|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | // Package time provides functionality for measuring and displaying time. | 
|  | // | 
|  | // The calendrical calculations always assume a Gregorian calendar, with | 
|  | // no leap seconds. | 
|  | // | 
|  | // Monotonic Clocks | 
|  | // | 
|  | // Operating systems provide both a “wall clock,” which is subject to | 
|  | // changes for clock synchronization, and a “monotonic clock,” which is | 
|  | // not. The general rule is that the wall clock is for telling time and | 
|  | // the monotonic clock is for measuring time. Rather than split the API, | 
|  | // in this package the Time returned by time.Now contains both a wall | 
|  | // clock reading and a monotonic clock reading; later time-telling | 
|  | // operations use the wall clock reading, but later time-measuring | 
|  | // operations, specifically comparisons and subtractions, use the | 
|  | // monotonic clock reading. | 
|  | // | 
|  | // For example, this code always computes a positive elapsed time of | 
|  | // approximately 20 milliseconds, even if the wall clock is changed during | 
|  | // the operation being timed: | 
|  | // | 
|  | //	start := time.Now() | 
|  | //	... operation that takes 20 milliseconds ... | 
|  | //	t := time.Now() | 
|  | //	elapsed := t.Sub(start) | 
|  | // | 
|  | // Other idioms, such as time.Since(start), time.Until(deadline), and | 
|  | // time.Now().Before(deadline), are similarly robust against wall clock | 
|  | // resets. | 
|  | // | 
|  | // The rest of this section gives the precise details of how operations | 
|  | // use monotonic clocks, but understanding those details is not required | 
|  | // to use this package. | 
|  | // | 
|  | // The Time returned by time.Now contains a monotonic clock reading. | 
|  | // If Time t has a monotonic clock reading, t.Add adds the same duration to | 
|  | // both the wall clock and monotonic clock readings to compute the result. | 
|  | // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time | 
|  | // computations, they always strip any monotonic clock reading from their results. | 
|  | // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation | 
|  | // of the wall time, they also strip any monotonic clock reading from their results. | 
|  | // The canonical way to strip a monotonic clock reading is to use t = t.Round(0). | 
|  | // | 
|  | // If Times t and u both contain monotonic clock readings, the operations | 
|  | // t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out | 
|  | // using the monotonic clock readings alone, ignoring the wall clock | 
|  | // readings. If either t or u contains no monotonic clock reading, these | 
|  | // operations fall back to using the wall clock readings. | 
|  | // | 
|  | // On some systems the monotonic clock will stop if the computer goes to sleep. | 
|  | // On such a system, t.Sub(u) may not accurately reflect the actual | 
|  | // time that passed between t and u. | 
|  | // | 
|  | // Because the monotonic clock reading has no meaning outside | 
|  | // the current process, the serialized forms generated by t.GobEncode, | 
|  | // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic | 
|  | // clock reading, and t.Format provides no format for it. Similarly, the | 
|  | // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix, | 
|  | // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary. | 
|  | // t.UnmarshalJSON, and t.UnmarshalText always create times with | 
|  | // no monotonic clock reading. | 
|  | // | 
|  | // Note that the Go == operator compares not just the time instant but | 
|  | // also the Location and the monotonic clock reading. See the | 
|  | // documentation for the Time type for a discussion of equality | 
|  | // testing for Time values. | 
|  | // | 
|  | // For debugging, the result of t.String does include the monotonic | 
|  | // clock reading if present. If t != u because of different monotonic clock readings, | 
|  | // that difference will be visible when printing t.String() and u.String(). | 
|  | // | 
|  | package time | 
|  |  | 
|  | import ( | 
|  | "errors" | 
|  | _ "unsafe" // for go:linkname | 
|  | ) | 
|  |  | 
|  | // A Time represents an instant in time with nanosecond precision. | 
|  | // | 
|  | // Programs using times should typically store and pass them as values, | 
|  | // not pointers. That is, time variables and struct fields should be of | 
|  | // type time.Time, not *time.Time. | 
|  | // | 
|  | // A Time value can be used by multiple goroutines simultaneously except | 
|  | // that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and | 
|  | // UnmarshalText are not concurrency-safe. | 
|  | // | 
|  | // Time instants can be compared using the Before, After, and Equal methods. | 
|  | // The Sub method subtracts two instants, producing a Duration. | 
|  | // The Add method adds a Time and a Duration, producing a Time. | 
|  | // | 
|  | // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC. | 
|  | // As this time is unlikely to come up in practice, the IsZero method gives | 
|  | // a simple way of detecting a time that has not been initialized explicitly. | 
|  | // | 
|  | // Each Time has associated with it a Location, consulted when computing the | 
|  | // presentation form of the time, such as in the Format, Hour, and Year methods. | 
|  | // The methods Local, UTC, and In return a Time with a specific location. | 
|  | // Changing the location in this way changes only the presentation; it does not | 
|  | // change the instant in time being denoted and therefore does not affect the | 
|  | // computations described in earlier paragraphs. | 
|  | // | 
|  | // Representations of a Time value saved by the GobEncode, MarshalBinary, | 
|  | // MarshalJSON, and MarshalText methods store the Time.Location's offset, but not | 
|  | // the location name. They therefore lose information about Daylight Saving Time. | 
|  | // | 
|  | // In addition to the required “wall clock” reading, a Time may contain an optional | 
|  | // reading of the current process's monotonic clock, to provide additional precision | 
|  | // for comparison or subtraction. | 
|  | // See the “Monotonic Clocks” section in the package documentation for details. | 
|  | // | 
|  | // Note that the Go == operator compares not just the time instant but also the | 
|  | // Location and the monotonic clock reading. Therefore, Time values should not | 
|  | // be used as map or database keys without first guaranteeing that the | 
|  | // identical Location has been set for all values, which can be achieved | 
|  | // through use of the UTC or Local method, and that the monotonic clock reading | 
|  | // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u) | 
|  | // to t == u, since t.Equal uses the most accurate comparison available and | 
|  | // correctly handles the case when only one of its arguments has a monotonic | 
|  | // clock reading. | 
|  | // | 
|  | type Time struct { | 
