blob: a9bd723351b966891b7c2180067c211fef0589b6 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// “Abstract” syntax representation.
package gc
import (
"cmd/compile/internal/ssa"
"cmd/compile/internal/types"
"cmd/internal/obj"
"cmd/internal/objabi"
"cmd/internal/src"
"sort"
)
// A Node is a single node in the syntax tree.
// Actually the syntax tree is a syntax DAG, because there is only one
// node with Op=ONAME for a given instance of a variable x.
// The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared.
type Node struct {
// Tree structure.
// Generic recursive walks should follow these fields.
Left *Node
Right *Node
Ninit Nodes
Nbody Nodes
List Nodes
Rlist Nodes
// most nodes
Type *types.Type
Orig *Node // original form, for printing, and tracking copies of ONAMEs
// func
Func *Func
// ONAME, OTYPE, OPACK, OLABEL, some OLITERAL
Name *Name
Sym *types.Sym // various
E interface{} // Opt or Val, see methods below
// Various. Usually an offset into a struct. For example:
// - ONAME nodes that refer to local variables use it to identify their stack frame position.
// - ODOT, ODOTPTR, and ORESULT use it to indicate offset relative to their base address.
// - OSTRUCTKEY uses it to store the named field's offset.
// - Named OLITERALs use it to store their ambient iota value.
// - OINLMARK stores an index into the inlTree data structure.
// - OCLOSURE uses it to store ambient iota value, if any.
// Possibly still more uses. If you find any, document them.
Xoffset int64
Pos src.XPos
flags bitset32
Esc uint16 // EscXXX
Op Op
aux uint8
}
func (n *Node) ResetAux() {
n.aux = 0
}
func (n *Node) SubOp() Op {
switch n.Op {
case OASOP, ONAME:
default:
Fatalf("unexpected op: %v", n.Op)
}
return Op(n.aux)
}
func (n *Node) SetSubOp(op Op) {
switch n.Op {
case OASOP, ONAME:
default:
Fatalf("unexpected op: %v", n.Op)
}
n.aux = uint8(op)
}
func (n *Node) IndexMapLValue() bool {
if n.Op != OINDEXMAP {
Fatalf("unexpected op: %v", n.Op)
}
return n.aux != 0
}
func (n *Node) SetIndexMapLValue(b bool) {
if n.Op != OINDEXMAP {
Fatalf("unexpected op: %v", n.Op)
}
if b {
n.aux = 1
} else {
n.aux = 0
}
}
func (n *Node) TChanDir() types.ChanDir {
if n.Op != OTCHAN {
Fatalf("unexpected op: %v", n.Op)
}
return types.ChanDir(n.aux)
}
func (n *Node) SetTChanDir(dir types.ChanDir) {
if n.Op != OTCHAN {
Fatalf("unexpected op: %v", n.Op)
}
n.aux = uint8(dir)
}
func (n *Node) IsSynthetic() bool {
name := n.Sym.Name
return name[0] == '.' || name[0] == '~'
}
// IsAutoTmp indicates if n was created by the compiler as a temporary,
// based on the setting of the .AutoTemp flag in n's Name.
