| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package dsa implements the Digital Signature Algorithm, as defined in FIPS 186-3. |
| // |
| // The DSA operations in this package are not implemented using constant-time algorithms. |
| // |
| // Deprecated: DSA is a legacy algorithm, and modern alternatives such as |
| // Ed25519 (implemented by package crypto/ed25519) should be used instead. Keys |
| // with 1024-bit moduli (L1024N160 parameters) are cryptographically weak, while |
| // bigger keys are not widely supported. Note that FIPS 186-5 no longer approves |
| // DSA for signature generation. |
| package dsa |
| |
| import ( |
| "errors" |
| "io" |
| "math/big" |
| |
| "crypto/internal/randutil" |
| ) |
| |
| // Parameters represents the domain parameters for a key. These parameters can |
| // be shared across many keys. The bit length of Q must be a multiple of 8. |
| type Parameters struct { |
| P, Q, G *big.Int |
| } |
| |
| // PublicKey represents a DSA public key. |
| type PublicKey struct { |
| Parameters |
| Y *big.Int |
| } |
| |
| // PrivateKey represents a DSA private key. |
| type PrivateKey struct { |
| PublicKey |
| X *big.Int |
| } |
| |
| // ErrInvalidPublicKey results when a public key is not usable by this code. |
| // FIPS is quite strict about the format of DSA keys, but other code may be |
| // less so. Thus, when using keys which may have been generated by other code, |
| // this error must be handled. |
| var ErrInvalidPublicKey = errors.New("crypto/dsa: invalid public key") |
| |
| // ParameterSizes is an enumeration of the acceptable bit lengths of the primes |
| // in a set of DSA parameters. See FIPS 186-3, section 4.2. |
| type ParameterSizes int |
| |
| const ( |
| L1024N160 ParameterSizes = iota |
| L2048N224 |
| L2048N256 |
| L3072N256 |
| ) |
| |
| // numMRTests is the number of Miller-Rabin primality tests that we perform. We |
| // pick the largest recommended number from table C.1 of FIPS 186-3. |
| const numMRTests = 64 |
| |
| // GenerateParameters puts a random, valid set of DSA parameters into params. |
| // This function can take many seconds, even on fast machines. |
| func GenerateParameters(params *Parameters, rand io.Reader, sizes ParameterSizes) error { |
| // This function doesn't follow FIPS 186-3 exactly in that it doesn't |
| // use a verification seed to generate the primes. The verification |
| // seed doesn't appear to be exported or used by other code and |
| // omitting it makes the code cleaner. |
| |
| var L, N int |
| switch sizes { |
| case L1024N160: |
| L = 1024 |
| N = 160 |
| case L2048N224: |
| L = 2048 |
| N = 224 |
| case L2048N256: |
| L = 2048 |
| N = 256 |
| case L3072N256: |
| L = 3072 |
| N = 256 |
| default: |
| return errors.New("crypto/dsa: invalid ParameterSizes") |
| } |
| |
| qBytes := make([]byte, N/8) |
| pBytes := make([]byte, L/8) |
| |
| q := new(big.Int) |
| p := new(big.Int) |
| rem := new(big.Int) |
| one := new(big.Int) |
| one.SetInt64(1) |
| |
| GeneratePrimes: |
| for { |
| if _, err := io.ReadFull(rand, qBytes); err != nil { |
| return err |
| } |
| |
| qBytes[len(qBytes)-1] |= 1 |
| qBytes[0] |= 0x80 |
| q.SetBytes(qBytes) |
| |
| if !q.ProbablyPrime(numMRTests) { |
| continue |
| } |
| |
| for i := 0; i < 4*L; i++ { |
| if _, err := io.ReadFull(rand, pBytes); err != nil { |
| return err |
| } |
| |
| pBytes[len(pBytes)-1] |= 1 |
| pBytes[0] |= 0x80 |
| |
| p.SetBytes(pBytes) |
| rem.Mod(p, q) |
| rem.Sub(rem, one) |
| p.Sub(p, rem) |
| if p.BitLen() < L { |
| continue |
| } |
| |
| if !p.ProbablyPrime(numMRTests) { |
| continue |
| } |
| |
| params.P = p |
| params.Q = q |
| break GeneratePrimes |
| } |
| } |
| |
| h := new(big.Int) |
| h.SetInt64(2) |
| g := new(big.Int) |
| |
| pm1 := new(big.Int).Sub(p, one) |
| e := new(big.Int).Div(pm1, q) |
| |
| for { |
| g.Exp(h, e, p) |
| if g.Cmp(one) == 0 { |
| h.Add(h, one) |
| continue |
| } |
| |
| params.G = g |
| return nil |
| } |
| } |
| |
| // GenerateKey generates a public&private key pair. The Parameters of the |
