| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package strconv |
| |
| // An extFloat represents an extended floating-point number, with more |
| // precision than a float64. It does not try to save bits: the |
| // number represented by the structure is mant*(2^exp), with a negative |
| // sign if neg is true. |
| type extFloat struct { |
| mant uint64 |
| exp int |
| neg bool |
| } |
| |
| // Powers of ten taken from double-conversion library. |
| // http://code.google.com/p/double-conversion/ |
| const ( |
| firstPowerOfTen = -348 |
| stepPowerOfTen = 8 |
| ) |
| |
| var smallPowersOfTen = [...]extFloat{ |
| {1 << 63, -63, false}, // 1 |
| {0xa << 60, -60, false}, // 1e1 |
| {0x64 << 57, -57, false}, // 1e2 |
| {0x3e8 << 54, -54, false}, // 1e3 |
| {0x2710 << 50, -50, false}, // 1e4 |
| {0x186a0 << 47, -47, false}, // 1e5 |
| {0xf4240 << 44, -44, false}, // 1e6 |
| {0x989680 << 40, -40, false}, // 1e7 |
| } |
| |
| var powersOfTen = [...]extFloat{ |
| {0xfa8fd5a0081c0288, -1220, false}, // 10^-348 |
| {0xbaaee17fa23ebf76, -1193, false}, // 10^-340 |
| {0x8b16fb203055ac76, -1166, false}, // 10^-332 |
| {0xcf42894a5dce35ea, -1140, false}, // 10^-324 |
| {0x9a6bb0aa55653b2d, -1113, false}, // 10^-316 |
| {0xe61acf033d1a45df, -1087, false}, // 10^-308 |
| {0xab70fe17c79ac6ca, -1060, false}, // 10^-300 |
| {0xff77b1fcbebcdc4f, -1034, false}, // 10^-292 |
| {0xbe5691ef416bd60c, -1007, false}, // 10^-284 |
| {0x8dd01fad907ffc3c, -980, false}, // 10^-276 |
| {0xd3515c2831559a83, -954, false}, // 10^-268 |
| {0x9d71ac8fada6c9b5, -927, false}, // 10^-260 |
| {0xea9c227723ee8bcb, -901, false}, // 10^-252 |
| {0xaecc49914078536d, -874, false}, // 10^-244 |
| {0x823c12795db6ce57, -847, false}, // 10^-236 |
| {0xc21094364dfb5637, -821, false}, // 10^-228 |
| {0x9096ea6f3848984f, -794, false}, // 10^-220 |
| {0xd77485cb25823ac7, -768, false}, // 10^-212 |
| {0xa086cfcd97bf97f4, -741, false}, // 10^-204 |
| {0xef340a98172aace5, -715, false}, // 10^-196 |
| {0xb23867fb2a35b28e, -688, false}, // 10^-188 |
| {0x84c8d4dfd2c63f3b, -661, false}, // 10^-180 |
| {0xc5dd44271ad3cdba, -635, false}, // 10^-172 |
| {0x936b9fcebb25c996, -608, false}, // 10^-164 |
| {0xdbac6c247d62a584, -582, false}, // 10^-156 |
| {0xa3ab66580d5fdaf6, -555, false}, // 10^-148 |
| {0xf3e2f893dec3f126, -529, false}, // 10^-140 |
| {0xb5b5ada8aaff80b8, -502, false}, // 10^-132 |
| {0x87625f056c7c4a8b, -475, false}, // 10^-124 |
| {0xc9bcff6034c13053, -449, false}, // 10^-116 |
| {0x964e858c91ba2655, -422, false}, // 10^-108 |
| {0xdff9772470297ebd, -396, false}, // 10^-100 |
| {0xa6dfbd9fb8e5b88f, -369, false}, // 10^-92 |
| {0xf8a95fcf88747d94, -343, false}, // 10^-84 |
| {0xb94470938fa89bcf, -316, false}, // 10^-76 |
| {0x8a08f0f8bf0f156b, -289, false}, // 10^-68 |
| {0xcdb02555653131b6, -263, false}, // 10^-60 |
| {0x993fe2c6d07b7fac, -236, false}, // 10^-52 |
| {0xe45c10c42a2b3b06, -210, false}, // 10^-44 |
| {0xaa242499697392d3, -183, false}, // 10^-36 |
| {0xfd87b5f28300ca0e, -157, false}, // 10^-28 |
| {0xbce5086492111aeb, -130, false}, // 10^-20 |