func (n *Node) IsAutoTmp() bool {
if n == nil || n.Op != ONAME {
return false
}
return n.Name.AutoTemp()
}
const (
nodeClass, _ = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed
_, _ // second nodeClass bit
_, _ // third nodeClass bit
nodeWalkdef, _ // tracks state during typecheckdef; 2 == loop detected; two bits
_, _ // second nodeWalkdef bit
nodeTypecheck, _ // tracks state during typechecking; 2 == loop detected; two bits
_, _ // second nodeTypecheck bit
nodeInitorder, _ // tracks state during init1; two bits
_, _ // second nodeInitorder bit
_, nodeHasBreak
_, nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
_, nodeImplicit
_, nodeIsDDD // is the argument variadic
_, nodeDiag // already printed error about this
_, nodeColas // OAS resulting from :=
_, nodeNonNil // guaranteed to be non-nil
_, nodeTransient // storage can be reused immediately after this statement
_, nodeBounded // bounds check unnecessary
_, nodeHasCall // expression contains a function call
_, nodeLikely // if statement condition likely
_, nodeHasVal // node.E contains a Val
_, nodeHasOpt // node.E contains an Opt
_, nodeEmbedded // ODCLFIELD embedded type
)
func (n *Node) Class() Class { return Class(n.flags.get3(nodeClass)) }
func (n *Node) Walkdef() uint8 { return n.flags.get2(nodeWalkdef) }
func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) }
func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) }
func (n *Node) HasBreak() bool { return n.flags&nodeHasBreak != 0 }
func (n *Node) NoInline() bool { return n.flags&nodeNoInline != 0 }
func (n *Node) Implicit() bool { return n.flags&nodeImplicit != 0 }
func (n *Node) IsDDD() bool { return n.flags&nodeIsDDD != 0 }
func (n *Node) Diag() bool { return n.flags&nodeDiag != 0 }
func (n *Node) Colas() bool { return n.flags&nodeColas != 0 }
func (n *Node) NonNil() bool { return n.flags&nodeNonNil != 0 }
func (n *Node) Transient() bool { return n.flags&nodeTransient != 0 }
func (n *Node) Bounded() bool { return n.flags&nodeBounded != 0 }
func (n *Node) HasCall() bool { return n.flags&nodeHasCall != 0 }
func (n *Node) Likely() bool { return n.flags&nodeLikely != 0 }
func (n *Node) HasVal() bool { return n.flags&nodeHasVal != 0 }
func (n *Node) HasOpt() bool { return n.flags&nodeHasOpt != 0 }
func (n *Node) Embedded() bool { return n.flags&nodeEmbedded != 0 }
func (n *Node) SetClass(b Class) { n.flags.set3(nodeClass, uint8(b)) }
func (n *Node) SetWalkdef(b uint8) { n.flags.set2(nodeWalkdef, b) }
func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) }
func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) }
func (n *Node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) }
func (n *Node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) }
func (n *Node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) }
func (n *Node) SetIsDDD(b bool) { n.flags.set(nodeIsDDD, b) }
func (n *Node) SetDiag(b bool) { n.flags.set(nodeDiag, b) }
func (n *Node) SetColas(b bool) { n.flags.set(nodeColas, b) }
func (n *Node) SetTransient(b bool) { n.flags.set(nodeTransient, b) }
func (n *Node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) }
func (n *Node) SetLikely(b bool) { n.flags.set(nodeLikely, b) }
func (n *Node) SetHasVal(b bool) { n.flags.set(nodeHasVal, b) }
func (n *Node) SetHasOpt(b bool) { n.flags.set(nodeHasOpt, b) }
func (n *Node) SetEmbedded(b bool) { n.flags.set(nodeEmbedded, b) }
// MarkNonNil marks a pointer n as being guaranteed non-nil,
// on all code paths, at all times.
// During conversion to SSA, non-nil pointers won't have nil checks
// inserted before dereferencing. See state.exprPtr.
func (n *Node) MarkNonNil() {
if !n.Type.IsPtr() && !n.Type.IsUnsafePtr() {
Fatalf("MarkNonNil(%v), type %v", n, n.Type)
}
n.flags.set(nodeNonNil, true)
}
// SetBounded indicates whether operation n does not need safety checks.
// When n is an index or slice operation, n does not need bounds checks.
// When n is a dereferencing operation, n does not need nil checks.
func (n *Node) SetBounded(b bool) {
switch n.Op {
case OINDEX, OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR, OSLICESTR:
// No bounds checks needed.
case ODOTPTR, ODEREF:
// No nil check needed.
default:
Fatalf("SetBounded(%v)", n)
}
n.flags.set(nodeBounded, b)
}
// MarkReadonly indicates that n is an ONAME with readonly contents.
func (n *Node) MarkReadonly() {
if n.Op != ONAME {
Fatalf("Node.MarkReadonly %v", n.Op)
}
n.Name.SetReadonly(true)
// Mark the linksym as readonly immediately
// so that the SSA backend can use this information.
// It will be overridden later during dumpglobls.
n.Sym.Linksym().Type = objabi.SRODATA
}
// Val returns the Val for the node.
func (n *Node) Val() Val {
if !n.HasVal() {
return Val{}
}
return Val{n.E}
}
// SetVal sets the Val for the node, which must not have been used with SetOpt.
func (n *Node) SetVal(v Val) {
if n.HasOpt() {
Debug['h'] = 1
Dump("have Opt", n)
Fatalf("have Opt")
}
n.SetHasVal(true)
n.E = v.U
}
// Opt returns the optimizer data for the node.
func (n *Node) Opt() interface{} {
if !n.HasOpt() {
return nil
}
return n.E
}
// SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
// SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
func (n *Node) SetOpt(x interface{}) {
if x == nil && n.HasVal() {
return
}
if n.HasVal() {
Debug['h'] = 1
Dump("have Val", n)
Fatalf("have Val")
}
n.SetHasOpt(true)
n.E = x
}
func (n *Node) Iota() int64 {
return n.Xoffset
}
func (n *Node) SetIota(x int64) {
n.Xoffset = x
}
// mayBeShared reports whether n may occur in multiple places in the AST.
