blob: 96cbe4a3122704be3db057a481c95838c783d74c [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package poll
import (
"runtime"
"sync"
"syscall"
"unsafe"
)
const (
// spliceNonblock makes calls to splice(2) non-blocking.
spliceNonblock = 0x2
// maxSpliceSize is the maximum amount of data Splice asks
// the kernel to move in a single call to splice(2).
// We use 1MB as Splice writes data through a pipe, and 1MB is the default maximum pipe buffer size,
// which is determined by /proc/sys/fs/pipe-max-size.
maxSpliceSize = 1 << 20
)
// Splice transfers at most remain bytes of data from src to dst, using the
// splice system call to minimize copies of data from and to userspace.
//
// Splice gets a pipe buffer from the pool or creates a new one if needed, to serve as a buffer for the data transfer.
// src and dst must both be stream-oriented sockets.
//
// If err != nil, sc is the system call which caused the error.
func Splice(dst, src *FD, remain int64) (written int64, handled bool, sc string, err error) {
p, sc, err := getPipe()
if err != nil {
return 0, false, sc, err
}
defer putPipe(p)
var inPipe, n int
for err == nil && remain > 0 {
max := maxSpliceSize
if int64(max) > remain {
max = int(remain)
}
inPipe, err = spliceDrain(p.wfd, src, max)
// The operation is considered handled if splice returns no
// error, or an error other than EINVAL. An EINVAL means the
// kernel does not support splice for the socket type of src.
// The failed syscall does not consume any data so it is safe
// to fall back to a generic copy.
//
// spliceDrain should never return EAGAIN, so if err != nil,
// Splice cannot continue.
//
// If inPipe == 0 && err == nil, src is at EOF, and the
// transfer is complete.
handled = handled || (err != syscall.EINVAL)
if err != nil || inPipe == 0 {
break
}
p.data += inPipe
n, err = splicePump(dst, p.rfd, inPipe)
if n > 0 {
written += int64(n)
remain -= int64(n)
p.data -= n
}
}
if err != nil {
return written, handled, "splice", err
}
return written, true, "", nil
}
// spliceDrain moves data from a socket to a pipe.
//
// Invariant: when entering spliceDrain, the pipe is empty. It is either in its
// initial state, or splicePump has emptied it previously.
//
// Given this, spliceDrain can reasonably assume that the pipe is ready for
// writing, so if splice returns EAGAIN, it must be because the socket is not
// ready for reading.
//
// If spliceDrain returns (0, nil), src is at EOF.
func spliceDrain(pipefd int, sock *FD, max int) (int, error) {
if err := sock.readLock(); err != nil {
return 0, err
}
defer sock.readUnlock()
if err := sock.pd.prepareRead(sock.isFile); err != nil {
return 0, err
}
for {
n, err := splice(pipefd, sock.Sysfd, max, spliceNonblock)
if err == syscall.EINTR {
continue
}
if err != syscall.EAGAIN {
return n, err
}
if err := sock.pd.waitRead(sock.isFile); err != nil {
return n, err
}
}
}
// splicePump moves all the buffered data from a pipe to a socket.
//
// Invariant: when entering splicePump, there are exactly inPipe
// bytes of data in the pipe, from a previous call to spliceDrain.
//
// By analogy to the condition from spliceDrain, splicePump
// only needs to poll the socket for readiness, if splice returns
// EAGAIN.
//
// If splicePump cannot move all the data in a single call to
// splice(2), it loops over the buffered data until it has written
// all of it to the socket. This behavior is similar to the Write
// step of an io.Copy in userspace.
func splicePump(sock *FD, pipefd int, inPipe int) (int, error) {
if err := sock.writeLock(); err != nil {
return 0, err
}
defer sock.writeUnlock()
if err := sock.pd.prepareWrite(sock.isFile); err != nil {
return 0, err
}
written := 0
for inPipe > 0 {
n, err := splice(sock.Sysfd, pipefd, inPipe, spliceNonblock)
// Here, the condition n == 0 && err == nil should never be
// observed, since Splice controls the write side of the pipe.
if n > 0 {
inPipe -= n
written += n
continue
}
if err != syscall.EAGAIN {
return written, err
}
if err := sock.pd.waitWrite(sock.isFile); err != nil {
return written, err
}
}
return written, nil
}
// splice wraps the splice system call. Since the current implementation
// only uses splice on sockets and pipes, the offset arguments are unused.
// splice returns int instead of int64, because callers never ask it to
// move more data in a single call than can fit in an int32.
func splice(out int, in int, max int, flags int) (int, error) {
n, err := syscall.Splice(in, nil, out, nil, max, flags)
return int(n), err
}
type splicePipeFields struct {
rfd int
wfd int
data int
}
type splicePipe struct {
splicePipeFields
// We want to use a finalizer, so ensure that the size is
// large enough to not use the tiny allocator.
_ [24 - unsafe.Sizeof(splicePipeFields{})%24]byte
}
// splicePipePool caches pipes to avoid high-frequency construction and destruction of pipe buffers.
// The garbage collector will free all pipes in the sync.Pool periodically, thus we need to set up
// a finalizer for each pipe to close its file descriptors before the actual GC.
var splicePipePool = sync.Pool{New: newPoolPipe}
func newPoolPipe() any {
// Discard the error which occurred during the creation of pipe buffer,
// redirecting the data transmission to the conventional way utilizing read() + write() as a fallback.
p := newPipe()
if p == nil {
return nil
}
runtime.SetFinalizer(p, destroyPipe)
return p
}
// getPipe tries to acquire a pipe buffer from the pool or create a new one with newPipe() if it gets nil from the cache.
//
// Note that it may fail to create a new pipe buffer by newPipe(), in which case getPipe() will return a generic error
// and system call name splice in a string as the indication.
func getPipe() (*splicePipe, string, error) {
v := splicePipePool.Get()
if v == nil {
return nil, "splice", syscall.EINVAL
}
return v.(*splicePipe), "", nil
}
func putPipe(p *splicePipe) {
// If there is still data left in the pipe,
// then close and discard it instead of putting it back into the pool.
if p.data != 0 {
runtime.SetFinalizer(p, nil)
destroyPipe(p)
return
}
splicePipePool.Put(p)
}
// newPipe sets up a pipe for a splice operation.
func newPipe() *splicePipe {
var fds [2]int
if err := syscall.Pipe2(fds[:], syscall.O_CLOEXEC|syscall.O_NONBLOCK); err != nil {
return nil
}
// Splice will loop writing maxSpliceSize bytes from the source to the pipe,
// and then write those bytes from the pipe to the destination.
// Set the pipe buffer size to maxSpliceSize to optimize that.
// Ignore errors here, as a smaller buffer size will work,
// although it will require more system calls.
fcntl(fds[0], syscall.F_SETPIPE_SZ, maxSpliceSize)
return &splicePipe{splicePipeFields: splicePipeFields{rfd: fds[0], wfd: fds[1]}}
}
// destroyPipe destroys a pipe.
func destroyPipe(p *splicePipe) {
CloseFunc(p.rfd)
CloseFunc(p.wfd)
}