|  | // wall and ext encode the wall time seconds, wall time nanoseconds, | 
|  | // and optional monotonic clock reading in nanoseconds. | 
|  | // | 
|  | // From high to low bit position, wall encodes a 1-bit flag (hasMonotonic), | 
|  | // a 33-bit seconds field, and a 30-bit wall time nanoseconds field. | 
|  | // The nanoseconds field is in the range [0, 999999999]. | 
|  | // If the hasMonotonic bit is 0, then the 33-bit field must be zero | 
|  | // and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext. | 
|  | // If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit | 
|  | // unsigned wall seconds since Jan 1 year 1885, and ext holds a | 
|  | // signed 64-bit monotonic clock reading, nanoseconds since process start. | 
|  | wall uint64 | 
|  | ext  int64 | 
|  |  | 
|  | // loc specifies the Location that should be used to | 
|  | // determine the minute, hour, month, day, and year | 
|  | // that correspond to this Time. | 
|  | // The nil location means UTC. | 
|  | // All UTC times are represented with loc==nil, never loc==&utcLoc. | 
|  | loc *Location | 
|  | } | 
|  |  | 
|  | const ( | 
|  | hasMonotonic = 1 << 63 | 
|  | maxWall      = wallToInternal + (1<<33 - 1) // year 2157 | 
|  | minWall      = wallToInternal               // year 1885 | 
|  | nsecMask     = 1<<30 - 1 | 
|  | nsecShift    = 30 | 
|  | ) | 
|  |  | 
|  | // These helpers for manipulating the wall and monotonic clock readings | 
|  | // take pointer receivers, even when they don't modify the time, | 
|  | // to make them cheaper to call. | 
|  |  | 
|  | // nsec returns the time's nanoseconds. | 
|  | func (t *Time) nsec() int32 { | 
|  | return int32(t.wall & nsecMask) | 
|  | } | 
|  |  | 
|  | // sec returns the time's seconds since Jan 1 year 1. | 
|  | func (t *Time) sec() int64 { | 
|  | if t.wall&hasMonotonic != 0 { | 
|  | return wallToInternal + int64(t.wall<<1>>(nsecShift+1)) | 
|  | } | 
|  | return t.ext | 
|  | } | 
|  |  | 
|  | // unixSec returns the time's seconds since Jan 1 1970 (Unix time). | 
|  | func (t *Time) unixSec() int64 { return t.sec() + internalToUnix } | 
|  |  | 
|  | // addSec adds d seconds to the time. | 
|  | func (t *Time) addSec(d int64) { | 
|  | if t.wall&hasMonotonic != 0 { | 
|  | sec := int64(t.wall << 1 >> (nsecShift + 1)) | 
|  | dsec := sec + d | 
|  | if 0 <= dsec && dsec <= 1<<33-1 { | 
|  | t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic | 
|  | return | 
|  | } | 
|  | // Wall second now out of range for packed field. | 
|  | // Move to ext. | 
|  | t.stripMono() | 
|  | } | 
|  |  | 
|  | // TODO: Check for overflow. | 
|  | t.ext += d | 
|  | } | 
|  |  | 
|  | // setLoc sets the location associated with the time. | 
|  | func (t *Time) setLoc(loc *Location) { | 
|  | if loc == &utcLoc { | 
|  | loc = nil | 
|  | } | 
|  | t.stripMono() | 
|  | t.loc = loc | 
|  | } | 
|  |  | 
|  | // stripMono strips the monotonic clock reading in t. | 
|  | func (t *Time) stripMono() { | 
|  | if t.wall&hasMonotonic != 0 { | 
|  | t.ext = t.sec() | 
|  | t.wall &= nsecMask | 
|  | } | 
|  | } | 
|  |  | 
|  | // setMono sets the monotonic clock reading in t. | 
|  | // If t cannot hold a monotonic clock reading, | 
|  | // because its wall time is too large, | 
|  | // setMono is a no-op. | 
|  | func (t *Time) setMono(m int64) { | 
|  | if t.wall&hasMonotonic == 0 { | 
|  | sec := t.ext | 
|  | if sec < minWall || maxWall < sec { | 
|  | return | 
|  | } | 
|  | t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift | 
|  | } | 
|  | t.ext = m | 
|  | } | 
|  |  | 
|  | // mono returns t's monotonic clock reading. | 
|  | // It returns 0 for a missing reading. | 
|  | // This function is used only for testing, | 
|  | // so it's OK that technically 0 is a valid | 
|  | // monotonic clock reading as well. | 
|  | func (t *Time) mono() int64 { | 
|  | if t.wall&hasMonotonic == 0 { | 
|  | return 0 | 
|  | } | 
|  | return t.ext | 
|  | } | 
|  |  | 
|  | // After reports whether the time instant t is after u. | 
|  | func (t Time) After(u Time) bool { | 
|  | if t.wall&u.wall&hasMonotonic != 0 { | 
|  | return t.ext > u.ext | 
|  | } | 
|  | ts := t.sec() | 
|  | us := u.sec() | 
|  | return ts > us || ts == us && t.nsec() > u.nsec() | 
|  | } | 
|  |  | 
|  | // Before reports whether the time instant t is before u. | 
|  | func (t Time) Before(u Time) bool { | 
|  | if t.wall&u.wall&hasMonotonic != 0 { | 
|  | return t.ext < u.ext | 
|  | } | 
|  | return t.sec() < u.sec() || t.sec() == u.sec() && t.nsec() < u.nsec() | 
|  | } | 
|  |  | 
|  | // Equal reports whether t and u represent the same time instant. | 
|  | // Two times can be equal even if they are in different locations. | 
|  | // For example, 6:00 +0200 CEST and 4:00 UTC are Equal. | 
|  | // See the documentation on the Time type for the pitfalls of using == with | 
|  | // Time values; most code should use Equal instead. | 
|  | func (t Time) Equal(u Time) bool { | 
|  | if t.wall&u.wall&hasMonotonic != 0 { | 
|  | return t.ext == u.ext | 
|  | } | 
|  | return t.sec() == u.sec() && t.nsec() == u.nsec() | 
|  | } | 
|  |  | 
|  | // A Month specifies a month of the year (January = 1, ...). | 
|  | type Month int | 
|  |  | 
|  | const ( | 
|  | January Month = 1 + iota | 
|  | February | 
|  | March | 
|  | April | 
|  | May | 
|  | June | 
|  | July | 
|  | August | 
|  | September | 
|  | October | 
|  | November | 
|  | December | 
|  | ) | 
|  |  | 
|  | var months = [...]string{ | 
|  | "January", | 
|  | "February", | 
|  | "March", | 
|  | "April", | 
|  | "May", | 
|  | "June", | 
|  | "July", | 
|  | "August", | 
|  | "September", | 
|  | "October", | 
|  | "November", | 
|  | "December", | 
|  | } | 
|  |  | 
|  | // String returns the English name of the month ("January", "February", ...). | 
|  | func (m Month) String() string { | 
|  | if January <= m && m <= December { | 
|  | return months[m-1] | 
|  | } | 
|  | buf := make([]byte, 20) | 
|  | n := fmtInt(buf, uint64(m)) | 
|  | return "%!Month(" + string(buf[n:]) + ")" | 
|  | } | 
|  |  | 
|  | // A Weekday specifies a day of the week (Sunday = 0, ...). | 
|  | type Weekday int | 
|  |  | 
|  | const ( | 
|  | Sunday Weekday = iota | 
|  | Monday | 
|  | Tuesday | 
|  | Wednesday | 
|  | Thursday | 
|  | Friday | 
|  | Saturday | 
|  | ) | 
|  |  | 
|  | var days = [...]string{ | 
|  | "Sunday", | 
|  | "Monday", | 
|  | "Tuesday", | 
|  | "Wednesday", | 
|  | "Thursday", | 
|  | "Friday", | 
|  | "Saturday", | 
|  | } | 
|  |  | 
|  | // String returns the English name of the day ("Sunday", "Monday", ...). | 
|  | func (d Weekday) String() string { | 
|  | if Sunday <= d && d <= Saturday { | 
|  | return days[d] | 
|  | } | 
|  | buf := make([]byte, 20) | 
|  | n := fmtInt(buf, uint64(d)) | 
|  | return "%!Weekday(" + string(buf[n:]) + ")" | 
|  | } | 
|  |  | 
|  | // Computations on time. | 
|  | // | 
|  | // The zero value for a Time is defined to be | 
|  | //	January 1, year 1, 00:00:00.000000000 UTC | 
|  | // which (1) looks like a zero, or as close as you can get in a date | 
