->nobj = 0; |
| return b; |
| } |
| |
| static void |
| putempty(Workbuf *b) |
| { |
| if(CollectStats) |
| runtime·xadd64(&gcstats.putempty, 1); |
| |
| runtime·lfstackpush(&work.empty, &b->node); |
| } |
| |
| // Get a full work buffer off the work.full list, or return nil. |
| static Workbuf* |
| getfull(Workbuf *b) |
| { |
| int32 i; |
| |
| if(CollectStats) |
| runtime·xadd64(&gcstats.getfull, 1); |
| |
| if(b != nil) |
| runtime·lfstackpush(&work.empty, &b->node); |
| b = (Workbuf*)runtime·lfstackpop(&work.full); |
| if(b != nil || work.nproc == 1) |
| return b; |
| |
| runtime·xadd(&work.nwait, +1); |
| for(i=0;; i++) { |
| if(work.full != 0) { |
| runtime·xadd(&work.nwait, -1); |
| b = (Workbuf*)runtime·lfstackpop(&work.full); |
| if(b != nil) |
| return b; |
| runtime·xadd(&work.nwait, +1); |
| } |
| if(work.nwait == work.nproc) |
| return nil; |
| if(i < 10) { |
| m->gcstats.nprocyield++; |
| runtime·procyield(20); |
| } else if(i < 20) { |
| m->gcstats.nosyield++; |
| runtime·osyield(); |
| } else { |
| m->gcstats.nsleep++; |
| runtime·usleep(100); |
| } |
| } |
| } |
| |
| static Workbuf* |
| handoff(Workbuf *b) |
| { |
| int32 n; |
| Workbuf *b1; |
| |
| // Make new buffer with half of b's pointers. |
| b1 = getempty(nil); |
| n = b->nobj/2; |
| b->nobj -= n; |
| b1->nobj = n; |
| runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); |
| m->gcstats.nhandoff++; |
| m->gcstats.nhandoffcnt += n; |
| |
| // Put b on full list - let first half of b get stolen. |
| runtime·lfstackpush(&work.full, &b->node); |
| return b1; |
| } |
| |
| extern byte pclntab[]; // base for f->ptrsoff |
| |
| BitVector |
| runtime·stackmapdata(StackMap *stackmap, int32 n) |
| { |
| if(n < 0 || n >= stackmap->n) |
| runtime·throw("stackmapdata: index out of range"); |
| return (BitVector){stackmap->nbit, stackmap->data + n*((stackmap->nbit+31)/32)}; |
| } |
| |
| // Scans an interface data value when the interface type indicates |
| // that it is a pointer. |
| static void |
| scaninterfacedata(uintptr bits, byte *scanp, bool afterprologue, void *wbufp) |
| { |
| Itab *tab; |
| Type *type; |
| |
| if(runtime·precisestack && afterprologue) { |
| if(bits == BitsIface) { |
| tab = *(Itab**)scanp; |
| if(tab->type->size <= sizeof(void*) && (tab->type->kind & KindNoPointers)) |
| return; |
| } else { // bits == BitsEface |
| type = *(Type**)scanp; |
| if(type->size <= sizeof(void*) && (type->kind & KindNoPointers)) |
| return; |
| } |
| } |
| enqueue1(wbufp, (Obj){scanp+PtrSize, PtrSize, 0}); |
| } |
| |
| // Starting from scanp, scans words corresponding to set bits. |
| static void |
| scanbitvector(Func *f, bool precise, byte *scanp, BitVector *bv, bool afterprologue, void *wbufp) |
| { |
| uintptr word, bits; |
| uint32 *wordp; |
| int32 i, remptrs; |
| byte *p; |
| |
| wordp = bv->data; |
| for(remptrs = bv->n; remptrs > 0; remptrs -= 32) { |
| word = *wordp++; |
| if(remptrs < 32) |
| i = remptrs; |
| else |
| i = 32; |
| i /= BitsPerPointer; |
| for(; i > 0; i--) { |
| bits = word & 3; |
| switch(bits) { |
| case BitsDead: |
| if(runtime·debug.gcdead) |
| *(uintptr*)scanp = PoisonGC; |
| break; |
| case BitsScalar: |
| break; |
| case BitsPointer: |
| p = *(byte**)scanp; |
| if(p != nil) { |
| if(Debug > 2) |
| runtime·printf("frame %s @%p: ptr %p\n", runtime·funcname(f), scanp, p); |
| if(precise && (p < (byte*)PageSize || (uintptr)p == PoisonGC || (uintptr)p == PoisonStack)) { |
| // Looks like a junk value in a pointer slot. |
| // Liveness analysis wrong? |
| m->traceback = 2; |
| runtime·printf("bad pointer in frame %s at %p: %p\n", runtime·funcname(f), scanp, p); |
| runtime·throw("bad pointer in scanbitvector"); |
| } |
| enqueue1(wbufp, (Obj){scanp, PtrSize, 0}); |
| } |
| break; |
| case BitsMultiWord: |
| p = scanp; |
| word >>= BitsPerPointer; |
| scanp += PtrSize; |
| i--; |
| if(i == 0) { |
| // Get next chunk of bits |
| remptrs -= 32; |
| word = *wordp++; |
| if(remptrs < 32) |
| i = remptrs; |
| else |
| i = 32; |
| i /= BitsPerPointer; |
| } |
| switch(word & 3) { |
| case BitsString: |
| if(Debug > 2) |
| runtime·printf("frame %s @%p: string %p/%D\n", runtime·funcname(f), p, ((String*)p)->str, (int64)((String*)p)->len); |
| if(((String*)p)->len != 0) |
| markonly(((String*)p)->str); |
| break; |
| case BitsSlice: |
| word >>= BitsPerPointer; |
| scanp += PtrSize; |
| i--; |
| if(i == 0) { |
| // Get next chunk of bits |
| remptrs -= 32; |
| word = *wordp++; |
| if(remptrs < 32) |
| i = remptrs; |
| else |
| i = 32; |
| i /= BitsPerPointer; |
| } |
| if(Debug > 2) |
| runtime·printf("frame %s @%p: slice %p/%D/%D\n", runtime·funcname(f), p, ((Slice*)p)->array, (int64)((Slice*)p)->len, (int64)((Slice*)p)->cap); |
| if(((Slice*)p)->cap < ((Slice*)p)->len) { |
| m->traceback = 2; |
| runtime·printf("bad slice in frame %s at %p: %p/%p/%p\n", runtime·funcname(f), p, ((byte**)p)[0], ((byte**)p)[1], ((byte**)p)[2]); |
| runtime·throw("slice capacity smaller than length"); |
| } |
| if(((Slice*)p)->cap != 0) |
| enqueue1(wbufp, (Obj){p, PtrSize, 0}); |
| break; |
| case BitsIface: |
| case BitsEface: |
| if(*(byte**)p != nil) { |
| if(Debug > 2) { |
| if((word&3) == BitsEface) |
| runtime·printf("frame %s @%p: eface %p %p\n", runtime·funcname(f), p, ((uintptr*)p)[0], ((uintptr*)p)[1]); |
| else |
| runtime·printf("frame %s @%p: iface %p %p\n", runtime·funcname(f), p, ((uintptr*)p)[0], ((uintptr*)p)[1]); |