| {0x8cbccc096f5088cc, -103, false}, // 10^-12 |
| {0xd1b71758e219652c, -77, false}, // 10^-4 |
| {0x9c40000000000000, -50, false}, // 10^4 |
| {0xe8d4a51000000000, -24, false}, // 10^12 |
| {0xad78ebc5ac620000, 3, false}, // 10^20 |
| {0x813f3978f8940984, 30, false}, // 10^28 |
| {0xc097ce7bc90715b3, 56, false}, // 10^36 |
| {0x8f7e32ce7bea5c70, 83, false}, // 10^44 |
| {0xd5d238a4abe98068, 109, false}, // 10^52 |
| {0x9f4f2726179a2245, 136, false}, // 10^60 |
| {0xed63a231d4c4fb27, 162, false}, // 10^68 |
| {0xb0de65388cc8ada8, 189, false}, // 10^76 |
| {0x83c7088e1aab65db, 216, false}, // 10^84 |
| {0xc45d1df942711d9a, 242, false}, // 10^92 |
| {0x924d692ca61be758, 269, false}, // 10^100 |
| {0xda01ee641a708dea, 295, false}, // 10^108 |
| {0xa26da3999aef774a, 322, false}, // 10^116 |
| {0xf209787bb47d6b85, 348, false}, // 10^124 |
| {0xb454e4a179dd1877, 375, false}, // 10^132 |
| {0x865b86925b9bc5c2, 402, false}, // 10^140 |
| {0xc83553c5c8965d3d, 428, false}, // 10^148 |
| {0x952ab45cfa97a0b3, 455, false}, // 10^156 |
| {0xde469fbd99a05fe3, 481, false}, // 10^164 |
| {0xa59bc234db398c25, 508, false}, // 10^172 |
| {0xf6c69a72a3989f5c, 534, false}, // 10^180 |
| {0xb7dcbf5354e9bece, 561, false}, // 10^188 |
| {0x88fcf317f22241e2, 588, false}, // 10^196 |
| {0xcc20ce9bd35c78a5, 614, false}, // 10^204 |
| {0x98165af37b2153df, 641, false}, // 10^212 |
| {0xe2a0b5dc971f303a, 667, false}, // 10^220 |
| {0xa8d9d1535ce3b396, 694, false}, // 10^228 |
| {0xfb9b7cd9a4a7443c, 720, false}, // 10^236 |
| {0xbb764c4ca7a44410, 747, false}, // 10^244 |
| {0x8bab8eefb6409c1a, 774, false}, // 10^252 |
| {0xd01fef10a657842c, 800, false}, // 10^260 |
| {0x9b10a4e5e9913129, 827, false}, // 10^268 |
| {0xe7109bfba19c0c9d, 853, false}, // 10^276 |
| {0xac2820d9623bf429, 880, false}, // 10^284 |
| {0x80444b5e7aa7cf85, 907, false}, // 10^292 |
| {0xbf21e44003acdd2d, 933, false}, // 10^300 |
| {0x8e679c2f5e44ff8f, 960, false}, // 10^308 |
| {0xd433179d9c8cb841, 986, false}, // 10^316 |
| {0x9e19db92b4e31ba9, 1013, false}, // 10^324 |
| {0xeb96bf6ebadf77d9, 1039, false}, // 10^332 |
| {0xaf87023b9bf0ee6b, 1066, false}, // 10^340 |
| } |
| |
| // floatBits returns the bits of the float64 that best approximates |
| // the extFloat passed as receiver. Overflow is set to true if |
| // the resulting float64 is ±Inf. |
| func (f *extFloat) floatBits(flt *floatInfo) (bits uint64, overflow bool) { |
| f.Normalize() |
| |
| exp := f.exp + 63 |
| |
| // Exponent too small. |
| if exp < flt.bias+1 { |
| n := flt.bias + 1 - exp |
| f.mant >>= uint(n) |
| exp += n |
| } |
| |
| // Extract 1+flt.mantbits bits from the 64-bit mantissa. |
| mant := f.mant >> (63 - flt.mantbits) |
| if f.mant&(1<<(62-flt.mantbits)) != 0 { |
| // Round up. |
| mant += 1 |
| } |
| |
| // Rounding might have added a bit; shift down. |
| if mant == 2<<flt.mantbits { |
| mant >>= 1 |
| exp++ |
| } |
| |
| // Infinities. |
| if exp-flt.bias >= 1<<flt.expbits-1 { |
| // ±Inf |
| mant = 0 |
| exp = 1<<flt.expbits - 1 + flt.bias |
| overflow = true |
| } else if mant&(1<<flt.mantbits) == 0 { |
| // Denormalized? |
| exp = flt.bias |
