| // Copyright 2010 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This C program generates the file cmplxdivide1.go. It uses the |
| // output of the operations by C99 as the reference to check |
| // the implementation of complex numbers in Go. |
| // The generated file, cmplxdivide1.go, is compiled along |
| // with the driver cmplxdivide.go (the names are confusing |
| // and unimaginative) to run the actual test. This is done by |
| // the usual test runner. |
| // |
| // The file cmplxdivide1.go is checked in to the repository, but |
| // if it needs to be regenerated, compile and run this C program |
| // like this: |
| // gcc '-std=c99' cmplxdivide.c && a.out >cmplxdivide1.go |
| |
| #include <complex.h> |
| #include <math.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #define nelem(x) (sizeof(x)/sizeof((x)[0])) |
| |
| double f[] = { |
| 0.0, |
| -0.0, |
| 1.0, |
| -1.0, |
| 2.0, |
| NAN, |
| INFINITY, |
| -INFINITY, |
| }; |
| |
| char* fmt(double g) { |
| static char buf[10][30]; |
| static int n; |
| char *p; |
| |
| p = buf[n++]; |
| if(n == 10) { |
| n = 0; |
| } |
| |
| sprintf(p, "%g", g); |
| |
| if(strcmp(p, "0") == 0) { |
| strcpy(p, "zero"); |
| return p; |
| } |
| |
| if(strcmp(p, "-0") == 0) { |
| strcpy(p, "-zero"); |
| return p; |
| } |
| |
| return p; |
| } |
| |
| int main(void) { |
| int i, j, k, l; |
| double complex n, d, q; |
| |
| printf("// skip\n"); |
| printf("// # generated by cmplxdivide.c\n"); |
| printf("\n"); |
| printf("package main\n"); |
| printf("\n"); |
| printf("import \"math\"\n"); |
| printf("\n"); |
| printf("var (\n"); |
| printf("\tnan = math.NaN()\n"); |
| printf("\tinf = math.Inf(1)\n"); |
| printf("\tzero = 0.0\n"); |
| printf(")\n"); |
| printf("\n"); |
| printf("var tests = []struct {\n"); |
| printf("\tf, g complex128\n"); |
| printf("\tout complex128\n"); |
| printf("}{\n"); |
| |
| for(i=0; i<nelem(f); i++) |
| for(j=0; j<nelem(f); j++) |
| for(k=0; k<nelem(f); k++) |
| for(l=0; l<nelem(f); l++) { |
| n = f[i] + f[j]*I; |
| d = f[k] + f[l]*I; |
| q = n/d; |
| |
| printf("\t{complex(%s, %s), complex(%s, %s), complex(%s, %s)},\n", |
| fmt(creal(n)), fmt(cimag(n)), |
| fmt(creal(d)), fmt(cimag(d)), |
| fmt(creal(q)), fmt(cimag(q))); |
| } |
| printf("}\n"); |
| return 0; |
| } |