// Extra care must be taken when mutating such a node.
func (n *Node) mayBeShared() bool {
switch n.Op {
case ONAME, OLITERAL, OTYPE:
return true
}
return false
}
// isMethodExpression reports whether n represents a method expression T.M.
func (n *Node) isMethodExpression() bool {
return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME
}
// funcname returns the name (without the package) of the function n.
func (n *Node) funcname() string {
if n == nil || n.Func == nil || n.Func.Nname == nil {
return "<nil>"
}
return n.Func.Nname.Sym.Name
}
// pkgFuncName returns the name of the function referenced by n, with package prepended.
// This differs from the compiler's internal convention where local functions lack a package
// because the ultimate consumer of this is a human looking at an IDE; package is only empty
// if the compilation package is actually the empty string.
func (n *Node) pkgFuncName() string {
var s *types.Sym
if n == nil {
return "<nil>"
}
if n.Op == ONAME {
s = n.Sym
} else {
if n.Func == nil || n.Func.Nname == nil {
return "<nil>"
}
s = n.Func.Nname.Sym
}
pkg := s.Pkg
p := myimportpath
if pkg != nil && pkg.Path != "" {
p = pkg.Path
}
if p == "" {
return s.Name
}
return p + "." + s.Name
}
// The compiler needs *Node to be assignable to cmd/compile/internal/ssa.Sym.
func (n *Node) CanBeAnSSASym() {
}
// Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL).
type Name struct {
Pack *Node // real package for import . names
Pkg *types.Pkg // pkg for OPACK nodes
Defn *Node // initializing assignment
Curfn *Node // function for local variables
Param *Param // additional fields for ONAME, OTYPE
Decldepth int32 // declaration loop depth, increased for every loop or label
Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one.
flags bitset16
}
const (
nameCaptured = 1 << iota // is the variable captured by a closure
nameReadonly
nameByval // is the variable captured by value or by reference
nameNeedzero // if it contains pointers, needs to be zeroed on function entry
nameKeepalive // mark value live across unknown assembly call
nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap)
nameUsed // for variable declared and not used error
nameIsClosureVar // PAUTOHEAP closure pseudo-variable; original at n.Name.Defn
nameIsOutputParamHeapAddr // pointer to a result parameter's heap copy
nameAssigned // is the variable ever assigned to
nameAddrtaken // address taken, even if not moved to heap
nameInlFormal // PAUTO created by inliner, derived from callee formal
nameInlLocal // PAUTO created by inliner, derived from callee local
nameOpenDeferSlot // if temporary var storing info for open-coded defers
nameLibfuzzerExtraCounter // if PEXTERN should be assigned to __libfuzzer_extra_counters section
)
func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 }
func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 }
func (n *Name) Byval() bool { return n.flags&nameByval != 0 }
func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 }
func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 }
func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 }
func (n *Name) Used() bool { return n.flags&nameUsed != 0 }
func (n *Name) IsClosureVar() bool { return n.flags&nameIsClosureVar != 0 }
func (n *Name) IsOutputParamHeapAddr() bool { return n.flags&nameIsOutputParamHeapAddr != 0 }
func (n *Name) Assigned() bool { return n.flags&nameAssigned != 0 }
func (n *Name) Addrtaken() bool { return n.flags&nameAddrtaken != 0 }
func (n *Name) InlFormal() bool { return n.flags&nameInlFormal != 0 }
func (n *Name) InlLocal() bool { return n.flags&nameInlLocal != 0 }
func (n *Name) OpenDeferSlot() bool { return n.flags&nameOpenDeferSlot != 0 }
func (n *Name) LibfuzzerExtraCounter() bool { return n.flags&nameLibfuzzerExtraCounter != 0 }
func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) }
func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) }
func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) }
func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) }
func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) }
func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) }
func (n *Name) SetUsed(b bool) { n.flags.set(nameUsed, b) }
func (n *Name) SetIsClosureVar(b bool) { n.flags.set(nameIsClosureVar, b) }
func (n *Name) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nameIsOutputParamHeapAddr, b) }
func (n *Name) SetAssigned(b bool) { n.flags.set(nameAssigned, b) }
func (n *Name) SetAddrtaken(b bool) { n.flags.set(nameAddrtaken, b) }
func (n *Name) SetInlFormal(b bool) { n.flags.set(nameInlFormal, b) }
func (n *Name) SetInlLocal(b bool) { n.flags.set(nameInlLocal, b) }
func (n *Name) SetOpenDeferSlot(b bool) { n.flags.set(nameOpenDeferSlot, b) }
func (n *Name) SetLibfuzzerExtraCounter(b bool) { n.flags.set(nameLibfuzzerExtraCounter, b) }
type Param struct {
Ntype *Node
Heapaddr *Node // temp holding heap address of param
// ONAME PAUTOHEAP
Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
// ONAME closure linkage
// Consider:
//
// func f() {
// x := 1 // x1
// func() {
// use(x) // x2
// func() {
// use(x) // x3
// --- parser is here ---
// }()
// }()
// }
//
// There is an original declaration of x and then a chain of mentions of x
// leading into the current function. Each time x is mentioned in a new closure,
// we create a variable representing x for use in that specific closure,
// since the way you get to x is different in each closure.