| } |
| // Assemble bits. |
| bits = mant & (uint64(1)<<flt.mantbits - 1) |
| bits |= uint64((exp-flt.bias)&(1<<flt.expbits-1)) << flt.mantbits |
| if f.neg { |
| bits |= 1 << (flt.mantbits + flt.expbits) |
| } |
| return |
| } |
| |
| // AssignComputeBounds sets f to the floating point value |
| // defined by mant, exp and precision given by flt. It returns |
| // lower, upper such that any number in the closed interval |
| // [lower, upper] is converted back to the same floating point number. |
| func (f *extFloat) AssignComputeBounds(mant uint64, exp int, neg bool, flt *floatInfo) (lower, upper extFloat) { |
| f.mant = mant |
| f.exp = exp - int(flt.mantbits) |
| f.neg = neg |
| if f.exp <= 0 && mant == (mant>>uint(-f.exp))<<uint(-f.exp) { |
| // An exact integer |
| f.mant >>= uint(-f.exp) |
| f.exp = 0 |
| return *f, *f |
| } |
| expBiased := exp - flt.bias |
| |
| upper = extFloat{mant: 2*f.mant + 1, exp: f.exp - 1, neg: f.neg} |
| if mant != 1<<flt.mantbits || expBiased == 1 { |
| lower = extFloat{mant: 2*f.mant - 1, exp: f.exp - 1, neg: f.neg} |
| } else { |
| lower = extFloat{mant: 4*f.mant - 1, exp: f.exp - 2, neg: f.neg} |
| } |
| return |
| } |
| |
| // Normalize normalizes f so that the highest bit of the mantissa is |
| // set, and returns the number by which the mantissa was left-shifted. |
| func (f *extFloat) Normalize() (shift uint) { |
| mant, exp := f.mant, f.exp |
| if mant == 0 { |
| return 0 |
| } |
| if mant>>(64-32) == 0 { |
| mant <<= 32 |
| exp -= 32 |
| } |
| if mant>>(64-16) == 0 { |
| mant <<= 16 |
| exp -= 16 |
| } |
| if mant>>(64-8) == 0 { |
| mant <<= 8 |
| exp -= 8 |
| } |
| if mant>>(64-4) == 0 { |
| mant <<= 4 |
| exp -= 4 |
| } |
| if mant>>(64-2) == 0 { |
| mant <<= 2 |
| exp -= 2 |
| } |
| if mant>>(64-1) == 0 { |
| mant <<= 1 |
| exp -= 1 |
| } |
| shift = uint(f.exp - exp) |
| f.mant, f.exp = mant, exp |
| return |
| } |
| |
| // Multiply sets f to the product f*g: the result is correctly rounded, |
| // but not normalized. |
| func (f *extFloat) Multiply(g extFloat) { |
| fhi, flo := f.mant>>32, uint64(uint32(f.mant)) |
| ghi, glo := g.mant>>32, uint64(uint32(g.mant)) |
| |
| // Cross products. |
| cross1 := fhi * glo |
| cross2 := flo * ghi |
| |
| // f.mant*g.mant is fhi*ghi << 64 + (cross1+cross2) << 32 + flo*glo |
| f.mant = fhi*ghi + (cross1 >> 32) + (cross2 >> 32) |
| rem := uint64(uint32(cross1)) + uint64(uint32(cross2)) + ((flo * glo) >> 32) |
| // Round up. |
| rem += (1 << 31) |
| |
| f.mant += (rem >> 32) |
| f.exp = f.exp + g.exp + 64 |
| } |
| |
| var uint64pow10 = [...]uint64{ |
| 1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
| 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
| } |
| |
| // AssignDecimal sets f to an approximate value mantissa*10^exp. It |
| // reports whether the value represented by f is guaranteed to be the |
| // best approximation of d after being rounded to a float64 or |
| // float32 depending on flt. |
| func (f *extFloat) AssignDecimal(mantissa uint64, exp10 int, neg bool, trunc bool, flt *floatInfo) (ok bool) { |
| const uint64digits = 19 |