| } |
| scaninterfacedata(word & 3, p, afterprologue, wbufp); |
| } |
| break; |
| } |
| } |
| word >>= BitsPerPointer; |
| scanp += PtrSize; |
| } |
| } |
| } |
| |
| // Scan a stack frame: local variables and function arguments/results. |
| static bool |
| scanframe(Stkframe *frame, void *wbufp) |
| { |
| Func *f; |
| StackMap *stackmap; |
| BitVector bv; |
| uintptr size; |
| uintptr targetpc; |
| int32 pcdata; |
| bool afterprologue; |
| bool precise; |
| |
| f = frame->fn; |
| targetpc = frame->continpc; |
| if(targetpc == 0) { |
| // Frame is dead. |
| return true; |
| } |
| if(targetpc != f->entry) |
| targetpc--; |
| pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc); |
| if(pcdata == -1) { |
| // We do not have a valid pcdata value but there might be a |
| // stackmap for this function. It is likely that we are looking |
| // at the function prologue, assume so and hope for the best. |
| pcdata = 0; |
| } |
| |
| // Scan local variables if stack frame has been allocated. |
| // Use pointer information if known. |
| afterprologue = (frame->varp > (byte*)frame->sp); |
| precise = false; |
| if(afterprologue) { |
| stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps); |
| if(stackmap == nil) { |
| // No locals information, scan everything. |
| size = frame->varp - (byte*)frame->sp; |
| if(Debug > 2) |
| runtime·printf("frame %s unsized locals %p+%p\n", runtime·funcname(f), frame->varp-size, size); |
| enqueue1(wbufp, (Obj){frame->varp - size, size, 0}); |
| } else if(stackmap->n < 0) { |
| // Locals size information, scan just the locals. |
| size = -stackmap->n; |
| if(Debug > 2) |
| runtime·printf("frame %s conservative locals %p+%p\n", runtime·funcname(f), frame->varp-size, size); |
| enqueue1(wbufp, (Obj){frame->varp - size, size, 0}); |
| } else if(stackmap->n > 0) { |
| // Locals bitmap information, scan just the pointers in |
| // locals. |
| if(pcdata < 0 || pcdata >= stackmap->n) { |
| // don't know where we are |
| runtime·printf("pcdata is %d and %d stack map entries for %s (targetpc=%p)\n", |
| pcdata, stackmap->n, runtime·funcname(f), targetpc); |
| runtime·throw("scanframe: bad symbol table"); |
| } |
| bv = runtime·stackmapdata(stackmap, pcdata); |
| size = (bv.n * PtrSize) / BitsPerPointer; |
| precise = true; |
| scanbitvector(f, true, frame->varp - size, &bv, afterprologue, wbufp); |
| } |
| } |
| |
| // Scan arguments. |
| // Use pointer information if known. |
| stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps); |
| if(stackmap != nil) { |
| bv = runtime·stackmapdata(stackmap, pcdata); |
| scanbitvector(f, precise, frame->argp, &bv, true, wbufp); |
| } else { |
| if(Debug > 2) |
| runtime·printf("frame %s conservative args %p+%p\n", runtime·funcname(f), frame->argp, (uintptr)frame->arglen); |
| enqueue1(wbufp, (Obj){frame->argp, frame->arglen, 0}); |
| } |
| return true; |
| } |
| |
| static void |
| addstackroots(G *gp, Workbuf **wbufp) |
| { |
| M *mp; |
| int32 n; |
| Stktop *stk; |
| uintptr sp, guard; |
| void *base; |
| uintptr size; |
| |
| switch(gp->status){ |
| default: |
| runtime·printf("unexpected G.status %d (goroutine %p %D)\n", gp->status, gp, gp->goid); |
| runtime·throw("mark - bad status"); |
| case Gdead: |
| return; |
| case Grunning: |
| runtime·throw("mark - world not stopped"); |
| case Grunnable: |
| case Gsyscall: |
| case Gwaiting: |
| break; |
| } |
| |
| if(gp == g) |
| runtime·throw("can't scan our own stack"); |
| if((mp = gp->m) != nil && mp->helpgc) |
| runtime·throw("can't scan gchelper stack"); |
| |
| if(gp->syscallstack != (uintptr)nil) { |
| // Scanning another goroutine that is about to enter or might |
| // have just exited a system call. It may be executing code such |
| // as schedlock and may have needed to start a new stack segment. |
| // Use the stack segment and stack pointer at the time of |
| // the system call instead, since that won't change underfoot. |
| sp = gp->syscallsp; |
| stk = (Stktop*)gp->syscallstack; |
| guard = gp->syscallguard; |
| } else { |
| // Scanning another goroutine's stack. |
| // The goroutine is usually asleep (the world is stopped). |
| sp = gp->sched.sp; |
| stk = (Stktop*)gp->stackbase; |
| guard = gp->stackguard; |
| // For function about to start, context argument is a root too. |
| if(gp->sched.ctxt != 0 && runtime·mlookup(gp->sched.ctxt, &base, &size, nil)) |
| enqueue1(wbufp, (Obj){base, size, 0}); |
| } |
| if(ScanStackByFrames) { |
| USED(sp); |
| USED(stk); |
| USED(guard); |
| runtime·gentraceback(~(uintptr)0, ~(uintptr)0, 0, gp, 0, nil, 0x7fffffff, scanframe, wbufp, false); |
| } else { |
| n = 0; |
| while(stk) { |
| if(sp < guard-StackGuard || (uintptr)stk < sp) { |
| runtime·printf("scanstack inconsistent: g%D#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk); |
| runtime·throw("scanstack"); |
| } |
| if(Debug > 2) |
| runtime·printf("conservative stack %p+%p\n", (byte*)sp, (uintptr)stk-sp); |
| enqueue1(wbufp, (Obj){(byte*)sp, (uintptr)stk - sp, (uintptr)defaultProg | PRECISE | LOOP}); |
| sp = stk->gobuf.sp; |
| guard = stk->stackguard; |
| stk = (Stktop*)stk->stackbase; |
| n++; |
| } |
| } |
| } |
| |
| void |
| runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot) |
| { |
| FinBlock *block; |
| Finalizer *f; |
| |
| runtime·lock(&finlock); |
| if(finq == nil || finq->cnt == finq->cap) { |
| if(finc == nil) { |