//
// Let's number the specific variables as shown in the code:
// x1 is the original x, x2 is when mentioned in the closure,
// and x3 is when mentioned in the closure in the closure.
//
// We keep these linked (assume N > 1):
//
// - x1.Defn = original declaration statement for x (like most variables)
// - x1.Innermost = current innermost closure x (in this case x3), or nil for none
// - x1.IsClosureVar() = false
//
// - xN.Defn = x1, N > 1
// - xN.IsClosureVar() = true, N > 1
// - x2.Outer = nil
// - xN.Outer = x(N-1), N > 2
//
//
// When we look up x in the symbol table, we always get x1.
// Then we can use x1.Innermost (if not nil) to get the x
// for the innermost known closure function,
// but the first reference in a closure will find either no x1.Innermost
// or an x1.Innermost with .Funcdepth < Funcdepth.
// In that case, a new xN must be created, linked in with:
//
// xN.Defn = x1
// xN.Outer = x1.Innermost
// x1.Innermost = xN
//
// When we finish the function, we'll process its closure variables
// and find xN and pop it off the list using:
//
// x1 := xN.Defn
// x1.Innermost = xN.Outer
//
// We leave xN.Innermost set so that we can still get to the original
// variable quickly. Not shown here, but once we're
// done parsing a function and no longer need xN.Outer for the
// lexical x reference links as described above, closurebody
// recomputes xN.Outer as the semantic x reference link tree,
// even filling in x in intermediate closures that might not
// have mentioned it along the way to inner closures that did.
// See closurebody for details.
//
// During the eventual compilation, then, for closure variables we have:
//
// xN.Defn = original variable
// xN.Outer = variable captured in next outward scope
// to make closure where xN appears
//
// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
Innermost *Node
Outer *Node
// OTYPE
//
// TODO: Should Func pragmas also be stored on the Name?
Pragma PragmaFlag
Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE)
}
// Functions
//
// A simple function declaration is represented as an ODCLFUNC node f
// and an ONAME node n. They're linked to one another through
// f.Func.Nname == n and n.Name.Defn == f. When functions are
// referenced by name in an expression, the function's ONAME node is
// used directly.
//
// Function names have n.Class() == PFUNC. This distinguishes them
// from variables of function type.
//
// Confusingly, n.Func and f.Func both exist, but commonly point to
// different Funcs. (Exception: an OCALLPART's Func does point to its
// ODCLFUNC's Func.)
//
// A method declaration is represented like functions, except n.Sym
// will be the qualified method name (e.g., "T.m") and
// f.Func.Shortname is the bare method name (e.g., "m").
//
// Method expressions are represented as ONAME/PFUNC nodes like
// function names, but their Left and Right fields still point to the
// type and method, respectively. They can be distinguished from
// normal functions with isMethodExpression. Also, unlike function
// name nodes, method expression nodes exist for each method
// expression. The declaration ONAME can be accessed with
// x.Type.Nname(), where x is the method expression ONAME node.
//
// Method values are represented by ODOTMETH/ODOTINTER when called
// immediately, and OCALLPART otherwise. They are like method
// expressions, except that for ODOTMETH/ODOTINTER the method name is
// stored in Sym instead of Right.