| const errorscale = 8 |
| errors := 0 // An upper bound for error, computed in errorscale*ulp. |
| if trunc { |
| // the decimal number was truncated. |
| errors += errorscale / 2 |
| } |
| |
| f.mant = mantissa |
| f.exp = 0 |
| f.neg = neg |
| |
| // Multiply by powers of ten. |
| i := (exp10 - firstPowerOfTen) / stepPowerOfTen |
| if exp10 < firstPowerOfTen || i >= len(powersOfTen) { |
| return false |
| } |
| adjExp := (exp10 - firstPowerOfTen) % stepPowerOfTen |
| |
| // We multiply by exp%step |
| if adjExp < uint64digits && mantissa < uint64pow10[uint64digits-adjExp] { |
| // We can multiply the mantissa exactly. |
| f.mant *= uint64pow10[adjExp] |
| f.Normalize() |
| } else { |
| f.Normalize() |
| f.Multiply(smallPowersOfTen[adjExp]) |
| errors += errorscale / 2 |
| } |
| |
| // We multiply by 10 to the exp - exp%step. |
| f.Multiply(powersOfTen[i]) |
| if errors > 0 { |
| errors += 1 |
| } |
| errors += errorscale / 2 |
| |
| // Normalize |
| shift := f.Normalize() |
| errors <<= shift |
| |
| // Now f is a good approximation of the decimal. |
| // Check whether the error is too large: that is, if the mantissa |
| // is perturbated by the error, the resulting float64 will change. |
| // The 64 bits mantissa is 1 + 52 bits for float64 + 11 extra bits. |
| // |
| // In many cases the approximation will be good enough. |
| denormalExp := flt.bias - 63 |
| var extrabits uint |
| if f.exp <= denormalExp { |
| // f.mant * 2^f.exp is smaller than 2^(flt.bias+1). |
| extrabits = 63 - flt.mantbits + 1 + uint(denormalExp-f.exp) |
| } else { |
| extrabits = 63 - flt.mantbits |
| } |
| |
| halfway := uint64(1) << (extrabits - 1) |
| mant_extra := f.mant & (1<<extrabits - 1) |
| |
| // Do a signed comparison here! If the error estimate could make |
| // the mantissa round differently for the conversion to double, |
| // then we can't give a definite answer. |
| if int64(halfway)-int64(errors) < int64(mant_extra) && |
| int64(mant_extra) < int64(halfway)+int64(errors) { |
| return false |
| } |
| return true |
| } |
| |
| // Frexp10 is an analogue of math.Frexp for decimal powers. It scales |
| // f by an approximate power of ten 10^-exp, and returns exp10, so |
| // that f*10^exp10 has the same value as the old f, up to an ulp, |
| // as well as the index of 10^-exp in the powersOfTen table. |
| func (f *extFloat) frexp10() (exp10, index int) { |
| // The constants expMin and expMax constrain the final value of the |
| // binary exponent of f. We want a small integral part in the result |
| // because finding digits of an integer requires divisions, whereas |
| // digits of the fractional part can be found by repeatedly multiplying |
| // by 10. |
| const expMin = -60 |
| const expMax = -32 |
| // Find power of ten such that x * 10^n has a binary exponent |
| // between expMin and expMax. |
| approxExp10 := ((expMin+expMax)/2 - f.exp) * 28 / 93 // log(10)/log(2) is close to 93/28. |
| i := (approxExp10 - firstPowerOfTen) / stepPowerOfTen |
| Loop: |
| for { |
| exp := f.exp + powersOfTen[i].exp + 64 |
| switch { |
| case exp < expMin: |
| i++ |