| finc = runtime·persistentalloc(FinBlockSize, 0, &mstats.gc_sys); |
| finc->cap = (FinBlockSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; |
| finc->alllink = allfin; |
| allfin = finc; |
| } |
| block = finc; |
| finc = block->next; |
| block->next = finq; |
| finq = block; |
| } |
| f = &finq->fin[finq->cnt]; |
| finq->cnt++; |
| f->fn = fn; |
| f->nret = nret; |
| f->fint = fint; |
| f->ot = ot; |
| f->arg = p; |
| runtime·fingwake = true; |
| runtime·unlock(&finlock); |
| } |
| |
| void |
| runtime·iterate_finq(void (*callback)(FuncVal*, byte*, uintptr, Type*, PtrType*)) |
| { |
| FinBlock *fb; |
| Finalizer *f; |
| uintptr i; |
| |
| for(fb = allfin; fb; fb = fb->alllink) { |
| for(i = 0; i < fb->cnt; i++) { |
| f = &fb->fin[i]; |
| callback(f->fn, f->arg, f->nret, f->fint, f->ot); |
| } |
| } |
| } |
| |
| void |
| runtime·MSpan_EnsureSwept(MSpan *s) |
| { |
| uint32 sg; |
| |
| // Caller must disable preemption. |
| // Otherwise when this function returns the span can become unswept again |
| // (if GC is triggered on another goroutine). |
| if(m->locks == 0 && m->mallocing == 0 && g != m->g0) |
| runtime·throw("MSpan_EnsureSwept: m is not locked"); |
| |
| sg = runtime·mheap.sweepgen; |
| if(runtime·atomicload(&s->sweepgen) == sg) |
| return; |
| if(runtime·cas(&s->sweepgen, sg-2, sg-1)) { |
| runtime·MSpan_Sweep(s); |
| return; |
| } |
| // unfortunate condition, and we don't have efficient means to wait |
| while(runtime·atomicload(&s->sweepgen) != sg) |
| runtime·osyield(); |
| } |
| |
| // Sweep frees or collects finalizers for blocks not marked in the mark phase. |
| // It clears the mark bits in preparation for the next GC round. |
| // Returns true if the span was returned to heap. |
| bool |
| runtime·MSpan_Sweep(MSpan *s) |
| { |
| int32 cl, n, npages, nfree; |
| uintptr size, off, *bitp, shift, bits; |
| uint32 sweepgen; |
| byte *p; |
| MCache *c; |
| byte *arena_start; |
| MLink head, *end; |
| byte *type_data; |
| byte compression; |
| uintptr type_data_inc; |
| MLink *x; |
| Special *special, **specialp, *y; |
| bool res, sweepgenset; |
| |
| // It's critical that we enter this function with preemption disabled, |
| // GC must not start while we are in the middle of this function. |
| if(m->locks == 0 && m->mallocing == 0 && g != m->g0) |
| runtime·throw("MSpan_Sweep: m is not locked"); |
| sweepgen = runtime·mheap.sweepgen; |
| if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) { |
| runtime·printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n", |
| s->state, s->sweepgen, sweepgen); |
| runtime·throw("MSpan_Sweep: bad span state"); |
| } |
| arena_start = runtime·mheap.arena_start; |
| cl = s->sizeclass; |
| size = s->elemsize; |
| if(cl == 0) { |
| n = 1; |
| } else { |
| // Chunk full of small blocks. |
| npages = runtime·class_to_allocnpages[cl]; |
| n = (npages << PageShift) / size; |
| } |
| res = false; |
| nfree = 0; |
| end = &head; |
| c = m->mcache; |
| sweepgenset = false; |
| |
| // mark any free objects in this span so we don't collect them |
| for(x = s->freelist; x != nil; x = x->next) { |
| // This is markonly(x) but faster because we don't need |
| // atomic access and we're guaranteed to be pointing at |
| // the head of a valid object. |
| off = (uintptr*)x - (uintptr*)runtime·mheap.arena_start; |
| bitp = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *bitp |= bitMarked<<shift; |
| } |
| |
| // Unlink & free special records for any objects we're about to free. |
| specialp = &s->specials; |
| special = *specialp; |
| while(special != nil) { |
| // A finalizer can be set for an inner byte of an object, find object beginning. |
| p = (byte*)(s->start << PageShift) + special->offset/size*size; |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| if((bits & (bitAllocated|bitMarked)) == bitAllocated) { |
| // Find the exact byte for which the special was setup |
| // (as opposed to object beginning). |
| p = (byte*)(s->start << PageShift) + special->offset; |
| // about to free object: splice out special record |
| y = special; |
| special = special->next; |
| *specialp = special; |
| if(!runtime·freespecial(y, p, size, false)) { |
| // stop freeing of object if it has a finalizer |
| *bitp |= bitMarked << shift; |
| } |
| } else { |
| // object is still live: keep special record |
| specialp = &special->next; |
| special = *specialp; |
| } |
| } |
| |
| type_data = (byte*)s->types.data; |
| type_data_inc = sizeof(uintptr); |
| compression = s->types.compression; |
| switch(compression) { |
| case MTypes_Bytes: |
| type_data += 8*sizeof(uintptr); |
| type_data_inc = 1; |
| break; |
| } |
| |
| // Sweep through n objects of given size starting at p. |
| // This thread owns the span now, so it can manipulate |
| // the block bitmap without atomic operations. |
| p = (byte*)(s->start << PageShift); |
| for(; n > 0; n--, p += size, type_data+=type_data_inc) { |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| |
| if((bits & bitAllocated) == 0) |
| continue; |
| |
| if((bits & bitMarked) != 0) { |
| *bitp &= ~(bitMarked<<shift); |
| continue; |
| } |
| |
| if(runtime·debug.allocfreetrace) |
| runtime·tracefree(p, size); |
| |
| // Clear mark and scan bits. |
| *bitp &= ~((bitScan|bitMarked)<<shift); |
| |
| if(cl == 0) { |
| // Free large span. |
| runtime·unmarkspan(p, 1<<PageShift); |
| s->needzero = 1; |