|  | // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to | 
|  | // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a | 
|  | // non-negative year even in time zones west of UTC, unlike 1-1-0 | 
|  | // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York. | 
|  | // | 
|  | // The zero Time value does not force a specific epoch for the time | 
|  | // representation. For example, to use the Unix epoch internally, we | 
|  | // could define that to distinguish a zero value from Jan 1 1970, that | 
|  | // time would be represented by sec=-1, nsec=1e9. However, it does | 
|  | // suggest a representation, namely using 1-1-1 00:00:00 UTC as the | 
|  | // epoch, and that's what we do. | 
|  | // | 
|  | // The Add and Sub computations are oblivious to the choice of epoch. | 
|  | // | 
|  | // The presentation computations - year, month, minute, and so on - all | 
|  | // rely heavily on division and modulus by positive constants. For | 
|  | // calendrical calculations we want these divisions to round down, even | 
|  | // for negative values, so that the remainder is always positive, but | 
|  | // Go's division (like most hardware division instructions) rounds to | 
|  | // zero. We can still do those computations and then adjust the result | 
|  | // for a negative numerator, but it's annoying to write the adjustment | 
|  | // over and over. Instead, we can change to a different epoch so long | 
|  | // ago that all the times we care about will be positive, and then round | 
|  | // to zero and round down coincide. These presentation routines already | 
|  | // have to add the zone offset, so adding the translation to the | 
|  | // alternate epoch is cheap. For example, having a non-negative time t | 
|  | // means that we can write | 
|  | // | 
|  | //	sec = t % 60 | 
|  | // | 
|  | // instead of | 
|  | // | 
|  | //	sec = t % 60 | 
|  | //	if sec < 0 { | 
|  | //		sec += 60 | 
|  | //	} | 
|  | // | 
|  | // everywhere. | 
|  | // | 
|  | // The calendar runs on an exact 400 year cycle: a 400-year calendar | 
|  | // printed for 1970-2369 will apply as well to 2370-2769. Even the days | 
|  | // of the week match up. It simplifies the computations to choose the | 
|  | // cycle boundaries so that the exceptional years are always delayed as | 
|  | // long as possible. That means choosing a year equal to 1 mod 400, so | 
|  | // that the first leap year is the 4th year, the first missed leap year | 
|  | // is the 100th year, and the missed missed leap year is the 400th year. | 
|  | // So we'd prefer instead to print a calendar for 2001-2400 and reuse it | 
|  | // for 2401-2800. | 
|  | // | 
|  | // Finally, it's convenient if the delta between the Unix epoch and | 
|  | // long-ago epoch is representable by an int64 constant. | 
|  | // | 
|  | // These three considerations—choose an epoch as early as possible, that | 
|  | // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds | 
|  | // earlier than 1970—bring us to the year -292277022399. We refer to | 
|  | // this year as the absolute zero year, and to times measured as a uint64 | 
|  | // seconds since this year as absolute times. | 
|  | // | 
|  | // Times measured as an int64 seconds since the year 1—the representation | 
|  | // used for Time's sec field—are called internal times. | 
|  | // | 
|  | // Times measured as an int64 seconds since the year 1970 are called Unix | 
|  | // times. | 
|  | // | 
|  | // It is tempting to just use the year 1 as the absolute epoch, defining | 
|  | // that the routines are only valid for years >= 1. However, the | 
|  | // routines would then be invalid when displaying the epoch in time zones | 
|  | // west of UTC, since it is year 0. It doesn't seem tenable to say that | 
|  | // printing the zero time correctly isn't supported in half the time | 
|  | // zones. By comparison, it's reasonable to mishandle some times in | 
|  | // the year -292277022399. | 
|  | // | 
|  | // All this is opaque to clients of the API and can be changed if a | 
|  | // better implementation presents itself. | 
|  |  | 
|  | const ( | 
|  | // The unsigned zero year for internal calculations. | 
|  | // Must be 1 mod 400, and times before it will not compute correctly, | 
|  | // but otherwise can be changed at will. | 
|  | absoluteZeroYear = -292277022399 | 
|  |  | 
|  | // The year of the zero Time. | 
|  | // Assumed by the unixToInternal computation below. | 
|  | internalYear = 1 | 
|  |  | 
|  | // Offsets to convert between internal and absolute or Unix times. | 
|  | absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay | 
|  | internalToAbsolute       = -absoluteToInternal | 
|  |  | 
|  | unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay | 
|  | internalToUnix int64 = -unixToInternal | 
|  |  | 
|  | wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay | 
|  | internalToWall int64 = -wallToInternal | 
|  | ) | 
|  |  | 
|  | // IsZero reports whether t represents the zero time instant, | 
|  | // January 1, year 1, 00:00:00 UTC. | 
|  | func (t Time) IsZero() bool { | 
|  | return t.sec() == 0 && t.nsec() == 0 | 
|  | } | 
|  |  | 
|  | // abs returns the time t as an absolute time, adjusted by the zone offset. | 
|  | // It is called when computing a presentation property like Month or Hour. | 
|  | func (t Time) abs() uint64 { | 
|  | l := t.loc | 
|  | // Avoid function calls when possible. | 
|  | if l == nil || l == &localLoc { | 
|  | l = l.get() | 
|  | } | 
|  | sec := t.unixSec() | 
|  | if l != &utcLoc { | 
|  | if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { | 
|  | sec += int64(l.cacheZone.offset) | 
|  | } else { | 
|  | _, offset, _, _ := l.lookup(sec) | 
|  | sec += int64(offset) | 
|  | } | 
|  | } | 
|  | return uint64(sec + (unixToInternal + internalToAbsolute)) | 
|  | } | 
|  |  | 
|  | // locabs is a combination of the Zone and abs methods, | 
|  | // extracting both return values from a single zone lookup. | 
|  | func (t Time) locabs() (name string, offset int, abs uint64) { | 
|  | l := t.loc | 
|  | if l == nil || l == &localLoc { | 
|  | l = l.get() | 
|  | } | 
|  | // Avoid function call if we hit the local time cache. | 
|  | sec := t.unixSec() | 
|  | if l != &utcLoc { | 
|  | if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { | 
|  | name = l.cacheZone.name | 
|  | offset = l.cacheZone.offset | 
|  | } else { | 
|  | name, offset, _, _ = l.lookup(sec) | 
|  | } | 
|  | sec += int64(offset) | 
|  | } else { | 
|  | name = "UTC" | 
|  | } | 
|  | abs = uint64(sec + (unixToInternal + internalToAbsolute)) | 
|  | return | 
|  | } | 
|  |  | 
|  | // Date returns the year, month, and day in which t occurs. | 
|  | func (t Time) Date() (year int, month Month, day int) { | 
|  | year, month, day, _ = t.date(true) | 
|  | return | 
|  | } | 
|  |  | 
|  | // Year returns the year in which t occurs. | 
|  | func (t Time) Year() int { | 
|  | year, _, _, _ := t.date(false) | 
|  | return year | 
|  | } | 
|  |  | 
|  | // Month returns the month of the year specified by t. | 