| case exp > expMax: |
| i-- |
| default: |
| break Loop |
| } |
| } |
| // Apply the desired decimal shift on f. It will have exponent |
| // in the desired range. This is multiplication by 10^-exp10. |
| f.Multiply(powersOfTen[i]) |
| |
| return -(firstPowerOfTen + i*stepPowerOfTen), i |
| } |
| |
| // frexp10Many applies a common shift by a power of ten to a, b, c. |
| func frexp10Many(a, b, c *extFloat) (exp10 int) { |
| exp10, i := c.frexp10() |
| a.Multiply(powersOfTen[i]) |
| b.Multiply(powersOfTen[i]) |
| return |
| } |
| |
| // FixedDecimal stores in d the first n significant digits |
| // of the decimal representation of f. It returns false |
| // if it cannot be sure of the answer. |
| func (f *extFloat) FixedDecimal(d *decimalSlice, n int) bool { |
| if f.mant == 0 { |
| d.nd = 0 |
| d.dp = 0 |
| d.neg = f.neg |
| return true |
| } |
| if n == 0 { |
| panic("strconv: internal error: extFloat.FixedDecimal called with n == 0") |
| } |
| // Multiply by an appropriate power of ten to have a reasonable |
| // number to process. |
| f.Normalize() |
| exp10, _ := f.frexp10() |
| |
| shift := uint(-f.exp) |
| integer := uint32(f.mant >> shift) |
| fraction := f.mant - (uint64(integer) << shift) |
| ε := uint64(1) // ε is the uncertainty we have on the mantissa of f. |
| |
| // Write exactly n digits to d. |
| needed := n // how many digits are left to write. |
| integerDigits := 0 // the number of decimal digits of integer. |
| pow10 := uint64(1) // the power of ten by which f was scaled. |
| for i, pow := 0, uint64(1); i < 20; i++ { |
| if pow > uint64(integer) { |
| integerDigits = i |
| break |
| } |
| pow *= 10 |
| } |
| rest := integer |
| if integerDigits > needed { |
| // the integral part is already large, trim the last digits. |
| pow10 = uint64pow10[integerDigits-needed] |
| integer /= uint32(pow10) |
| rest -= integer * uint32(pow10) |
| } else { |
| rest = 0 |
| } |
| |
| // Write the digits of integer: the digits of rest are omitted. |
| var buf [32]byte |
| pos := len(buf) |
| for v := integer; v > 0; { |
| v1 := v / 10 |
| v -= 10 * v1 |
| pos-- |
| buf[pos] = byte(v + '0') |
| v = v1 |
| } |
| for i := pos; i < len(buf); i++ { |
| d.d[i-pos] = buf[i] |
| } |
| nd := len(buf) - pos |
| d.nd = nd |
| d.dp = integerDigits + exp10 |
| needed -= nd |
| |
| if needed > 0 { |
| if rest != 0 || pow10 != 1 { |
| panic("strconv: internal error, rest != 0 but needed > 0") |
| } |
| // Emit digits for the fractional part. Each time, 10*fraction |
| // fits in a uint64 without overflow. |
| for needed > 0 { |
| fraction *= 10 |
| ε *= 10 // the uncertainty scales as we multiply by ten. |
| if 2*ε > 1<<shift { |
| // the error is so large it could modify which digit to write, abort. |
| return false |
| } |
| digit := fraction >> shift |
| d.d[nd] = byte(digit + '0') |
| fraction -= digit << shift |
| nd++ |
| needed-- |
| } |
| d.nd = nd |
| } |
| |
| // We have written a truncation of f (a numerator / 10^d.dp). The remaining part |
| // can be interpreted as a small number (< 1) to be added to the last digit of the |
| // numerator. |