//
// Closures are represented by OCLOSURE node c. They link back and
// forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure
// == f and f.Func.Closure == c.
//
// Function bodies are stored in f.Nbody, and inline function bodies
// are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma.
//
// Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They
// also use Dcl instead of Inldcl.
// Func holds Node fields used only with function-like nodes.
type Func struct {
Shortname *types.Sym
Enter Nodes // for example, allocate and initialize memory for escaping parameters
Exit Nodes
Cvars Nodes // closure params
Dcl []*Node // autodcl for this func/closure
// Parents records the parent scope of each scope within a
// function. The root scope (0) has no parent, so the i'th
// scope's parent is stored at Parents[i-1].
Parents []ScopeID
// Marks records scope boundary changes.
Marks []Mark
// Closgen tracks how many closures have been generated within
// this function. Used by closurename for creating unique
// function names.
Closgen int
FieldTrack map[*types.Sym]struct{}
DebugInfo *ssa.FuncDebug
Ntype *Node // signature
Top int // top context (ctxCallee, etc)
Closure *Node // OCLOSURE <-> ODCLFUNC
Nname *Node
lsym *obj.LSym
Inl *Inline
Label int32 // largest auto-generated label in this function
Endlineno src.XPos
WBPos src.XPos // position of first write barrier; see SetWBPos
Pragma PragmaFlag // go:xxx function annotations
flags bitset16
numDefers int // number of defer calls in the function
numReturns int // number of explicit returns in the function
// nwbrCalls records the LSyms of functions called by this
// function for go:nowritebarrierrec analysis. Only filled in
// if nowritebarrierrecCheck != nil.
nwbrCalls *[]nowritebarrierrecCallSym
}
// An Inline holds fields used for function bodies that can be inlined.
type Inline struct {
Cost int32 // heuristic cost of inlining this function
// Copies of Func.Dcl and Nbody for use during inlining.
Dcl []*Node
Body []*Node
}
// A Mark represents a scope boundary.
type Mark struct {
// Pos is the position of the token that marks the scope
// change.
Pos src.XPos
// Scope identifies the innermost scope to the right of Pos.
Scope ScopeID
}
// A ScopeID represents a lexical scope within a function.
type ScopeID int32
const (
funcDupok = 1 << iota // duplicate definitions ok
funcWrapper // is method wrapper
funcNeedctxt // function uses context register (has closure variables)
funcReflectMethod // function calls reflect.Type.Method or MethodByName
funcIsHiddenClosure
funcHasDefer // contains a defer statement
funcNilCheckDisabled // disable nil checks when compiling this function
funcInlinabilityChecked // inliner has already determined whether the function is inlinable
funcExportInline // include inline body in export data
funcInstrumentBody // add race/msan instrumentation during SSA construction
funcOpenCodedDeferDisallowed // can't do open-coded defers
)
func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 }
func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 }
func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 }
func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 }
func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 }
func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 }
func (f *Func) NilCheckDisabled() bool { return f.flags&funcNilCheckDisabled != 0 }
func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 }
func (f *Func) ExportInline() bool { return f.flags&funcExportInline != 0 }
func (f *Func) InstrumentBody() bool { return f.flags&funcInstrumentBody != 0 }
func (f *Func) OpenCodedDeferDisallowed() bool { return f.flags&funcOpenCodedDeferDisallowed != 0 }
func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) }
func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) }
func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) }
func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) }
func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) }
func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) }
func (f *Func) SetNilCheckDisabled(b bool) { f.flags.set(funcNilCheckDisabled, b) }
func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) }
func (f *Func) SetExportInline(b bool) { f.flags.set(funcExportInline, b) }
func (f *Func) SetInstrumentBody(b bool) { f.flags.set(funcInstrumentBody, b) }
func (f *Func) SetOpenCodedDeferDisallowed(b bool) { f.flags.set(funcOpenCodedDeferDisallowed, b) }
func (f *Func) setWBPos(pos src.XPos) {
if Debug_wb != 0 {
Warnl(pos, "write barrier")
}
if !f.WBPos.IsKnown() {
f.WBPos = pos
}
}
//go:generate stringer -type=Op -trimprefix=O
type Op uint8
// Node ops.