|  | func (t Time) Month() Month { | 
|  | _, month, _, _ := t.date(true) | 
|  | return month | 
|  | } | 
|  |  | 
|  | // Day returns the day of the month specified by t. | 
|  | func (t Time) Day() int { | 
|  | _, _, day, _ := t.date(true) | 
|  | return day | 
|  | } | 
|  |  | 
|  | // Weekday returns the day of the week specified by t. | 
|  | func (t Time) Weekday() Weekday { | 
|  | return absWeekday(t.abs()) | 
|  | } | 
|  |  | 
|  | // absWeekday is like Weekday but operates on an absolute time. | 
|  | func absWeekday(abs uint64) Weekday { | 
|  | // January 1 of the absolute year, like January 1 of 2001, was a Monday. | 
|  | sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek | 
|  | return Weekday(int(sec) / secondsPerDay) | 
|  | } | 
|  |  | 
|  | // ISOWeek returns the ISO 8601 year and week number in which t occurs. | 
|  | // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to | 
|  | // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1 | 
|  | // of year n+1. | 
|  | func (t Time) ISOWeek() (year, week int) { | 
|  | year, month, day, yday := t.date(true) | 
|  | wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0. | 
|  | const ( | 
|  | Mon int = iota | 
|  | Tue | 
|  | Wed | 
|  | Thu | 
|  | Fri | 
|  | Sat | 
|  | Sun | 
|  | ) | 
|  |  | 
|  | // Calculate week as number of Mondays in year up to | 
|  | // and including today, plus 1 because the first week is week 0. | 
|  | // Putting the + 1 inside the numerator as a + 7 keeps the | 
|  | // numerator from being negative, which would cause it to | 
|  | // round incorrectly. | 
|  | week = (yday - wday + 7) / 7 | 
|  |  | 
|  | // The week number is now correct under the assumption | 
|  | // that the first Monday of the year is in week 1. | 
|  | // If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday | 
|  | // is actually in week 2. | 
|  | jan1wday := (wday - yday + 7*53) % 7 | 
|  | if Tue <= jan1wday && jan1wday <= Thu { | 
|  | week++ | 
|  | } | 
|  |  | 
|  | // If the week number is still 0, we're in early January but in | 
|  | // the last week of last year. | 
|  | if week == 0 { | 
|  | year-- | 
|  | week = 52 | 
|  | // A year has 53 weeks when Jan 1 or Dec 31 is a Thursday, | 
|  | // meaning Jan 1 of the next year is a Friday | 
|  | // or it was a leap year and Jan 1 of the next year is a Saturday. | 
|  | if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) { | 
|  | week++ | 
|  | } | 
|  | } | 
|  |  | 
|  | // December 29 to 31 are in week 1 of next year if | 
|  | // they are after the last Thursday of the year and | 
|  | // December 31 is a Monday, Tuesday, or Wednesday. | 
|  | if month == December && day >= 29 && wday < Thu { | 
|  | if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed { | 
|  | year++ | 
|  | week = 1 | 
|  | } | 
|  | } | 
|  |  | 
|  | return | 
|  | } | 
|  |  | 
|  | // Clock returns the hour, minute, and second within the day specified by t. | 
|  | func (t Time) Clock() (hour, min, sec int) { | 
|  | return absClock(t.abs()) | 
|  | } | 
|  |  | 
|  | // absClock is like clock but operates on an absolute time. | 
|  | func absClock(abs uint64) (hour, min, sec int) { | 
|  | sec = int(abs % secondsPerDay) | 
|  | hour = sec / secondsPerHour | 
|  | sec -= hour * secondsPerHour | 
|  | min = sec / secondsPerMinute | 
|  | sec -= min * secondsPerMinute | 
|  | return | 
|  | } | 
|  |  | 
|  | // Hour returns the hour within the day specified by t, in the range [0, 23]. | 
|  | func (t Time) Hour() int { | 
|  | return int(t.abs()%secondsPerDay) / secondsPerHour | 
|  | } | 
|  |  | 
|  | // Minute returns the minute offset within the hour specified by t, in the range [0, 59]. | 
|  | func (t Time) Minute() int { | 
|  | return int(t.abs()%secondsPerHour) / secondsPerMinute | 
|  | } | 
|  |  | 
|  | // Second returns the second offset within the minute specified by t, in the range [0, 59]. | 
|  | func (t Time) Second() int { | 
|  | return int(t.abs() % secondsPerMinute) | 
|  | } | 
|  |  | 
|  | // Nanosecond returns the nanosecond offset within the second specified by t, | 
|  | // in the range [0, 999999999]. | 
|  | func (t Time) Nanosecond() int { | 
|  | return int(t.nsec()) | 
|  | } | 
|  |  | 
|  | // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, | 
|  | // and [1,366] in leap years. | 
|  | func (t Time) YearDay() int { | 
|  | _, _, _, yday := t.date(false) | 
|  | return yday + 1 | 
|  | } | 
|  |  | 
|  | // A Duration represents the elapsed time between two instants | 
|  | // as an int64 nanosecond count. The representation limits the | 
|  | // largest representable duration to approximately 290 years. | 
|  | type Duration int64 | 
|  |  | 
|  | const ( | 
|  | minDuration Duration = -1 << 63 | 
|  | maxDuration Duration = 1<<63 - 1 | 
|  | ) | 
|  |  | 
|  | // Common durations. There is no definition for units of Day or larger | 
|  | // to avoid confusion across daylight savings time zone transitions. | 
|  | // | 
|  | // To count the number of units in a Duration, divide: | 
|  | //	second := time.Second | 
|  | //	fmt.Print(int64(second/time.Millisecond)) // prints 1000 | 
|  | // | 
|  | // To convert an integer number of units to a Duration, multiply: | 
|  | //	seconds := 10 | 
|  | //	fmt.Print(time.Duration(seconds)*time.Second) // prints 10s | 
|  | // | 
|  | const ( | 
|  | Nanosecond  Duration = 1 | 
|  | Microsecond          = 1000 * Nanosecond | 
|  | Millisecond          = 1000 * Microsecond | 
|  | Second               = 1000 * Millisecond | 
|  | Minute               = 60 * Second | 
|  | Hour                 = 60 * Minute | 
|  | ) | 
|  |  | 
|  | // String returns a string representing the duration in the form "72h3m0.5s". | 
|  | // Leading zero units are omitted. As a special case, durations less than one | 
|  | // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure | 
|  | // that the leading digit is non-zero. The zero duration formats as 0s. | 
|  | func (d Duration) String() string { | 
|  | // Largest time is 2540400h10m10.000000000s | 
|  | var buf [32]byte | 
|  | w := len(buf) | 
|  |  | 
|  | u := uint64(d) | 
|  | neg := d < 0 | 
|  | if neg { | 
|  | u = -u | 
|  | } | 
|  |  | 
|  | if u < uint64(Second) { | 
|  | // Special case: if duration is smaller than a second, | 
|  | // use smaller units, like 1.2ms | 
|  | var prec int | 
|  | w-- | 
|  | buf[w] = 's' | 
|  | w-- | 
|  | switch { | 
|  | case u == 0: | 
|  | return "0s" | 
|  | case u < uint64(Microsecond): | 
|  | // print nanoseconds | 
|  | prec = 0 | 
|  | buf[w] = 'n' | 
|  | case u < uint64(Millisecond): | 
|  | // print microseconds | 
|  | prec = 3 | 
|  | // U+00B5 'µ' micro sign == 0xC2 0xB5 | 
|  | w-- // Need room for two bytes. | 
|  | copy(buf[w:], "µ") | 
|  | default: | 
|  | // print milliseconds | 
|  | prec = 6 | 
|  | buf[w] = 'm' | 
|  | } | 
|  | w, u = fmtFrac(buf[:w], u, prec) | 
|  | w = fmtInt(buf[:w], u) | 
|  | } else { | 
|  | w-- | 
|  | buf[w] = 's' | 
|  |  | 
|  | w, u = fmtFrac(buf[:w], u, 9) | 
|  |  | 