| // |
| // If rest > 0, the amount is: |
| // (rest<<shift | fraction) / (pow10 << shift) |
| // fraction being known with a ±ε uncertainty. |
| // The fact that n > 0 guarantees that pow10 << shift does not overflow a uint64. |
| // |
| // If rest = 0, pow10 == 1 and the amount is |
| // fraction / (1 << shift) |
| // fraction being known with a ±ε uncertainty. |
| // |
| // We pass this information to the rounding routine for adjustment. |
| |
| ok := adjustLastDigitFixed(d, uint64(rest)<<shift|fraction, pow10, shift, ε) |
| if !ok { |
| return false |
| } |
| // Trim trailing zeros. |
| for i := d.nd - 1; i >= 0; i-- { |
| if d.d[i] != '0' { |
| d.nd = i + 1 |
| break |
| } |
| } |
| return true |
| } |
| |
| // adjustLastDigitFixed assumes d contains the representation of the integral part |
| // of some number, whose fractional part is num / (den << shift). The numerator |
| // num is only known up to an uncertainty of size ε, assumed to be less than |
| // (den << shift)/2. |
| // |
| // It will increase the last digit by one to account for correct rounding, typically |
| // when the fractional part is greater than 1/2, and will return false if ε is such |
| // that no correct answer can be given. |
| func adjustLastDigitFixed(d *decimalSlice, num, den uint64, shift uint, ε uint64) bool { |
| if num > den<<shift { |
| panic("strconv: num > den<<shift in adjustLastDigitFixed") |
| } |
| if 2*ε > den<<shift { |
| panic("strconv: ε > (den<<shift)/2") |
| } |
| if 2*(num+ε) < den<<shift { |
| return true |
| } |
| if 2*(num-ε) > den<<shift { |
| // increment d by 1. |
| i := d.nd - 1 |
| for ; i >= 0; i-- { |
| if d.d[i] == '9' { |
| d.nd-- |
| } else { |
| break |
| } |
| } |
| if i < 0 { |
| d.d[0] = '1' |
| d.nd = 1 |
| d.dp++ |
| } else { |
| d.d[i]++ |
| } |
| return true |
| } |
| return false |
| } |
| |
| // ShortestDecimal stores in d the shortest decimal representation of f |
| // which belongs to the open interval (lower, upper), where f is supposed |
| // to lie. It returns false whenever the result is unsure. The implementation |
| // uses the Grisu3 algorithm. |
| func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool { |
| if f.mant == 0 { |
| d.nd = 0 |
| d.dp = 0 |
| d.neg = f.neg |
| return true |
| } |
| if f.exp == 0 && *lower == *f && *lower == *upper { |
| // an exact integer. |
| var buf [24]byte |
| n := len(buf) - 1 |
| for v := f.mant; v > 0; { |
| v1 := v / 10 |
| v -= 10 * v1 |
| buf[n] = byte(v + '0') |
| n-- |
| v = v1 |
| } |
| nd := len(buf) - n - 1 |
| for i := 0; i < nd; i++ { |
| d.d[i] = buf[n+1+i] |
| } |
| d.nd, d.dp = nd, nd |
| for d.nd > 0 && d.d[d.nd-1] == '0' { |
| d.nd-- |
| } |
| if d.nd == 0 { |
| d.dp = 0 |
| } |
| d.neg = f.neg |
| return true |
| } |
| upper.Normalize() |
| // Uniformize exponents. |
| if f.exp > upper.exp { |
| f.mant <<= uint(f.exp - upper.exp) |
| f.exp = upper.exp |
| } |
| if lower.exp > upper.exp { |
| lower.mant <<= uint(lower.exp - upper.exp) |
| lower.exp = upper.exp |
| } |
| |
| exp10 := frexp10Many(lower, f, upper) |
