|  | // Copyright 2010 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package main | 
|  |  | 
|  | import ( | 
|  | "go/ast" | 
|  | "go/token" | 
|  | "reflect" | 
|  | ) | 
|  |  | 
|  | type simplifier struct{} | 
|  |  | 
|  | func (s simplifier) Visit(node ast.Node) ast.Visitor { | 
|  | switch n := node.(type) { | 
|  | case *ast.CompositeLit: | 
|  | // array, slice, and map composite literals may be simplified | 
|  | outer := n | 
|  | var keyType, eltType ast.Expr | 
|  | switch typ := outer.Type.(type) { | 
|  | case *ast.ArrayType: | 
|  | eltType = typ.Elt | 
|  | case *ast.MapType: | 
|  | keyType = typ.Key | 
|  | eltType = typ.Value | 
|  | } | 
|  |  | 
|  | if eltType != nil { | 
|  | var ktyp reflect.Value | 
|  | if keyType != nil { | 
|  | ktyp = reflect.ValueOf(keyType) | 
|  | } | 
|  | typ := reflect.ValueOf(eltType) | 
|  | for i, x := range outer.Elts { | 
|  | px := &outer.Elts[i] | 
|  | // look at value of indexed/named elements | 
|  | if t, ok := x.(*ast.KeyValueExpr); ok { | 
|  | if keyType != nil { | 
|  | s.simplifyLiteral(ktyp, keyType, t.Key, &t.Key) | 
|  | } | 
|  | x = t.Value | 
|  | px = &t.Value | 
|  | } | 
|  | s.simplifyLiteral(typ, eltType, x, px) | 
|  | } | 
|  | // node was simplified - stop walk (there are no subnodes to simplify) | 
|  | return nil | 
|  | } | 
|  |  | 
|  | case *ast.SliceExpr: | 
|  | // a slice expression of the form: s[a:len(s)] | 
|  | // can be simplified to: s[a:] | 
|  | // if s is "simple enough" (for now we only accept identifiers) | 
|  | // | 
|  | // Note: This may not be correct because len may have been redeclared in another | 
|  | //       file belonging to the same package. However, this is extremely unlikely | 
|  | //       and so far (April 2016, after years of supporting this rewrite feature) | 
|  | //       has never come up, so let's keep it working as is (see also #15153). | 
|  | if n.Max != nil { | 
|  | // - 3-index slices always require the 2nd and 3rd index | 
|  | break | 
|  | } | 
|  | if s, _ := n.X.(*ast.Ident); s != nil && s.Obj != nil { | 
|  | // the array/slice object is a single, resolved identifier | 
|  | if call, _ := n.High.(*ast.CallExpr); call != nil && len(call.Args) == 1 && !call.Ellipsis.IsValid() { | 
|  | // the high expression is a function call with a single argument | 
|  | if fun, _ := call.Fun.(*ast.Ident); fun != nil && fun.Name == "len" && fun.Obj == nil { | 
|  | // the function called is "len" and it is not locally defined; and | 
|  | // because we don't have dot imports, it must be the predefined len() | 
|  | if arg, _ := call.Args[0].(*ast.Ident); arg != nil && arg.Obj == s.Obj { | 
|  | // the len argument is the array/slice object | 
|  | n.High = nil | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | // Note: We could also simplify slice expressions of the form s[0:b] to s[:b] | 
|  | //       but we leave them as is since sometimes we want to be very explicit | 
|  | //       about the lower bound. | 
|  | // An example where the 0 helps: | 
|  | //       x, y, z := b[0:2], b[2:4], b[4:6] | 
|  | // An example where it does not: | 
|  | //       x, y := b[:n], b[n:] | 
|  |  | 
|  | case *ast.RangeStmt: | 
|  | // - a range of the form: for x, _ = range v {...} | 
|  | // can be simplified to: for x = range v {...} | 
|  | // - a range of the form: for _ = range v {...} | 
|  | // can be simplified to: for range v {...} | 
|  | if isBlank(n.Value) { | 
|  | n.Value = nil | 
|  | } | 
|  | if isBlank(n.Key) && n.Value == nil { | 
|  | n.Key = nil | 
|  | } | 
|  | } | 
|  |  | 
|  | return s | 
|  | } | 
|  |  | 
|  | func (s simplifier) simplifyLiteral(typ reflect.Value, astType, x ast.Expr, px *ast.Expr) { | 
|  | ast.Walk(s, x) // simplify x | 
|  |  | 
|  | // if the element is a composite literal and its literal type | 
|  | // matches the outer literal's element type exactly, the inner | 
|  | // literal type may be omitted | 
|  | if inner, ok := x.(*ast.CompositeLit); ok { | 
|  | if match(nil, typ, reflect.ValueOf(inner.Type)) { | 
|  | inner.Type = nil | 
|  | } | 
|  | } | 
|  | // if the outer literal's element type is a pointer type *T | 
|  | // and the element is & of a composite literal of type T, | 
|  | // the inner &T may be omitted. | 
|  | if ptr, ok := astType.(*ast.StarExpr); ok { | 
|  | if addr, ok := x.(*ast.UnaryExpr); ok && addr.Op == token.AND { | 
|  | if inner, ok := addr.X.(*ast.CompositeLit); ok { | 
|  | if match(nil, reflect.ValueOf(ptr.X), reflect.ValueOf(inner.Type)) { | 
|  | inner.Type = nil // drop T | 
|  | *px = inner      // drop & | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | func isBlank(x ast.Expr) bool { | 
|  | ident, ok := x.(*ast.Ident) | 
|  | return ok && ident.Name == "_" | 
|  | } | 
|  |  | 
|  | func simplify(f *ast.File) { | 
|  | // remove empty declarations such as "const ()", etc | 
|  | removeEmptyDeclGroups(f) | 
|  |  | 
|  | var s simplifier | 
|  | ast.Walk(s, f) | 
|  | } | 
|  |  | 
|  | func removeEmptyDeclGroups(f *ast.File) { | 
|  | i := 0 | 
|  | for _, d := range f.Decls { | 
|  | if g, ok := d.(*ast.GenDecl); !ok || !isEmpty(f, g) { | 
|  | f.Decls[i] = d | 
|  | i++ | 
|  | } | 
|  | } | 
|  | f.Decls = f.Decls[:i] | 
|  | } | 
|  |  | 
|  | func isEmpty(f *ast.File, g *ast.GenDecl) bool { | 
|  | if g.Doc != nil || g.Specs != nil { | 
|  | return false | 
|  | } | 
|  |  | 
|  | for _, c := range f.Comments { | 
|  | // if there is a comment in the declaration, it is not considered empty | 
|  | if g.Pos() <= c.Pos() && c.End() <= g.End() { | 
|  | return false | 
|  | } | 
|  | } | 
|  |  | 
|  | return true | 
|  | } |