|  | // u is now integer seconds | 
|  | w = fmtInt(buf[:w], u%60) | 
|  | u /= 60 | 
|  |  | 
|  | // u is now integer minutes | 
|  | if u > 0 { | 
|  | w-- | 
|  | buf[w] = 'm' | 
|  | w = fmtInt(buf[:w], u%60) | 
|  | u /= 60 | 
|  |  | 
|  | // u is now integer hours | 
|  | // Stop at hours because days can be different lengths. | 
|  | if u > 0 { | 
|  | w-- | 
|  | buf[w] = 'h' | 
|  | w = fmtInt(buf[:w], u) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if neg { | 
|  | w-- | 
|  | buf[w] = '-' | 
|  | } | 
|  |  | 
|  | return string(buf[w:]) | 
|  | } | 
|  |  | 
|  | // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the | 
|  | // tail of buf, omitting trailing zeros. It omits the decimal | 
|  | // point too when the fraction is 0. It returns the index where the | 
|  | // output bytes begin and the value v/10**prec. | 
|  | func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) { | 
|  | // Omit trailing zeros up to and including decimal point. | 
|  | w := len(buf) | 
|  | print := false | 
|  | for i := 0; i < prec; i++ { | 
|  | digit := v % 10 | 
|  | print = print || digit != 0 | 
|  | if print { | 
|  | w-- | 
|  | buf[w] = byte(digit) + '0' | 
|  | } | 
|  | v /= 10 | 
|  | } | 
|  | if print { | 
|  | w-- | 
|  | buf[w] = '.' | 
|  | } | 
|  | return w, v | 
|  | } | 
|  |  | 
|  | // fmtInt formats v into the tail of buf. | 
|  | // It returns the index where the output begins. | 
|  | func fmtInt(buf []byte, v uint64) int { | 
|  | w := len(buf) | 
|  | if v == 0 { | 
|  | w-- | 
|  | buf[w] = '0' | 
|  | } else { | 
|  | for v > 0 { | 
|  | w-- | 
|  | buf[w] = byte(v%10) + '0' | 
|  | v /= 10 | 
|  | } | 
|  | } | 
|  | return w | 
|  | } | 
|  |  | 
|  | // Nanoseconds returns the duration as an integer nanosecond count. | 
|  | func (d Duration) Nanoseconds() int64 { return int64(d) } | 
|  |  | 
|  | // These methods return float64 because the dominant | 
|  | // use case is for printing a floating point number like 1.5s, and | 
|  | // a truncation to integer would make them not useful in those cases. | 
|  | // Splitting the integer and fraction ourselves guarantees that | 
|  | // converting the returned float64 to an integer rounds the same | 
|  | // way that a pure integer conversion would have, even in cases | 
|  | // where, say, float64(d.Nanoseconds())/1e9 would have rounded | 
|  | // differently. | 
|  |  | 
|  | // Seconds returns the duration as a floating point number of seconds. | 
|  | func (d Duration) Seconds() float64 { | 
|  | sec := d / Second | 
|  | nsec := d % Second | 
|  | return float64(sec) + float64(nsec)/1e9 | 
|  | } | 
|  |  | 
|  | // Minutes returns the duration as a floating point number of minutes. | 
|  | func (d Duration) Minutes() float64 { | 
|  | min := d / Minute | 
|  | nsec := d % Minute | 
|  | return float64(min) + float64(nsec)/(60*1e9) | 
|  | } | 
|  |  | 
|  | // Hours returns the duration as a floating point number of hours. | 
|  | func (d Duration) Hours() float64 { | 
|  | hour := d / Hour | 
|  | nsec := d % Hour | 
|  | return float64(hour) + float64(nsec)/(60*60*1e9) | 
|  | } | 
|  |  | 
|  | // Truncate returns the result of rounding d toward zero to a multiple of m. | 
|  | // If m <= 0, Truncate returns d unchanged. | 
|  | func (d Duration) Truncate(m Duration) Duration { | 
|  | if m <= 0 { | 
|  | return d | 
|  | } | 
|  | return d - d%m | 
|  | } | 
|  |  | 
|  | // lessThanHalf reports whether x+x < y but avoids overflow, | 
|  | // assuming x and y are both positive (Duration is signed). | 
|  | func lessThanHalf(x, y Duration) bool { | 
|  | return uint64(x)+uint64(x) < uint64(y) | 
|  | } | 
|  |  | 
|  | // Round returns the result of rounding d to the nearest multiple of m. | 
|  | // The rounding behavior for halfway values is to round away from zero. | 
|  | // If the result exceeds the maximum (or minimum) | 
|  | // value that can be stored in a Duration, | 
|  | // Round returns the maximum (or minimum) duration. | 
|  | // If m <= 0, Round returns d unchanged. | 
|  | func (d Duration) Round(m Duration) Duration { | 
|  | if m <= 0 { | 
|  | return d | 
|  | } | 
|  | r := d % m | 
|  | if d < 0 { | 
|  | r = -r | 
|  | if lessThanHalf(r, m) { | 
|  | return d + r | 
|  | } | 
|  | if d1 := d - m + r; d1 < d { | 
|  | return d1 | 
|  | } | 
|  | return minDuration // overflow | 
|  | } | 
|  | if lessThanHalf(r, m) { | 
|  | return d - r | 
|  | } | 
|  | if d1 := d + m - r; d1 > d { | 
|  | return d1 | 
|  | } | 
|  | return maxDuration // overflow | 
|  | } | 
|  |  | 
|  | // Add returns the time t+d. | 
|  | func (t Time) Add(d Duration) Time { | 
|  | dsec := int64(d / 1e9) | 
|  | nsec := t.nsec() + int32(d%1e9) | 
|  | if nsec >= 1e9 { | 
|  | dsec++ | 
|  | nsec -= 1e9 | 
|  | } else if nsec < 0 { | 
|  | dsec-- | 
|  | nsec += 1e9 | 
|  | } | 
|  | t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec | 
|  | t.addSec(dsec) | 
|  | if t.wall&hasMonotonic != 0 { | 
|  | te := t.ext + int64(d) | 
|  | if d < 0 && te > t.ext || d > 0 && te < t.ext { | 
|  | // Monotonic clock reading now out of range; degrade to wall-only. | 
|  | t.stripMono() | 
|  | } else { | 
|  | t.ext = te | 
|  | } | 
|  | } | 
|  | return t | 
|  | } | 
|  |  | 
|  | // Sub returns the duration t-u. If the result exceeds the maximum (or minimum) | 
|  | // value that can be stored in a Duration, the maximum (or minimum) duration | 
|  | // will be returned. | 
|  | // To compute t-d for a duration d, use t.Add(-d). | 
|  | func (t Time) Sub(u Time) Duration { | 
|  | if t.wall&u.wall&hasMonotonic != 0 { | 
|  | te := t.ext | 
|  | ue := u.ext | 
|  | d := Duration(te - ue) | 
|  | if d < 0 && te > ue { | 
|  | return maxDuration // t - u is positive out of range | 
|  | } | 
|  | if d > 0 && te < ue { | 
|  | return minDuration // t - u is negative out of range | 
|  | } | 
|  | return d | 
|  | } | 
|  | d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec()) | 
|  | // Check for overflow or underflow. | 
|  | switch { | 
|  | case u.Add(d).Equal(t): | 
|  | return d // d is correct | 
|  | case t.Before(u): | 
|  | return minDuration // t - u is negative out of range | 
|  | default: | 
|  | return maxDuration // t - u is positive out of range | 
|  | } | 
|  | } | 
|  |  | 
|  | // Since returns the time elapsed since t. | 
|  | // It is shorthand for time.Now().Sub(t). | 
|  | func Since(t Time) Duration { | 
|  | var now Time | 
|  | if t.wall&hasMonotonic != 0 { | 
|  | // Common case optimization: if t has monotomic time, then Sub will use only it. | 
|  | now = Time{hasMonotonic, runtimeNano() - startNano, nil} | 
|  | } else { | 
|  | now = Now() | 
|  | } | 
|  | return now.Sub(t) | 
|  | } | 
|  |  | 
|  | // Until returns the duration until t. | 
|  | // It is shorthand for t.Sub(time.Now()). | 
|  | func Until(t Time) Duration { | 
|  | var now Time | 
|  | if t.wall&hasMonotonic != 0 { | 
|  | // Common case optimization: if t has monotomic time, then Sub will use only it. | 
|  | now = Time{hasMonotonic, runtimeNano() - startNano, nil} | 