| // Take a safety margin due to rounding in frexp10Many, but we lose precision. |
| upper.mant++ |
| lower.mant-- |
| |
| // The shortest representation of f is either rounded up or down, but |
| // in any case, it is a truncation of upper. |
| shift := uint(-upper.exp) |
| integer := uint32(upper.mant >> shift) |
| fraction := upper.mant - (uint64(integer) << shift) |
| |
| // How far we can go down from upper until the result is wrong. |
| allowance := upper.mant - lower.mant |
| // How far we should go to get a very precise result. |
| targetDiff := upper.mant - f.mant |
| |
| // Count integral digits: there are at most 10. |
| var integerDigits int |
| for i, pow := 0, uint64(1); i < 20; i++ { |
| if pow > uint64(integer) { |
| integerDigits = i |
| break |
| } |
| pow *= 10 |
| } |
| for i := 0; i < integerDigits; i++ { |
| pow := uint64pow10[integerDigits-i-1] |
| digit := integer / uint32(pow) |
| d.d[i] = byte(digit + '0') |
| integer -= digit * uint32(pow) |
| // evaluate whether we should stop. |
| if currentDiff := uint64(integer)<<shift + fraction; currentDiff < allowance { |
| d.nd = i + 1 |
| d.dp = integerDigits + exp10 |
| d.neg = f.neg |
| // Sometimes allowance is so large the last digit might need to be |
| // decremented to get closer to f. |
| return adjustLastDigit(d, currentDiff, targetDiff, allowance, pow<<shift, 2) |
| } |
| } |
| d.nd = integerDigits |
| d.dp = d.nd + exp10 |
| d.neg = f.neg |
| |
| // Compute digits of the fractional part. At each step fraction does not |
| // overflow. The choice of minExp implies that fraction is less than 2^60. |
| var digit int |
| multiplier := uint64(1) |
| for { |
| fraction *= 10 |
| multiplier *= 10 |
| digit = int(fraction >> shift) |
| d.d[d.nd] = byte(digit + '0') |
| d.nd++ |
| fraction -= uint64(digit) << shift |
| if fraction < allowance*multiplier { |
| // We are in the admissible range. Note that if allowance is about to |
| // overflow, that is, allowance > 2^64/10, the condition is automatically |
| // true due to the limited range of fraction. |
| return adjustLastDigit(d, |
| fraction, targetDiff*multiplier, allowance*multiplier, |
| 1<<shift, multiplier*2) |
| } |
| } |
| } |
| |
| // adjustLastDigit modifies d = x-currentDiff*ε, to get closest to |
| // d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε. |
| // It assumes that a decimal digit is worth ulpDecimal*ε, and that |
| // all data is known with a error estimate of ulpBinary*ε. |
| func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool { |
| if ulpDecimal < 2*ulpBinary { |
| // Approximation is too wide. |
| return false |
| } |
| for currentDiff+ulpDecimal/2+ulpBinary < targetDiff { |
| d.d[d.nd-1]-- |
| currentDiff += ulpDecimal |
| } |
| if currentDiff+ulpDecimal <= targetDiff+ulpDecimal/2+ulpBinary { |
| // we have two choices, and don't know what to do. |
| return false |
| } |
| if currentDiff < ulpBinary || currentDiff > maxDiff-ulpBinary { |
| // we went too far |
| return false |
| } |
| if d.nd == 1 && d.d[0] == '0' { |
| // the number has actually reached zero. |
| d.nd = 0 |
| d.dp = 0 |
| } |
| return true |
| } |