| // important to set sweepgen before returning it to heap |
| runtime·atomicstore(&s->sweepgen, sweepgen); |
| sweepgenset = true; |
| // See note about SysFault vs SysFree in malloc.goc. |
| if(runtime·debug.efence) |
| runtime·SysFault(p, size); |
| else |
| runtime·MHeap_Free(&runtime·mheap, s, 1); |
| c->local_nlargefree++; |
| c->local_largefree += size; |
| runtime·xadd64(&mstats.next_gc, -(uint64)(size * (gcpercent + 100)/100)); |
| res = true; |
| } else { |
| // Free small object. |
| switch(compression) { |
| case MTypes_Words: |
| *(uintptr*)type_data = 0; |
| break; |
| case MTypes_Bytes: |
| *(byte*)type_data = 0; |
| break; |
| } |
| if(size > 2*sizeof(uintptr)) |
| ((uintptr*)p)[1] = (uintptr)0xdeaddeaddeaddeadll; // mark as "needs to be zeroed" |
| else if(size > sizeof(uintptr)) |
| ((uintptr*)p)[1] = 0; |
| |
| end->next = (MLink*)p; |
| end = (MLink*)p; |
| nfree++; |
| } |
| } |
| |
| // We need to set s->sweepgen = h->sweepgen only when all blocks are swept, |
| // because of the potential for a concurrent free/SetFinalizer. |
| // But we need to set it before we make the span available for allocation |
| // (return it to heap or mcentral), because allocation code assumes that a |
| // span is already swept if available for allocation. |
| |
| if(!sweepgenset && nfree == 0) { |
| // The span must be in our exclusive ownership until we update sweepgen, |
| // check for potential races. |
| if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) { |
| runtime·printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n", |
| s->state, s->sweepgen, sweepgen); |
| runtime·throw("MSpan_Sweep: bad span state after sweep"); |
| } |
| runtime·atomicstore(&s->sweepgen, sweepgen); |
| } |
| if(nfree > 0) { |
| c->local_nsmallfree[cl] += nfree; |
| c->local_cachealloc -= nfree * size; |
| runtime·xadd64(&mstats.next_gc, -(uint64)(nfree * size * (gcpercent + 100)/100)); |
| res = runtime·MCentral_FreeSpan(&runtime·mheap.central[cl], s, nfree, head.next, end); |
| //MCentral_FreeSpan updates sweepgen |
| } |
| return res; |
| } |
| |
| // State of background sweep. |
| // Pretected by gclock. |
| static struct |
| { |
| G* g; |
| bool parked; |
| |
| MSpan** spans; |
| uint32 nspan; |
| uint32 spanidx; |
| } sweep; |
| |
| // background sweeping goroutine |
| static void |
| bgsweep(void) |
| { |
| g->issystem = 1; |
| for(;;) { |
| while(runtime·sweepone() != -1) { |
| gcstats.nbgsweep++; |
| runtime·gosched(); |
| } |
| runtime·lock(&gclock); |
| if(!runtime·mheap.sweepdone) { |
| // It's possible if GC has happened between sweepone has |
| // returned -1 and gclock lock. |
| runtime·unlock(&gclock); |
| continue; |
| } |
| sweep.parked = true; |
| g->isbackground = true; |
| runtime·parkunlock(&gclock, "GC sweep wait"); |
| g->isbackground = false; |
| } |
| } |
| |
| // sweeps one span |
| // returns number of pages returned to heap, or -1 if there is nothing to sweep |
| uintptr |
| runtime·sweepone(void) |
| { |
| MSpan *s; |
| uint32 idx, sg; |
| uintptr npages; |
| |
| // increment locks to ensure that the goroutine is not preempted |
| // in the middle of sweep thus leaving the span in an inconsistent state for next GC |
| m->locks++; |
| sg = runtime·mheap.sweepgen; |
| for(;;) { |
| idx = runtime·xadd(&sweep.spanidx, 1) - 1; |
| if(idx >= sweep.nspan) { |
| runtime·mheap.sweepdone = true; |
| m->locks--; |
| return -1; |
| } |
| s = sweep.spans[idx]; |
| if(s->state != MSpanInUse) { |
| s->sweepgen = sg; |
| continue; |
| } |
| if(s->sweepgen != sg-2 || !runtime·cas(&s->sweepgen, sg-2, sg-1)) |
| continue; |
| if(s->incache) |
| runtime·throw("sweep of incache span"); |
| npages = s->npages; |
| if(!runtime·MSpan_Sweep(s)) |
| npages = 0; |
| m->locks--; |
| return npages; |
| } |
| } |
| |
| static void |
| dumpspan(uint32 idx) |
| { |
| int32 sizeclass, n, npages, i, column; |
| uintptr size; |
| byte *p; |
| byte *arena_start; |
| MSpan *s; |
| bool allocated; |
| |
| s = runtime·mheap.allspans[idx]; |
| if(s->state != MSpanInUse) |
| return; |
| arena_start = runtime·mheap.arena_start; |
| p = (byte*)(s->start << PageShift); |
| sizeclass = s->sizeclass; |
| size = s->elemsize; |
| if(sizeclass == 0) { |
| n = 1; |
| } else { |
| npages = runtime·class_to_allocnpages[sizeclass]; |
| n = (npages << PageShift) / size; |
| } |
| |
| runtime·printf("%p .. %p:\n", p, p+n*size); |
| column = 0; |
| for(; n>0; n--, p+=size) { |
| uintptr off, *bitp, shift, bits; |
| |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = (uintptr*)arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| bits = *bitp>>shift; |
| |
| allocated = ((bits & bitAllocated) != 0); |
| |
| for(i=0; i<size; i+=sizeof(void*)) { |
| if(column == 0) { |
| runtime·printf("\t"); |
| } |
| if(i == 0) { |
| runtime·printf(allocated ? "(" : "["); |
| runtime·printf("%p: ", p+i); |
| } else { |
| runtime·printf(" "); |
| } |
| |
| runtime·printf("%p", *(void**)(p+i)); |
| |
| if(i+sizeof(void*) >= size) { |
| runtime·printf(allocated ? ") " : "] "); |
| } |
| |
| column++; |
| if(column == 8) { |
| runtime·printf("\n"); |
| column = 0; |
| } |
| } |
| } |
| runtime·printf("\n"); |
| } |
| |
| // A debugging function to dump the contents of memory |
| void |
| runtime·memorydump(void) |
| { |
| uint32 spanidx; |
| |
| for(spanidx=0; spanidx<runtime·mheap.nspan; spanidx++) { |
| dumpspan(spanidx); |
| } |
| } |