|  | } else { | 
|  | now = Now() | 
|  | } | 
|  | return t.Sub(now) | 
|  | } | 
|  |  | 
|  | // AddDate returns the time corresponding to adding the | 
|  | // given number of years, months, and days to t. | 
|  | // For example, AddDate(-1, 2, 3) applied to January 1, 2011 | 
|  | // returns March 4, 2010. | 
|  | // | 
|  | // AddDate normalizes its result in the same way that Date does, | 
|  | // so, for example, adding one month to October 31 yields | 
|  | // December 1, the normalized form for November 31. | 
|  | func (t Time) AddDate(years int, months int, days int) Time { | 
|  | year, month, day := t.Date() | 
|  | hour, min, sec := t.Clock() | 
|  | return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location()) | 
|  | } | 
|  |  | 
|  | const ( | 
|  | secondsPerMinute = 60 | 
|  | secondsPerHour   = 60 * secondsPerMinute | 
|  | secondsPerDay    = 24 * secondsPerHour | 
|  | secondsPerWeek   = 7 * secondsPerDay | 
|  | daysPer400Years  = 365*400 + 97 | 
|  | daysPer100Years  = 365*100 + 24 | 
|  | daysPer4Years    = 365*4 + 1 | 
|  | ) | 
|  |  | 
|  | // date computes the year, day of year, and when full=true, | 
|  | // the month and day in which t occurs. | 
|  | func (t Time) date(full bool) (year int, month Month, day int, yday int) { | 
|  | return absDate(t.abs(), full) | 
|  | } | 
|  |  | 
|  | // absDate is like date but operates on an absolute time. | 
|  | func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) { | 
|  | // Split into time and day. | 
|  | d := abs / secondsPerDay | 
|  |  | 
|  | // Account for 400 year cycles. | 
|  | n := d / daysPer400Years | 
|  | y := 400 * n | 
|  | d -= daysPer400Years * n | 
|  |  | 
|  | // Cut off 100-year cycles. | 
|  | // The last cycle has one extra leap year, so on the last day | 
|  | // of that year, day / daysPer100Years will be 4 instead of 3. | 
|  | // Cut it back down to 3 by subtracting n>>2. | 
|  | n = d / daysPer100Years | 
|  | n -= n >> 2 | 
|  | y += 100 * n | 
|  | d -= daysPer100Years * n | 
|  |  | 
|  | // Cut off 4-year cycles. | 
|  | // The last cycle has a missing leap year, which does not | 
|  | // affect the computation. | 
|  | n = d / daysPer4Years | 
|  | y += 4 * n | 
|  | d -= daysPer4Years * n | 
|  |  | 
|  | // Cut off years within a 4-year cycle. | 
|  | // The last year is a leap year, so on the last day of that year, | 
|  | // day / 365 will be 4 instead of 3. Cut it back down to 3 | 
|  | // by subtracting n>>2. | 
|  | n = d / 365 | 
|  | n -= n >> 2 | 
|  | y += n | 
|  | d -= 365 * n | 
|  |  | 
|  | year = int(int64(y) + absoluteZeroYear) | 
|  | yday = int(d) | 
|  |  | 
|  | if !full { | 
|  | return | 
|  | } | 
|  |  | 
|  | day = yday | 
|  | if isLeap(year) { | 
|  | // Leap year | 
|  | switch { | 
|  | case day > 31+29-1: | 
|  | // After leap day; pretend it wasn't there. | 
|  | day-- | 
|  | case day == 31+29-1: | 
|  | // Leap day. | 
|  | month = February | 
|  | day = 29 | 
|  | return | 
|  | } | 
|  | } | 
|  |  | 
|  | // Estimate month on assumption that every month has 31 days. | 
|  | // The estimate may be too low by at most one month, so adjust. | 
|  | month = Month(day / 31) | 
|  | end := int(daysBefore[month+1]) | 
|  | var begin int | 
|  | if day >= end { | 
|  | month++ | 
|  | begin = end | 
|  | } else { | 
|  | begin = int(daysBefore[month]) | 
|  | } | 
|  |  | 
|  | month++ // because January is 1 | 
|  | day = day - begin + 1 | 
|  | return | 
|  | } | 
|  |  | 
|  | // daysBefore[m] counts the number of days in a non-leap year | 
|  | // before month m begins. There is an entry for m=12, counting | 
|  | // the number of days before January of next year (365). | 
|  | var daysBefore = [...]int32{ | 
|  | 0, | 
|  | 31, | 
|  | 31 + 28, | 
|  | 31 + 28 + 31, | 
|  | 31 + 28 + 31 + 30, | 
|  | 31 + 28 + 31 + 30 + 31, | 
|  | 31 + 28 + 31 + 30 + 31 + 30, | 
|  | 31 + 28 + 31 + 30 + 31 + 30 + 31, | 
|  | 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31, | 
|  | 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30, | 
|  | 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31, | 
|  | 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30, | 
|  | 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31, | 
|  | } | 
|  |  | 
|  | func daysIn(m Month, year int) int { | 
|  | if m == February && isLeap(year) { | 
|  | return 29 | 
|  | } | 
|  | return int(daysBefore[m] - daysBefore[m-1]) | 
|  | } | 
|  |  | 
|  | // Provided by package runtime. | 
|  | func now() (sec int64, nsec int32, mono int64) | 
|  |  | 
|  | // runtimeNano returns the current value of the runtime clock in nanoseconds. | 
|  | //go:linkname runtimeNano runtime.nanotime | 
|  | func runtimeNano() int64 | 
|  |  | 
|  | // Monotonic times are reported as offsets from startNano. | 
|  | // We initialize startNano to runtimeNano() - 1 so that on systems where | 
|  | // monotonic time resolution is fairly low (e.g. Windows 2008 | 
|  | // which appears to have a default resolution of 15ms), | 
|  | // we avoid ever reporting a monotonic time of 0. | 
|  | // (Callers may want to use 0 as "time not set".) | 
|  | var startNano int64 = runtimeNano() - 1 | 
|  |  | 
|  | // Now returns the current local time. | 
|  | func Now() Time { | 
|  | sec, nsec, mono := now() | 
|  | mono -= startNano | 
|  | sec += unixToInternal - minWall | 
|  | if uint64(sec)>>33 != 0 { | 
|  | return Time{uint64(nsec), sec + minWall, Local} | 
|  | } | 
|  | return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local} | 
|  | } | 
|  |  | 
|  | func unixTime(sec int64, nsec int32) Time { | 
|  | return Time{uint64(nsec), sec + unixToInternal, Local} | 
|  | } | 
|  |  | 
|  | // UTC returns t with the location set to UTC. | 
|  | func (t Time) UTC() Time { | 
|  | t.setLoc(&utcLoc) | 
|  | return t | 
|  | } | 
|  |  | 
|  | // Local returns t with the location set to local time. | 
|  | func (t Time) Local() Time { | 
|  | t.setLoc(Local) | 
|  | return t | 
|  | } | 
|  |  | 
|  | // In returns a copy of t representing the same time instant, but | 
|  | // with the copy's location information set to loc for display | 
|  | // purposes. | 
|  | // | 
|  | // In panics if loc is nil. | 
|  | func (t Time) In(loc *Location) Time { | 
|  | if loc == nil { | 
|  | panic("time: missing Location in call to Time.In") | 
|  | } | 
|  | t.setLoc(loc) | 
|  | return t | 
|  | } | 
|  |  | 
|  | // Location returns the time zone information associated with t. | 
|  | func (t Time) Location() *Location { | 
|  | l := t.loc | 
|  | if l == nil { | 
|  | l = UTC | 
|  | } | 
|  | return l | 
|  | } | 
|  |  | 
|  | // Zone computes the time zone in effect at time t, returning the abbreviated | 
|  | // name of the zone (such as "CET") and its offset in seconds east of UTC. | 
|  | func (t Time) Zone() (name string, offset int) { | 
|  | name, offset, _, _ = t.loc.lookup(t.unixSec()) | 
|  | return | 
|  | } | 
|  |  | 
|  | // Unix returns t as a Unix time, the number of seconds elapsed | 