| // PrivateKey must already be valid (see GenerateParameters). |
| func GenerateKey(priv *PrivateKey, rand io.Reader) error { |
| if priv.P == nil || priv.Q == nil || priv.G == nil { |
| return errors.New("crypto/dsa: parameters not set up before generating key") |
| } |
| |
| x := new(big.Int) |
| xBytes := make([]byte, priv.Q.BitLen()/8) |
| |
| for { |
| _, err := io.ReadFull(rand, xBytes) |
| if err != nil { |
| return err |
| } |
| x.SetBytes(xBytes) |
| if x.Sign() != 0 && x.Cmp(priv.Q) < 0 { |
| break |
| } |
| } |
| |
| priv.X = x |
| priv.Y = new(big.Int) |
| priv.Y.Exp(priv.G, x, priv.P) |
| return nil |
| } |
| |
| // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. |
| // This has better constant-time properties than Euclid's method (implemented |
| // in math/big.Int.ModInverse) although math/big itself isn't strictly |
| // constant-time so it's not perfect. |
| func fermatInverse(k, P *big.Int) *big.Int { |
| two := big.NewInt(2) |
| pMinus2 := new(big.Int).Sub(P, two) |
| return new(big.Int).Exp(k, pMinus2, P) |
| } |
| |
| // Sign signs an arbitrary length hash (which should be the result of hashing a |
| // larger message) using the private key, priv. It returns the signature as a |
| // pair of integers. The security of the private key depends on the entropy of |
| // rand. |
| // |
| // Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated |
| // to the byte-length of the subgroup. This function does not perform that |
| // truncation itself. |
| // |
| // Be aware that calling Sign with an attacker-controlled PrivateKey may |
| // require an arbitrary amount of CPU. |
| func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { |
| randutil.MaybeReadByte(rand) |
| |
| // FIPS 186-3, section 4.6 |
| |
| n := priv.Q.BitLen() |
| if priv.Q.Sign() <= 0 || priv.P.Sign() <= 0 || priv.G.Sign() <= 0 || priv.X.Sign() <= 0 || n%8 != 0 { |
| err = ErrInvalidPublicKey |
| return |
| } |
| n >>= 3 |
| |
| var attempts int |
| for attempts = 10; attempts > 0; attempts-- { |
| k := new(big.Int) |
| buf := make([]byte, n) |
| for { |
| _, err = io.ReadFull(rand, buf) |
| if err != nil { |
| return |
| } |
| k.SetBytes(buf) |
| // priv.Q must be >= 128 because the test above |
| // requires it to be > 0 and that |
| // ceil(log_2(Q)) mod 8 = 0 |
| // Thus this loop will quickly terminate. |
| if k.Sign() > 0 && k.Cmp(priv.Q) < 0 { |
| break |
| } |
| } |
| |
| kInv := fermatInverse(k, priv.Q) |
| |
| r = new(big.Int).Exp(priv.G, k, priv.P) |
| r.Mod(r, priv.Q) |
| |
| if r.Sign() == 0 { |
| continue |
| } |
| |
| z := k.SetBytes(hash) |
| |
| s = new(big.Int).Mul(priv.X, r) |
| s.Add(s, z) |
| s.Mod(s, priv.Q) |
| s.Mul(s, kInv) |
| s.Mod(s, priv.Q) |
| |
| if s.Sign() != 0 { |
| break |
| } |
| } |
| |
| // Only degenerate private keys will require more than a handful of |
| // attempts. |
| if attempts == 0 { |
| return nil, nil, ErrInvalidPublicKey |
| } |
| |
| return |
| } |
| |
| // Verify verifies the signature in r, s of hash using the public key, pub. It |
| // reports whether the signature is valid. |
| // |
| // Note that FIPS 186-3 section 4.6 specifies that the hash should be truncated |
| // to the byte-length of the subgroup. This function does not perform that |
| // truncation itself. |
| func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { |
| // FIPS 186-3, section 4.7 |
| |
| if pub.P.Sign() == 0 { |
| return false |
| } |
| |
| if r.Sign() < 1 || r.Cmp(pub.Q) >= 0 { |
| return false |
| } |
| if s.Sign() < 1 || s.Cmp(pub.Q) >= 0 { |
| return false |
| } |
| |
| w := new(big.Int).ModInverse(s, pub.Q) |
| if w == nil { |
| return false |
| } |
| |
| n := pub.Q.BitLen() |
| if n%8 != 0 { |
| return false |
| } |
| z := new(big.Int).SetBytes(hash) |
| |
| u1 := new(big.Int).Mul(z, w) |
| u1.Mod(u1, pub.Q) |
| u2 := w.Mul(r, w) |
| u2.Mod(u2, pub.Q) |
| v := u1.Exp(pub.G, u1, pub.P) |
| u2.Exp(pub.Y, u2, pub.P) |
| v.Mul(v, u2) |
| v.Mod(v, pub.P) |
| v.Mod(v, pub.Q) |
| |
| return v.Cmp(r) == 0 |
| } |