| |
| void |
| runtime·gchelper(void) |
| { |
| uint32 nproc; |
| |
| m->traceback = 2; |
| gchelperstart(); |
| |
| // parallel mark for over gc roots |
| runtime·parfordo(work.markfor); |
| |
| // help other threads scan secondary blocks |
| scanblock(nil, true); |
| |
| bufferList[m->helpgc].busy = 0; |
| nproc = work.nproc; // work.nproc can change right after we increment work.ndone |
| if(runtime·xadd(&work.ndone, +1) == nproc-1) |
| runtime·notewakeup(&work.alldone); |
| m->traceback = 0; |
| } |
| |
| static void |
| cachestats(void) |
| { |
| MCache *c; |
| P *p, **pp; |
| |
| for(pp=runtime·allp; p=*pp; pp++) { |
| c = p->mcache; |
| if(c==nil) |
| continue; |
| runtime·purgecachedstats(c); |
| } |
| } |
| |
| static void |
| flushallmcaches(void) |
| { |
| P *p, **pp; |
| MCache *c; |
| |
| // Flush MCache's to MCentral. |
| for(pp=runtime·allp; p=*pp; pp++) { |
| c = p->mcache; |
| if(c==nil) |
| continue; |
| runtime·MCache_ReleaseAll(c); |
| } |
| } |
| |
| void |
| runtime·updatememstats(GCStats *stats) |
| { |
| M *mp; |
| MSpan *s; |
| int32 i; |
| uint64 stacks_inuse, smallfree; |
| uint64 *src, *dst; |
| |
| if(stats) |
| runtime·memclr((byte*)stats, sizeof(*stats)); |
| stacks_inuse = 0; |
| for(mp=runtime·allm; mp; mp=mp->alllink) { |
| stacks_inuse += mp->stackinuse*FixedStack; |
| if(stats) { |
| src = (uint64*)&mp->gcstats; |
| dst = (uint64*)stats; |
| for(i=0; i<sizeof(*stats)/sizeof(uint64); i++) |
| dst[i] += src[i]; |
| runtime·memclr((byte*)&mp->gcstats, sizeof(mp->gcstats)); |
| } |
| } |
| mstats.stacks_inuse = stacks_inuse; |
| mstats.mcache_inuse = runtime·mheap.cachealloc.inuse; |
| mstats.mspan_inuse = runtime·mheap.spanalloc.inuse; |
| mstats.sys = mstats.heap_sys + mstats.stacks_sys + mstats.mspan_sys + |
| mstats.mcache_sys + mstats.buckhash_sys + mstats.gc_sys + mstats.other_sys; |
| |
| // Calculate memory allocator stats. |
| // During program execution we only count number of frees and amount of freed memory. |
| // Current number of alive object in the heap and amount of alive heap memory |
| // are calculated by scanning all spans. |
| // Total number of mallocs is calculated as number of frees plus number of alive objects. |
| // Similarly, total amount of allocated memory is calculated as amount of freed memory |
| // plus amount of alive heap memory. |
| mstats.alloc = 0; |
| mstats.total_alloc = 0; |
| mstats.nmalloc = 0; |
| mstats.nfree = 0; |
| for(i = 0; i < nelem(mstats.by_size); i++) { |
| mstats.by_size[i].nmalloc = 0; |
| mstats.by_size[i].nfree = 0; |
| } |
| |
| // Flush MCache's to MCentral. |
| flushallmcaches(); |
| |
| // Aggregate local stats. |
| cachestats(); |
| |
| // Scan all spans and count number of alive objects. |
| for(i = 0; i < runtime·mheap.nspan; i++) { |
| s = runtime·mheap.allspans[i]; |
| if(s->state != MSpanInUse) |
| continue; |
| if(s->sizeclass == 0) { |
| mstats.nmalloc++; |
| mstats.alloc += s->elemsize; |
| } else { |
| mstats.nmalloc += s->ref; |
| mstats.by_size[s->sizeclass].nmalloc += s->ref; |
| mstats.alloc += s->ref*s->elemsize; |
| } |
| } |
| |
| // Aggregate by size class. |
| smallfree = 0; |
| mstats.nfree = runtime·mheap.nlargefree; |
| for(i = 0; i < nelem(mstats.by_size); i++) { |
| mstats.nfree += runtime·mheap.nsmallfree[i]; |
| mstats.by_size[i].nfree = runtime·mheap.nsmallfree[i]; |
| mstats.by_size[i].nmalloc += runtime·mheap.nsmallfree[i]; |
| smallfree += runtime·mheap.nsmallfree[i] * runtime·class_to_size[i]; |
| } |
| mstats.nmalloc += mstats.nfree; |
| |
| // Calculate derived stats. |
| mstats.total_alloc = mstats.alloc + runtime·mheap.largefree + smallfree; |
| mstats.heap_alloc = mstats.alloc; |
| mstats.heap_objects = mstats.nmalloc - mstats.nfree; |
| } |
| |
| // Structure of arguments passed to function gc(). |
| // This allows the arguments to be passed via runtime·mcall. |
| struct gc_args |
| { |
| int64 start_time; // start time of GC in ns (just before stoptheworld) |
| bool eagersweep; |
| }; |
| |
| static void gc(struct gc_args *args); |
| static void mgc(G *gp); |
| |
| static int32 |
| readgogc(void) |
| { |
| byte *p; |
| |
| p = runtime·getenv("GOGC"); |
| if(p == nil || p[0] == '\0') |
| return 100; |
| if(runtime·strcmp(p, (byte*)"off") == 0) |
| return -1; |
| return runtime·atoi(p); |
| } |
| |
| // force = 1 - do GC regardless of current heap usage |
| // force = 2 - go GC and eager sweep |
| void |
| runtime·gc(int32 force) |
| { |
| struct gc_args a; |
| int32 i; |
| |
| // The atomic operations are not atomic if the uint64s |
| // are not aligned on uint64 boundaries. This has been |
| // a problem in the past. |
| if((((uintptr)&work.empty) & 7) != 0) |
| runtime·throw("runtime: gc work buffer is misaligned"); |
| if((((uintptr)&work.full) & 7) != 0) |
| runtime·throw("runtime: gc work buffer is misaligned"); |
| |
| // The gc is turned off (via enablegc) until |
| // the bootstrap has completed. |
| // Also, malloc gets called in the guts |
| // of a number of libraries that might be |
| // holding locks. To avoid priority inversion |
| // problems, don't bother trying to run gc |
| // while holding a lock. The next mallocgc |
| // without a lock will do the gc instead. |
| if(!mstats.enablegc || g == m->g0 || m->locks > 0 || runtime·panicking) |
| return; |
| |
| if(gcpercent == GcpercentUnknown) { // first time through |
| runtime·lock(&runtime·mheap); |