const (
OXXX Op = iota
// names
ONAME // var or func name
ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc }
OTYPE // type name
OPACK // import
OLITERAL // literal
// expressions
OADD // Left + Right
OSUB // Left - Right
OOR // Left | Right
OXOR // Left ^ Right
OADDSTR // +{List} (string addition, list elements are strings)
OADDR // &Left
OANDAND // Left && Right
OAPPEND // append(List); after walk, Left may contain elem type descriptor
OBYTES2STR // Type(Left) (Type is string, Left is a []byte)
OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
ORUNES2STR // Type(Left) (Type is string, Left is a []rune)
OSTR2BYTES // Type(Left) (Type is []byte, Left is a string)
OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
OSTR2RUNES // Type(Left) (Type is []rune, Left is a string)
OAS // Left = Right or (if Colas=true) Left := Right
OAS2 // List = Rlist (x, y, z = a, b, c)
OAS2DOTTYPE // List = Right (x, ok = I.(int))
OAS2FUNC // List = Right (x, y = f())
OAS2MAPR // List = Right (x, ok = m["foo"])
OAS2RECV // List = Right (x, ok = <-c)
OASOP // Left Etype= Right (x += y)
OCALL // Left(List) (function call, method call or type conversion)
// OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure.
// Prior to walk, they are: Left(List), where List is all regular arguments.
// After walk, List is a series of assignments to temporaries,
// and Rlist is an updated set of arguments.
// TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797.
OCALLFUNC // Left(List/Rlist) (function call f(args))
OCALLMETH // Left(List/Rlist) (direct method call x.Method(args))
OCALLINTER // Left(List/Rlist) (interface method call x.Method(args))
OCALLPART // Left.Right (method expression x.Method, not called)
OCAP // cap(Left)
OCLOSE // close(Left)
OCLOSURE // func Type { Body } (func literal)
OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form)
OMAPLIT // Type{List} (composite literal, Type is map)
OSTRUCTLIT // Type{List} (composite literal, Type is struct)
OARRAYLIT // Type{List} (composite literal, Type is array)
OSLICELIT // Type{List} (composite literal, Type is slice) Right.Int64() = slice length.
OPTRLIT // &Left (left is composite literal)
OCONV // Type(Left) (type conversion)
OCONVIFACE // Type(Left) (type conversion, to interface)
OCONVNOP // Type(Left) (type conversion, no effect)
OCOPY // copy(Left, Right)
ODCL // var Left (declares Left of type Left.Type)
// Used during parsing but don't last.
ODCLFUNC // func f() or func (r) f()
ODCLFIELD // struct field, interface field, or func/method argument/return value.
ODCLCONST // const pi = 3.14
ODCLTYPE // type Int int or type Int = int
ODELETE // delete(Left, Right)
ODOT // Left.Sym (Left is of struct type)
ODOTPTR // Left.Sym (Left is of pointer to struct type)
ODOTMETH // Left.Sym (Left is non-interface, Right is method name)
ODOTINTER // Left.Sym (Left is interface, Right is method name)
OXDOT // Left.Sym (before rewrite to one of the preceding)
ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor
ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor
OEQ // Left == Right
ONE // Left != Right
OLT // Left < Right
OLE // Left <= Right
OGE // Left >= Right
OGT // Left > Right
ODEREF // *Left
OINDEX // Left[Right] (index of array or slice)
OINDEXMAP // Left[Right] (index of map)
OKEY // Left:Right (key:value in struct/array/map literal)
OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking)
OLEN // len(Left)
OMAKE // make(List) (before type checking converts to one of the following)
OMAKECHAN // make(Type, Left) (type is chan)
OMAKEMAP // make(Type, Left) (type is map)
OMAKESLICE // make(Type, Left, Right) (type is slice)
OMUL // Left * Right
ODIV // Left / Right
OMOD // Left % Right
OLSH // Left << Right
ORSH // Left >> Right
OAND // Left & Right
OANDNOT // Left &^ Right
ONEW // new(Left); corresponds to calls to new in source code
ONEWOBJ // runtime.newobject(n.Type); introduced by walk; Left is type descriptor
ONOT // !Left
OBITNOT // ^Left
OPLUS // +Left
ONEG // -Left
OOROR // Left || Right
OPANIC // panic(Left)
OPRINT // print(List)
OPRINTN // println(List)
OPAREN // (Left)
OSEND // Left <- Right
OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice)
OSLICEARR // Left[List[0] : List[1]] (Left is array)
OSLICESTR // Left[List[0] : List[1]] (Left is string)
OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice)
OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array)
OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity)
ORECOVER // recover()
ORECV // <-Left
ORUNESTR // Type(Left) (Type is string, Left is rune)
OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
OSELRECV2 // List = <-Right.Left: (appears as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
OIOTA // iota
OREAL // real(Left)
OIMAG // imag(Left)
OCOMPLEX // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call
OALIGNOF // unsafe.Alignof(Left)
OOFFSETOF // unsafe.Offsetof(Left)
OSIZEOF // unsafe.Sizeof(Left)
// statements
OBLOCK // { List } (block of code)
OBREAK // break [Sym]
OCASE // case List: Nbody (List==nil means default)
OCONTINUE // continue [Sym]
ODEFER // defer Left (Left must be call)
OEMPTY // no-op (empty statement)
OFALL // fallthrough
OFOR // for Ninit; Left; Right { Nbody }
// OFORUNTIL is like OFOR, but the test (Left) is applied after the body:
// Ninit
// top: { Nbody } // Execute the body at least once
// cont: Right
// if Left { // And then test the loop condition
// List // Before looping to top, execute List
// goto top
// }
// OFORUNTIL is created by walk. There's no way to write this in Go code.