|  | // since January 1, 1970 UTC. The result does not depend on the | 
|  | // location associated with t. | 
|  | func (t Time) Unix() int64 { | 
|  | return t.unixSec() | 
|  | } | 
|  |  | 
|  | // UnixNano returns t as a Unix time, the number of nanoseconds elapsed | 
|  | // since January 1, 1970 UTC. The result is undefined if the Unix time | 
|  | // in nanoseconds cannot be represented by an int64 (a date before the year | 
|  | // 1678 or after 2262). Note that this means the result of calling UnixNano | 
|  | // on the zero Time is undefined. The result does not depend on the | 
|  | // location associated with t. | 
|  | func (t Time) UnixNano() int64 { | 
|  | return (t.unixSec())*1e9 + int64(t.nsec()) | 
|  | } | 
|  |  | 
|  | const timeBinaryVersion byte = 1 | 
|  |  | 
|  | // MarshalBinary implements the encoding.BinaryMarshaler interface. | 
|  | func (t Time) MarshalBinary() ([]byte, error) { | 
|  | var offsetMin int16 // minutes east of UTC. -1 is UTC. | 
|  |  | 
|  | if t.Location() == UTC { | 
|  | offsetMin = -1 | 
|  | } else { | 
|  | _, offset := t.Zone() | 
|  | if offset%60 != 0 { | 
|  | return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute") | 
|  | } | 
|  | offset /= 60 | 
|  | if offset < -32768 || offset == -1 || offset > 32767 { | 
|  | return nil, errors.New("Time.MarshalBinary: unexpected zone offset") | 
|  | } | 
|  | offsetMin = int16(offset) | 
|  | } | 
|  |  | 
|  | sec := t.sec() | 
|  | nsec := t.nsec() | 
|  | enc := []byte{ | 
|  | timeBinaryVersion, // byte 0 : version | 
|  | byte(sec >> 56),   // bytes 1-8: seconds | 
|  | byte(sec >> 48), | 
|  | byte(sec >> 40), | 
|  | byte(sec >> 32), | 
|  | byte(sec >> 24), | 
|  | byte(sec >> 16), | 
|  | byte(sec >> 8), | 
|  | byte(sec), | 
|  | byte(nsec >> 24), // bytes 9-12: nanoseconds | 
|  | byte(nsec >> 16), | 
|  | byte(nsec >> 8), | 
|  | byte(nsec), | 
|  | byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes | 
|  | byte(offsetMin), | 
|  | } | 
|  |  | 
|  | return enc, nil | 
|  | } | 
|  |  | 
|  | // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface. | 
|  | func (t *Time) UnmarshalBinary(data []byte) error { | 
|  | buf := data | 
|  | if len(buf) == 0 { | 
|  | return errors.New("Time.UnmarshalBinary: no data") | 
|  | } | 
|  |  | 
|  | if buf[0] != timeBinaryVersion { | 
|  | return errors.New("Time.UnmarshalBinary: unsupported version") | 
|  | } | 
|  |  | 
|  | if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 { | 
|  | return errors.New("Time.UnmarshalBinary: invalid length") | 
|  | } | 
|  |  | 
|  | buf = buf[1:] | 
|  | sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 | | 
|  | int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56 | 
|  |  | 
|  | buf = buf[8:] | 
|  | nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24 | 
|  |  | 
|  | buf = buf[4:] | 
|  | offset := int(int16(buf[1])|int16(buf[0])<<8) * 60 | 
|  |  | 
|  | *t = Time{} | 
|  | t.wall = uint64(nsec) | 
|  | t.ext = sec | 
|  |  | 
|  | if offset == -1*60 { | 
|  | t.setLoc(&utcLoc) | 
|  | } else if _, localoff, _, _ := Local.lookup(t.unixSec()); offset == localoff { | 
|  | t.setLoc(Local) | 
|  | } else { | 
|  | t.setLoc(FixedZone("", offset)) | 
|  | } | 
|  |  | 
|  | return nil | 
|  | } | 
|  |  | 
|  | // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2. | 
|  | // The same semantics will be provided by the generic MarshalBinary, MarshalText, | 
|  | // UnmarshalBinary, UnmarshalText. | 
|  |  | 
|  | // GobEncode implements the gob.GobEncoder interface. | 
|  | func (t Time) GobEncode() ([]byte, error) { | 
|  | return t.MarshalBinary() | 
|  | } | 
|  |  | 
|  | // GobDecode implements the gob.GobDecoder interface. | 
|  | func (t *Time) GobDecode(data []byte) error { | 
|  | return t.UnmarshalBinary(data) | 
|  | } | 
|  |  | 
|  | // MarshalJSON implements the json.Marshaler interface. | 
|  | // The time is a quoted string in RFC 3339 format, with sub-second precision added if present. | 
|  | func (t Time) MarshalJSON() ([]byte, error) { | 
|  | if y := t.Year(); y < 0 || y >= 10000 { | 
|  | // RFC 3339 is clear that years are 4 digits exactly. | 
|  | // See golang.org/issue/4556#c15 for more discussion. | 
|  | return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]") | 
|  | } | 
|  |  | 
|  | b := make([]byte, 0, len(RFC3339Nano)+2) | 
|  | b = append(b, '"') | 
|  | b = t.AppendFormat(b, RFC3339Nano) | 
|  | b = append(b, '"') | 
|  | return b, nil | 
|  | } | 
|  |  | 
|  | // UnmarshalJSON implements the json.Unmarshaler interface. | 
|  | // The time is expected to be a quoted string in RFC 3339 format. | 
|  | func (t *Time) UnmarshalJSON(data []byte) error { | 
|  | // Ignore null, like in the main JSON package. | 
|  | if string(data) == "null" { | 
|  | return nil | 
|  | } | 
|  | // Fractional seconds are handled implicitly by Parse. | 
|  | var err error | 
|  | *t, err = Parse(`"`+RFC3339+`"`, string(data)) | 
|  | return err | 
|  | } | 
|  |  | 
|  | // MarshalText implements the encoding.TextMarshaler interface. | 
|  | // The time is formatted in RFC 3339 format, with sub-second precision added if present. | 
|  | func (t Time) MarshalText() ([]byte, error) { | 
|  | if y := t.Year(); y < 0 || y >= 10000 { | 
|  | return nil, errors.New("Time.MarshalText: year outside of range [0,9999]") | 
|  | } | 
|  |  | 
|  | b := make([]byte, 0, len(RFC3339Nano)) | 
|  | return t.AppendFormat(b, RFC3339Nano), nil | 
|  | } | 
|  |  | 
|  | // UnmarshalText implements the encoding.TextUnmarshaler interface. | 
|  | // The time is expected to be in RFC 3339 format. | 
|  | func (t *Time) UnmarshalText(data []byte) error { | 
|  | // Fractional seconds are handled implicitly by Parse. | 
|  | var err error | 
|  | *t, err = Parse(RFC3339, string(data)) | 
|  | return err | 
|  | } | 
|  |  | 
|  | // Unix returns the local Time corresponding to the given Unix time, | 
|  | // sec seconds and nsec nanoseconds since January 1, 1970 UTC. | 
|  | // It is valid to pass nsec outside the range [0, 999999999]. | 
|  | // Not all sec values have a corresponding time value. One such | 
|  | // value is 1<<63-1 (the largest int64 value). | 
|  | func Unix(sec int64, nsec int64) Time { | 
|  | if nsec < 0 || nsec >= 1e9 { | 
|  | n := nsec / 1e9 | 
|  | sec += n | 
|  | nsec -= n * 1e9 | 
|  | if nsec < 0 { | 
|  | nsec += 1e9 | 
|  | sec-- | 
|  | } | 
|  | } | 
|  | return unixTime(sec, int32(nsec)) | 
|  | } | 
|  |  | 
|  | func isLeap(year int) bool { | 
|  | return year%4 == 0 && (year%100 != 0 || year%400 == 0) | 
|  | } | 
|  |  | 
|  | // norm returns nhi, nlo such that | 
|  | //	hi * base + lo == nhi * base + nlo | 
|  | //	0 <= nlo < base | 
|  | func norm(hi, lo, base int) (nhi, nlo int) { | 
|  | if lo < 0 { | 
|  | n := (-lo-1)/base + 1 | 
|  | hi -= n | 
|  | lo += n * base | 
|  | } | 
|  | if lo >= base { | 
|  | n := lo / base | 
|  | hi += n | 
|  | lo -= n * base | 
|  | } | 
|  | return hi, lo | 
|  | } | 
|  |  | 
|  | // Date returns the Time corresponding to | 