| if(gcpercent == GcpercentUnknown) |
| gcpercent = readgogc(); |
| runtime·unlock(&runtime·mheap); |
| } |
| if(gcpercent < 0) |
| return; |
| |
| runtime·semacquire(&runtime·worldsema, false); |
| if(force==0 && mstats.heap_alloc < mstats.next_gc) { |
| // typically threads which lost the race to grab |
| // worldsema exit here when gc is done. |
| runtime·semrelease(&runtime·worldsema); |
| return; |
| } |
| |
| // Ok, we're doing it! Stop everybody else |
| a.start_time = runtime·nanotime(); |
| a.eagersweep = force >= 2; |
| m->gcing = 1; |
| runtime·stoptheworld(); |
| |
| clearpools(); |
| |
| // Run gc on the g0 stack. We do this so that the g stack |
| // we're currently running on will no longer change. Cuts |
| // the root set down a bit (g0 stacks are not scanned, and |
| // we don't need to scan gc's internal state). Also an |
| // enabler for copyable stacks. |
| for(i = 0; i < (runtime·debug.gctrace > 1 ? 2 : 1); i++) { |
| if(i > 0) |
| a.start_time = runtime·nanotime(); |
| // switch to g0, call gc(&a), then switch back |
| g->param = &a; |
| g->status = Gwaiting; |
| g->waitreason = "garbage collection"; |
| runtime·mcall(mgc); |
| } |
| |
| // all done |
| m->gcing = 0; |
| m->locks++; |
| runtime·semrelease(&runtime·worldsema); |
| runtime·starttheworld(); |
| m->locks--; |
| |
| // now that gc is done, kick off finalizer thread if needed |
| if(!ConcurrentSweep) { |
| // give the queued finalizers, if any, a chance to run |
| runtime·gosched(); |
| } |
| } |
| |
| static void |
| mgc(G *gp) |
| { |
| gc(gp->param); |
| gp->param = nil; |
| gp->status = Grunning; |
| runtime·gogo(&gp->sched); |
| } |
| |
| static void |
| gc(struct gc_args *args) |
| { |
| int64 t0, t1, t2, t3, t4; |
| uint64 heap0, heap1, obj, ninstr; |
| GCStats stats; |
| uint32 i; |
| Eface eface; |
| |
| if(runtime·debug.allocfreetrace) |
| runtime·tracegc(); |
| |
| m->traceback = 2; |
| t0 = args->start_time; |
| work.tstart = args->start_time; |
| |
| if(CollectStats) |
| runtime·memclr((byte*)&gcstats, sizeof(gcstats)); |
| |
| m->locks++; // disable gc during mallocs in parforalloc |
| if(work.markfor == nil) |
| work.markfor = runtime·parforalloc(MaxGcproc); |
| m->locks--; |
| |
| if(itabtype == nil) { |
| // get C pointer to the Go type "itab" |
| runtime·gc_itab_ptr(&eface); |
| itabtype = ((PtrType*)eface.type)->elem; |
| } |
| |
| t1 = 0; |
| if(runtime·debug.gctrace) |
| t1 = runtime·nanotime(); |
| |
| // Sweep what is not sweeped by bgsweep. |
| while(runtime·sweepone() != -1) |
| gcstats.npausesweep++; |
| |
| work.nwait = 0; |
| work.ndone = 0; |
| work.nproc = runtime·gcprocs(); |
| runtime·parforsetup(work.markfor, work.nproc, RootCount + runtime·allglen, nil, false, markroot); |
| if(work.nproc > 1) { |
| runtime·noteclear(&work.alldone); |
| runtime·helpgc(work.nproc); |
| } |
| |
| t2 = 0; |
| if(runtime·debug.gctrace) |
| t2 = runtime·nanotime(); |
| |
| gchelperstart(); |
| runtime·parfordo(work.markfor); |
| scanblock(nil, true); |
| |
| t3 = 0; |
| if(runtime·debug.gctrace) |
| t3 = runtime·nanotime(); |
| |
| bufferList[m->helpgc].busy = 0; |
| if(work.nproc > 1) |
| runtime·notesleep(&work.alldone); |
| |
| cachestats(); |
| // next_gc calculation is tricky with concurrent sweep since we don't know size of live heap |
| // estimate what was live heap size after previous GC (for tracing only) |
| heap0 = mstats.next_gc*100/(gcpercent+100); |
| // conservatively set next_gc to high value assuming that everything is live |
| // concurrent/lazy sweep will reduce this number while discovering new garbage |
| mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*gcpercent/100; |
| |
| t4 = runtime·nanotime(); |
| mstats.last_gc = runtime·unixnanotime(); // must be Unix time to make sense to user |
| mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t4 - t0; |
| mstats.pause_total_ns += t4 - t0; |
| mstats.numgc++; |
| if(mstats.debuggc) |
| runtime·printf("pause %D\n", t4-t0); |
| |
| if(runtime·debug.gctrace) { |
| heap1 = mstats.heap_alloc; |
| runtime·updatememstats(&stats); |
| if(heap1 != mstats.heap_alloc) { |
| runtime·printf("runtime: mstats skew: heap=%D/%D\n", heap1, mstats.heap_alloc); |
| runtime·throw("mstats skew"); |
| } |
| obj = mstats.nmalloc - mstats.nfree; |
| |
| stats.nprocyield += work.markfor->nprocyield; |
| stats.nosyield += work.markfor->nosyield; |
| stats.nsleep += work.markfor->nsleep; |
| |
| runtime·printf("gc%d(%d): %D+%D+%D+%D us, %D -> %D MB, %D (%D-%D) objects," |
| " %d/%d/%d sweeps," |
| " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n", |
| mstats.numgc, work.nproc, (t1-t0)/1000, (t2-t1)/1000, (t3-t2)/1000, (t4-t3)/1000, |
| heap0>>20, heap1>>20, obj, |
| mstats.nmalloc, mstats.nfree, |
| sweep.nspan, gcstats.nbgsweep, gcstats.npausesweep, |
| stats.nhandoff, stats.nhandoffcnt, |
| work.markfor->nsteal, work.markfor->nstealcnt, |
| stats.nprocyield, stats.nosyield, stats.nsleep); |
| gcstats.nbgsweep = gcstats.npausesweep = 0; |
| if(CollectStats) { |
| runtime·printf("scan: %D bytes, %D objects, %D untyped, %D types from MSpan\n", |
| gcstats.nbytes, gcstats.obj.cnt, gcstats.obj.notype, gcstats.obj.typelookup); |
| if(gcstats.ptr.cnt != 0) |
| runtime·printf("avg ptrbufsize: %D (%D/%D)\n", |
| gcstats.ptr.sum/gcstats.ptr.cnt, gcstats.ptr.sum, gcstats.ptr.cnt); |
| if(gcstats.obj.cnt != 0) |