OFORUNTIL
OGOTO // goto Sym
OIF // if Ninit; Left { Nbody } else { Rlist }
OLABEL // Sym:
OGO // go Left (Left must be call)
ORANGE // for List = range Right { Nbody }
ORETURN // return List
OSELECT // select { List } (List is list of OCASE)
OSWITCH // switch Ninit; Left { List } (List is a list of OCASE)
OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH)
// types
OTCHAN // chan int
OTMAP // map[string]int
OTSTRUCT // struct{}
OTINTER // interface{}
OTFUNC // func()
OTARRAY // []int, [8]int, [N]int or [...]int
// misc
ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
OINLCALL // intermediary representation of an inlined call.
OEFACE // itable and data words of an empty-interface value.
OITAB // itable word of an interface value.
OIDATA // data word of an interface value in Left
OSPTR // base pointer of a slice or string.
OCLOSUREVAR // variable reference at beginning of closure function
OCFUNC // reference to c function pointer (not go func value)
OCHECKNIL // emit code to ensure pointer/interface not nil
OVARDEF // variable is about to be fully initialized
OVARKILL // variable is dead
OVARLIVE // variable is alive
ORESULT // result of a function call; Xoffset is stack offset
OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree.
// arch-specific opcodes
ORETJMP // return to other function
OGETG // runtime.getg() (read g pointer)
OEND
)
// Nodes is a pointer to a slice of *Node.
// For fields that are not used in most nodes, this is used instead of
// a slice to save space.
type Nodes struct{ slice *[]*Node }
// asNodes returns a slice of *Node as a Nodes value.
func asNodes(s []*Node) Nodes {
return Nodes{&s}
}
// Slice returns the entries in Nodes as a slice.
// Changes to the slice entries (as in s[i] = n) will be reflected in
// the Nodes.
func (n Nodes) Slice() []*Node {
if n.slice == nil {
return nil
}
return *n.slice
}
// Len returns the number of entries in Nodes.
func (n Nodes) Len() int {
if n.slice == nil {
return 0
}
return len(*n.slice)
}
// Index returns the i'th element of Nodes.
// It panics if n does not have at least i+1 elements.
func (n Nodes) Index(i int) *Node {
return (*n.slice)[i]
}
// First returns the first element of Nodes (same as n.Index(0)).
// It panics if n has no elements.
func (n Nodes) First() *Node {
return (*n.slice)[0]
}
// Second returns the second element of Nodes (same as n.Index(1)).
// It panics if n has fewer than two elements.
func (n Nodes) Second() *Node {
return (*n.slice)[1]
}
// Set sets n to a slice.
// This takes ownership of the slice.
func (n *Nodes) Set(s []*Node) {
if len(s) == 0 {
n.slice = nil
} else {
// Copy s and take address of t rather than s to avoid
// allocation in the case where len(s) == 0 (which is
// over 3x more common, dynamically, for make.bash).
t := s
n.slice = &t
}
}
// Set1 sets n to a slice containing a single node.
func (n *Nodes) Set1(n1 *Node) {
n.slice = &[]*Node{n1}
}
// Set2 sets n to a slice containing two nodes.
func (n *Nodes) Set2(n1, n2 *Node) {
n.slice = &[]*Node{n1, n2}
}
// Set3 sets n to a slice containing three nodes.
func (n *Nodes) Set3(n1, n2, n3 *Node) {
n.slice = &[]*Node{n1, n2, n3}
}
// MoveNodes sets n to the contents of n2, then clears n2.
func (n *Nodes) MoveNodes(n2 *Nodes) {
n.slice = n2.slice
n2.slice = nil
}
// SetIndex sets the i'th element of Nodes to node.