|  | //	yyyy-mm-dd hh:mm:ss + nsec nanoseconds | 
|  | // in the appropriate zone for that time in the given location. | 
|  | // | 
|  | // The month, day, hour, min, sec, and nsec values may be outside | 
|  | // their usual ranges and will be normalized during the conversion. | 
|  | // For example, October 32 converts to November 1. | 
|  | // | 
|  | // A daylight savings time transition skips or repeats times. | 
|  | // For example, in the United States, March 13, 2011 2:15am never occurred, | 
|  | // while November 6, 2011 1:15am occurred twice. In such cases, the | 
|  | // choice of time zone, and therefore the time, is not well-defined. | 
|  | // Date returns a time that is correct in one of the two zones involved | 
|  | // in the transition, but it does not guarantee which. | 
|  | // | 
|  | // Date panics if loc is nil. | 
|  | func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time { | 
|  | if loc == nil { | 
|  | panic("time: missing Location in call to Date") | 
|  | } | 
|  |  | 
|  | // Normalize month, overflowing into year. | 
|  | m := int(month) - 1 | 
|  | year, m = norm(year, m, 12) | 
|  | month = Month(m) + 1 | 
|  |  | 
|  | // Normalize nsec, sec, min, hour, overflowing into day. | 
|  | sec, nsec = norm(sec, nsec, 1e9) | 
|  | min, sec = norm(min, sec, 60) | 
|  | hour, min = norm(hour, min, 60) | 
|  | day, hour = norm(day, hour, 24) | 
|  |  | 
|  | y := uint64(int64(year) - absoluteZeroYear) | 
|  |  | 
|  | // Compute days since the absolute epoch. | 
|  |  | 
|  | // Add in days from 400-year cycles. | 
|  | n := y / 400 | 
|  | y -= 400 * n | 
|  | d := daysPer400Years * n | 
|  |  | 
|  | // Add in 100-year cycles. | 
|  | n = y / 100 | 
|  | y -= 100 * n | 
|  | d += daysPer100Years * n | 
|  |  | 
|  | // Add in 4-year cycles. | 
|  | n = y / 4 | 
|  | y -= 4 * n | 
|  | d += daysPer4Years * n | 
|  |  | 
|  | // Add in non-leap years. | 
|  | n = y | 
|  | d += 365 * n | 
|  |  | 
|  | // Add in days before this month. | 
|  | d += uint64(daysBefore[month-1]) | 
|  | if isLeap(year) && month >= March { | 
|  | d++ // February 29 | 
|  | } | 
|  |  | 
|  | // Add in days before today. | 
|  | d += uint64(day - 1) | 
|  |  | 
|  | // Add in time elapsed today. | 
|  | abs := d * secondsPerDay | 
|  | abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec) | 
|  |  | 
|  | unix := int64(abs) + (absoluteToInternal + internalToUnix) | 
|  |  | 
|  | // Look for zone offset for t, so we can adjust to UTC. | 
|  | // The lookup function expects UTC, so we pass t in the | 
|  | // hope that it will not be too close to a zone transition, | 
|  | // and then adjust if it is. | 
|  | _, offset, start, end := loc.lookup(unix) | 
|  | if offset != 0 { | 
|  | switch utc := unix - int64(offset); { | 
|  | case utc < start: | 
|  | _, offset, _, _ = loc.lookup(start - 1) | 
|  | case utc >= end: | 
|  | _, offset, _, _ = loc.lookup(end) | 
|  | } | 
|  | unix -= int64(offset) | 
|  | } | 
|  |  | 
|  | t := unixTime(unix, int32(nsec)) | 
|  | t.setLoc(loc) | 
|  | return t | 
|  | } | 
|  |  | 
|  | // Truncate returns the result of rounding t down to a multiple of d (since the zero time). | 
|  | // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged. | 
|  | // | 
|  | // Truncate operates on the time as an absolute duration since the | 
|  | // zero time; it does not operate on the presentation form of the | 
|  | // time. Thus, Truncate(Hour) may return a time with a non-zero | 
|  | // minute, depending on the time's Location. | 
|  | func (t Time) Truncate(d Duration) Time { | 
|  | t.stripMono() | 
|  | if d <= 0 { | 
|  | return t | 
|  | } | 
|  | _, r := div(t, d) | 
|  | return t.Add(-r) | 
|  | } | 
|  |  | 
|  | // Round returns the result of rounding t to the nearest multiple of d (since the zero time). | 
|  | // The rounding behavior for halfway values is to round up. | 
|  | // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged. | 
|  | // | 
|  | // Round operates on the time as an absolute duration since the | 
|  | // zero time; it does not operate on the presentation form of the | 
|  | // time. Thus, Round(Hour) may return a time with a non-zero | 
|  | // minute, depending on the time's Location. | 
|  | func (t Time) Round(d Duration) Time { | 
|  | t.stripMono() | 
|  | if d <= 0 { | 
|  | return t | 
|  | } | 
|  | _, r := div(t, d) | 
|  | if lessThanHalf(r, d) { | 
|  | return t.Add(-r) | 
|  | } | 
|  | return t.Add(d - r) | 
|  | } | 
|  |  | 
|  | // div divides t by d and returns the quotient parity and remainder. | 
|  | // We don't use the quotient parity anymore (round half up instead of round to even) | 
|  | // but it's still here in case we change our minds. | 
|  | func div(t Time, d Duration) (qmod2 int, r Duration) { | 
|  | neg := false | 
|  | nsec := t.nsec() | 
|  | sec := t.sec() | 
|  | if sec < 0 { | 
|  | // Operate on absolute value. | 
|  | neg = true | 
|  | sec = -sec | 
|  | nsec = -nsec | 
|  | if nsec < 0 { | 
|  | nsec += 1e9 | 
|  | sec-- // sec >= 1 before the -- so safe | 
|  | } | 
|  | } | 
|  |  | 
|  | switch { | 
|  | // Special case: 2d divides 1 second. | 
|  | case d < Second && Second%(d+d) == 0: | 
|  | qmod2 = int(nsec/int32(d)) & 1 | 
|  | r = Duration(nsec % int32(d)) | 
|  |  | 
|  | // Special case: d is a multiple of 1 second. | 
|  | case d%Second == 0: | 
|  | d1 := int64(d / Second) | 
|  | qmod2 = int(sec/d1) & 1 | 
|  | r = Duration(sec%d1)*Second + Duration(nsec) | 
|  |  | 
|  | // General case. | 
|  | // This could be faster if more cleverness were applied, | 
|  | // but it's really only here to avoid special case restrictions in the API. | 
|  | // No one will care about these cases. | 
|  | default: | 
|  | // Compute nanoseconds as 128-bit number. | 
|  | sec := uint64(sec) | 
|  | tmp := (sec >> 32) * 1e9 | 
|  | u1 := tmp >> 32 | 
|  | u0 := tmp << 32 | 
|  | tmp = (sec & 0xFFFFFFFF) * 1e9 | 
|  | u0x, u0 := u0, u0+tmp | 
|  | if u0 < u0x { | 
|  | u1++ | 
|  | } | 
|  | u0x, u0 = u0, u0+uint64(nsec) | 
|  | if u0 < u0x { | 
|  | u1++ | 
|  | } | 
|  |  | 
|  | // Compute remainder by subtracting r<<k for decreasing k. | 
|  | // Quotient parity is whether we subtract on last round. | 
|  | d1 := uint64(d) | 
|  | for d1>>63 != 1 { | 
|  | d1 <<= 1 | 
|  | } | 
|  | d0 := uint64(0) | 
|  | for { | 
|  | qmod2 = 0 | 
|  | if u1 > d1 || u1 == d1 && u0 >= d0 { | 
|  | // subtract | 
|  | qmod2 = 1 | 
|  | u0x, u0 = u0, u0-d0 | 
|  | if u0 > u0x { | 
|  | u1-- | 
|  | } | 
|  | u1 -= d1 | 
|  | } | 
|  | if d1 == 0 && d0 == uint64(d) { | 
|  | break | 
|  | } | 
|  | d0 >>= 1 | 
|  | d0 |= (d1 & 1) << 63 | 
|  | d1 >>= 1 | 
|  | } | 
|  | r = Duration(u0) | 
|  | } | 
|  |  | 
|  | if neg && r != 0 { | 
|  | // If input was negative and not an exact multiple of d, we computed q, r such that | 
|  | //	q*d + r = -t | 
|  | // But the right answers are given by -(q-1), d-r: | 
|  | //	q*d + r = -t | 
|  | //	-q*d - r = t | 
|  | //	-(q-1)*d + (d - r) = t | 
|  | qmod2 ^= 1 | 
|  | r = d - r | 
|  | } | 
|  | return | 
|  | } |