| runtime·printf("avg nobj: %D (%D/%D)\n", |
| gcstats.obj.sum/gcstats.obj.cnt, gcstats.obj.sum, gcstats.obj.cnt); |
| runtime·printf("rescans: %D, %D bytes\n", gcstats.rescan, gcstats.rescanbytes); |
| |
| runtime·printf("instruction counts:\n"); |
| ninstr = 0; |
| for(i=0; i<nelem(gcstats.instr); i++) { |
| runtime·printf("\t%d:\t%D\n", i, gcstats.instr[i]); |
| ninstr += gcstats.instr[i]; |
| } |
| runtime·printf("\ttotal:\t%D\n", ninstr); |
| |
| runtime·printf("putempty: %D, getfull: %D\n", gcstats.putempty, gcstats.getfull); |
| |
| runtime·printf("markonly base lookup: bit %D word %D span %D\n", gcstats.markonly.foundbit, gcstats.markonly.foundword, gcstats.markonly.foundspan); |
| runtime·printf("flushptrbuf base lookup: bit %D word %D span %D\n", gcstats.flushptrbuf.foundbit, gcstats.flushptrbuf.foundword, gcstats.flushptrbuf.foundspan); |
| } |
| } |
| |
| // We cache current runtime·mheap.allspans array in sweep.spans, |
| // because the former can be resized and freed. |
| // Otherwise we would need to take heap lock every time |
| // we want to convert span index to span pointer. |
| |
| // Free the old cached array if necessary. |
| if(sweep.spans && sweep.spans != runtime·mheap.allspans) |
| runtime·SysFree(sweep.spans, sweep.nspan*sizeof(sweep.spans[0]), &mstats.other_sys); |
| // Cache the current array. |
| runtime·mheap.sweepspans = runtime·mheap.allspans; |
| runtime·mheap.sweepgen += 2; |
| runtime·mheap.sweepdone = false; |
| sweep.spans = runtime·mheap.allspans; |
| sweep.nspan = runtime·mheap.nspan; |
| sweep.spanidx = 0; |
| |
| // Temporary disable concurrent sweep, because we see failures on builders. |
| if(ConcurrentSweep && !args->eagersweep) { |
| runtime·lock(&gclock); |
| if(sweep.g == nil) |
| sweep.g = runtime·newproc1(&bgsweepv, nil, 0, 0, runtime·gc); |
| else if(sweep.parked) { |
| sweep.parked = false; |
| runtime·ready(sweep.g); |
| } |
| runtime·unlock(&gclock); |
| } else { |
| // Sweep all spans eagerly. |
| while(runtime·sweepone() != -1) |
| gcstats.npausesweep++; |
| } |
| |
| // Shrink a stack if not much of it is being used. |
| // TODO: do in a parfor |
| for(i = 0; i < runtime·allglen; i++) |
| runtime·shrinkstack(runtime·allg[i]); |
| |
| runtime·MProf_GC(); |
| m->traceback = 0; |
| } |
| |
| extern uintptr runtime·sizeof_C_MStats; |
| |
| void |
| runtime·ReadMemStats(MStats *stats) |
| { |
| // Have to acquire worldsema to stop the world, |
| // because stoptheworld can only be used by |
| // one goroutine at a time, and there might be |
| // a pending garbage collection already calling it. |
| runtime·semacquire(&runtime·worldsema, false); |
| m->gcing = 1; |
| runtime·stoptheworld(); |
| runtime·updatememstats(nil); |
| // Size of the trailing by_size array differs between Go and C, |
| // NumSizeClasses was changed, but we can not change Go struct because of backward compatibility. |
| runtime·memcopy(runtime·sizeof_C_MStats, stats, &mstats); |
| m->gcing = 0; |
| m->locks++; |
| runtime·semrelease(&runtime·worldsema); |
| runtime·starttheworld(); |
| m->locks--; |
| } |
| |
| void |
| runtime∕debug·readGCStats(Slice *pauses) |
| { |
| uint64 *p; |
| uint32 i, n; |
| |
| // Calling code in runtime/debug should make the slice large enough. |
| if(pauses->cap < nelem(mstats.pause_ns)+3) |
| runtime·throw("runtime: short slice passed to readGCStats"); |
| |
| // Pass back: pauses, last gc (absolute time), number of gc, total pause ns. |
| p = (uint64*)pauses->array; |
| runtime·lock(&runtime·mheap); |
| n = mstats.numgc; |
| if(n > nelem(mstats.pause_ns)) |
| n = nelem(mstats.pause_ns); |
| |
| // The pause buffer is circular. The most recent pause is at |
| // pause_ns[(numgc-1)%nelem(pause_ns)], and then backward |
| // from there to go back farther in time. We deliver the times |
| // most recent first (in p[0]). |
| for(i=0; i<n; i++) |
| p[i] = mstats.pause_ns[(mstats.numgc-1-i)%nelem(mstats.pause_ns)]; |
| |
| p[n] = mstats.last_gc; |
| p[n+1] = mstats.numgc; |
| p[n+2] = mstats.pause_total_ns; |
| runtime·unlock(&runtime·mheap); |
| pauses->len = n+3; |
| } |
| |
| int32 |
| runtime·setgcpercent(int32 in) { |
| int32 out; |
| |
| runtime·lock(&runtime·mheap); |
| if(gcpercent == GcpercentUnknown) |
| gcpercent = readgogc(); |
| out = gcpercent; |
| if(in < 0) |
| in = -1; |
| gcpercent = in; |
| runtime·unlock(&runtime·mheap); |
| return out; |
| } |
| |
| static void |
| gchelperstart(void) |
| { |
| if(m->helpgc < 0 || m->helpgc >= MaxGcproc) |
| runtime·throw("gchelperstart: bad m->helpgc"); |
| if(runtime·xchg(&bufferList[m->helpgc].busy, 1)) |
| runtime·throw("gchelperstart: already busy"); |
| if(g != m->g0) |
| runtime·throw("gchelper not running on g0 stack"); |
| } |
| |
| static void |
| runfinq(void) |
| { |
| Finalizer *f; |
| FinBlock *fb, *next; |
| byte *frame; |
| uint32 framesz, framecap, i; |
| Eface *ef, ef1; |
| |
| // This function blocks for long periods of time, and because it is written in C |
| // we have no liveness information. Zero everything so that uninitialized pointers |
| // do not cause memory leaks. |
| f = nil; |
| fb = nil; |
| next = nil; |
| frame = nil; |
| framecap = 0; |
| framesz = 0; |
| i = 0; |
| ef = nil; |
| ef1.type = nil; |
| ef1.data = nil; |
| |
| // force flush to memory |
| USED(&f); |
| USED(&fb); |
| USED(&next); |
| USED(&framesz); |
| USED(&i); |
| USED(&ef); |
| USED(&ef1); |
| |