// It panics if n does not have at least i+1 elements.
func (n Nodes) SetIndex(i int, node *Node) {
(*n.slice)[i] = node
}
// SetFirst sets the first element of Nodes to node.
// It panics if n does not have at least one elements.
func (n Nodes) SetFirst(node *Node) {
(*n.slice)[0] = node
}
// SetSecond sets the second element of Nodes to node.
// It panics if n does not have at least two elements.
func (n Nodes) SetSecond(node *Node) {
(*n.slice)[1] = node
}
// Addr returns the address of the i'th element of Nodes.
// It panics if n does not have at least i+1 elements.
func (n Nodes) Addr(i int) **Node {
return &(*n.slice)[i]
}
// Append appends entries to Nodes.
func (n *Nodes) Append(a ...*Node) {
if len(a) == 0 {
return
}
if n.slice == nil {
s := make([]*Node, len(a))
copy(s, a)
n.slice = &s
return
}
*n.slice = append(*n.slice, a...)
}
// Prepend prepends entries to Nodes.
// If a slice is passed in, this will take ownership of it.
func (n *Nodes) Prepend(a ...*Node) {
if len(a) == 0 {
return
}
if n.slice == nil {
n.slice = &a
} else {
*n.slice = append(a, *n.slice...)
}
}
// AppendNodes appends the contents of *n2 to n, then clears n2.
func (n *Nodes) AppendNodes(n2 *Nodes) {
switch {
case n2.slice == nil:
case n.slice == nil:
n.slice = n2.slice
default:
*n.slice = append(*n.slice, *n2.slice...)
}
n2.slice = nil
}
// inspect invokes f on each node in an AST in depth-first order.
// If f(n) returns false, inspect skips visiting n's children.
func inspect(n *Node, f func(*Node) bool) {
if n == nil || !f(n) {
return
}
inspectList(n.Ninit, f)
inspect(n.Left, f)
inspect(n.Right, f)
inspectList(n.List, f)
inspectList(n.Nbody, f)
inspectList(n.Rlist, f)
}
func inspectList(l Nodes, f func(*Node) bool) {
for _, n := range l.Slice() {
inspect(n, f)
}
}
// nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is
// a ready-to-use empty queue.
type nodeQueue struct {
ring []*Node
head, tail int
}
// empty reports whether q contains no Nodes.
func (q *nodeQueue) empty() bool {
return q.head == q.tail
}
// pushRight appends n to the right of the queue.
func (q *nodeQueue) pushRight(n *Node) {
if len(q.ring) == 0 {
q.ring = make([]*Node, 16)
} else if q.head+len(q.ring) == q.tail {
// Grow the ring.
nring := make([]*Node, len(q.ring)*2)
// Copy the old elements.
part := q.ring[q.head%len(q.ring):]
if q.tail-q.head <= len(part) {
part = part[:q.tail-q.head]
copy(nring, part)
} else {
pos := copy(nring, part)
copy(nring[pos:], q.ring[:q.tail%len(q.ring)])
}
q.ring, q.head, q.tail = nring, 0, q.tail-q.head
}
q.ring[q.tail%len(q.ring)] = n
q.tail++
}
// popLeft pops a node from the left of the queue. It panics if q is
// empty.
func (q *nodeQueue) popLeft() *Node {
if q.empty() {
panic("dequeue empty")
}
n := q.ring[q.head%len(q.ring)]
q.head++
return n
}
// NodeSet is a set of Nodes.
type NodeSet map[*Node]struct{}
// Has reports whether s contains n.
func (s NodeSet) Has(n *Node) bool {
_, isPresent := s[n]
return isPresent
}
// Add adds n to s.
func (s *NodeSet) Add(n *Node) {
if *s == nil {
*s = make(map[*Node]struct{})
}
(*s)[n] = struct{}{}
}
// Sorted returns s sorted according to less.
func (s NodeSet) Sorted(less func(*Node, *Node) bool) []*Node {
var res []*Node
for n := range s {
res = append(res, n)
}
sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) })
return res
}