| for(;;) { |
| runtime·lock(&finlock); |
| fb = finq; |
| finq = nil; |
| if(fb == nil) { |
| runtime·fingwait = true; |
| g->isbackground = true; |
| runtime·parkunlock(&finlock, "finalizer wait"); |
| g->isbackground = false; |
| continue; |
| } |
| runtime·unlock(&finlock); |
| if(raceenabled) |
| runtime·racefingo(); |
| for(; fb; fb=next) { |
| next = fb->next; |
| for(i=0; i<fb->cnt; i++) { |
| f = &fb->fin[i]; |
| framesz = sizeof(Eface) + f->nret; |
| if(framecap < framesz) { |
| runtime·free(frame); |
| // The frame does not contain pointers interesting for GC, |
| // all not yet finalized objects are stored in finq. |
| // If we do not mark it as FlagNoScan, |
| // the last finalized object is not collected. |
| frame = runtime·mallocgc(framesz, 0, FlagNoScan|FlagNoInvokeGC); |
| framecap = framesz; |
| } |
| if(f->fint == nil) |
| runtime·throw("missing type in runfinq"); |
| if(f->fint->kind == KindPtr) { |
| // direct use of pointer |
| *(void**)frame = f->arg; |
| } else if(((InterfaceType*)f->fint)->mhdr.len == 0) { |
| // convert to empty interface |
| ef = (Eface*)frame; |
| ef->type = f->ot; |
| ef->data = f->arg; |
| } else { |
| // convert to interface with methods, via empty interface. |
| ef1.type = f->ot; |
| ef1.data = f->arg; |
| if(!runtime·ifaceE2I2((InterfaceType*)f->fint, ef1, (Iface*)frame)) |
| runtime·throw("invalid type conversion in runfinq"); |
| } |
| reflect·call(f->fn, frame, framesz, framesz); |
| f->fn = nil; |
| f->arg = nil; |
| f->ot = nil; |
| } |
| fb->cnt = 0; |
| runtime·lock(&finlock); |
| fb->next = finc; |
| finc = fb; |
| runtime·unlock(&finlock); |
| } |
| |
| // Zero everything that's dead, to avoid memory leaks. |
| // See comment at top of function. |
| f = nil; |
| fb = nil; |
| next = nil; |
| i = 0; |
| ef = nil; |
| ef1.type = nil; |
| ef1.data = nil; |
| runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible |
| } |
| } |
| |
| void |
| runtime·createfing(void) |
| { |
| if(fing != nil) |
| return; |
| // Here we use gclock instead of finlock, |
| // because newproc1 can allocate, which can cause on-demand span sweep, |
| // which can queue finalizers, which would deadlock. |
| runtime·lock(&gclock); |
| if(fing == nil) |
| fing = runtime·newproc1(&runfinqv, nil, 0, 0, runtime·gc); |
| runtime·unlock(&gclock); |
| } |
| |
| G* |
| runtime·wakefing(void) |
| { |
| G *res; |
| |
| res = nil; |
| runtime·lock(&finlock); |
| if(runtime·fingwait && runtime·fingwake) { |
| runtime·fingwait = false; |
| runtime·fingwake = false; |
| res = fing; |
| } |
| runtime·unlock(&finlock); |
| return res; |
| } |
| |
| void |
| runtime·marknogc(void *v) |
| { |
| uintptr *b, off, shift; |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *b = (*b & ~(bitAllocated<<shift)) | bitBlockBoundary<<shift; |
| } |
| |
| void |
| runtime·markscan(void *v) |
| { |
| uintptr *b, off, shift; |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *b |= bitScan<<shift; |
| } |
| |
| // mark the block at v as freed. |
| void |
| runtime·markfreed(void *v) |
| { |
| uintptr *b, off, shift; |
| |
| if(0) |
| runtime·printf("markfreed %p\n", v); |
| |
| if((byte*)v > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| runtime·throw("markfreed: bad pointer"); |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| *b = (*b & ~(bitMask<<shift)) | (bitAllocated<<shift); |
| } |
| |
| // check that the block at v of size n is marked freed. |
| void |
| runtime·checkfreed(void *v, uintptr n) |
| { |
| uintptr *b, bits, off, shift; |
| |
| if(!runtime·checking) |
| return; |
| |
| if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| return; // not allocated, so okay |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| |
| bits = *b>>shift; |
| if((bits & bitAllocated) != 0) { |
| runtime·printf("checkfreed %p+%p: off=%p have=%p\n", |
| v, n, off, bits & bitMask); |
| runtime·throw("checkfreed: not freed"); |
| } |
| } |
| |
| // mark the span of memory at v as having n blocks of the given size. |
| // if leftover is true, there is left over space at the end of the span. |
| void |
| runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) |
| { |
| uintptr *b, *b0, off, shift, i, x; |
| byte *p; |
| |
| if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| runtime·throw("markspan: bad pointer"); |
| |
| if(runtime·checking) { |
| // bits should be all zero at the start |
| off = (byte*)v + size - runtime·mheap.arena_start; |
| b = (uintptr*)(runtime·mheap.arena_start - off/wordsPerBitmapWord); |
| for(i = 0; i < size/PtrSize/wordsPerBitmapWord; i++) { |
| if(b[i] != 0) |
| runtime·throw("markspan: span bits not zero"); |
| } |
| } |
| |
| p = v; |
| if(leftover) // mark a boundary just past end of last block too |
| n++; |
| |
| b0 = nil; |
| x = 0; |
| for(; n-- > 0; p += size) { |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| off = (uintptr*)p - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = (uintptr*)runtime·mheap.arena_start - off/wordsPerBitmapWord - 1; |
| shift = off % wordsPerBitmapWord; |
| if(b0 != b) { |
| if(b0 != nil) |
| *b0 = x; |
| b0 = b; |
| x = 0; |
| } |
| x |= bitAllocated<<shift; |
| } |
| *b0 = x; |
| } |
| |
| // unmark the span of memory at v of length n bytes. |
| void |
| runtime·unmarkspan(void *v, uintptr n) |
| { |
| uintptr *p, *b, off; |
| |
| if((byte*)v+n > (byte*)runtime·mheap.arena_used || ( |