| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "go_asm.h" |
| #include "go_tls.h" |
| #include "funcdata.h" |
| #include "textflag.h" |
| |
| // _rt0_amd64 is common startup code for most amd64 systems when using |
| // internal linking. This is the entry point for the program from the |
| // kernel for an ordinary -buildmode=exe program. The stack holds the |
| // number of arguments and the C-style argv. |
| TEXT _rt0_amd64(SB),NOSPLIT,$-8 |
| MOVQ 0(SP), DI // argc |
| LEAQ 8(SP), SI // argv |
| JMP runtime·rt0_go(SB) |
| |
| // main is common startup code for most amd64 systems when using |
| // external linking. The C startup code will call the symbol "main" |
| // passing argc and argv in the usual C ABI registers DI and SI. |
| TEXT main(SB),NOSPLIT,$-8 |
| JMP runtime·rt0_go(SB) |
| |
| // _rt0_amd64_lib is common startup code for most amd64 systems when |
| // using -buildmode=c-archive or -buildmode=c-shared. The linker will |
| // arrange to invoke this function as a global constructor (for |
| // c-archive) or when the shared library is loaded (for c-shared). |
| // We expect argc and argv to be passed in the usual C ABI registers |
| // DI and SI. |
| TEXT _rt0_amd64_lib(SB),NOSPLIT,$0x50 |
| // Align stack per ELF ABI requirements. |
| MOVQ SP, AX |
| ANDQ $~15, SP |
| // Save C ABI callee-saved registers, as caller may need them. |
| MOVQ BX, 0x10(SP) |
| MOVQ BP, 0x18(SP) |
| MOVQ R12, 0x20(SP) |
| MOVQ R13, 0x28(SP) |
| MOVQ R14, 0x30(SP) |
| MOVQ R15, 0x38(SP) |
| MOVQ AX, 0x40(SP) |
| |
| MOVQ DI, _rt0_amd64_lib_argc<>(SB) |
| MOVQ SI, _rt0_amd64_lib_argv<>(SB) |
| |
| // Synchronous initialization. |
| CALL runtime·libpreinit(SB) |
| |
| // Create a new thread to finish Go runtime initialization. |
| MOVQ _cgo_sys_thread_create(SB), AX |
| TESTQ AX, AX |
| JZ nocgo |
| MOVQ $_rt0_amd64_lib_go(SB), DI |
| MOVQ $0, SI |
| CALL AX |
| JMP restore |
| |
| nocgo: |
| MOVQ $0x800000, 0(SP) // stacksize |
| MOVQ $_rt0_amd64_lib_go(SB), AX |
| MOVQ AX, 8(SP) // fn |
| CALL runtime·newosproc0(SB) |
| |
| restore: |
| MOVQ 0x10(SP), BX |
| MOVQ 0x18(SP), BP |
| MOVQ 0x20(SP), R12 |
| MOVQ 0x28(SP), R13 |
| MOVQ 0x30(SP), R14 |
| MOVQ 0x38(SP), R15 |
| MOVQ 0x40(SP), SP |
| RET |
| |
| // _rt0_amd64_lib_go initializes the Go runtime. |
| // This is started in a separate thread by _rt0_amd64_lib. |
| TEXT _rt0_amd64_lib_go(SB),NOSPLIT,$0 |
| MOVQ _rt0_amd64_lib_argc<>(SB), DI |
| MOVQ _rt0_amd64_lib_argv<>(SB), SI |
| JMP runtime·rt0_go(SB) |
| |
| DATA _rt0_amd64_lib_argc<>(SB)/8, $0 |
| GLOBL _rt0_amd64_lib_argc<>(SB),NOPTR, $8 |
| DATA _rt0_amd64_lib_argv<>(SB)/8, $0 |
| GLOBL _rt0_amd64_lib_argv<>(SB),NOPTR, $8 |
| |
| TEXT runtime·rt0_go(SB),NOSPLIT,$0 |
| // copy arguments forward on an even stack |
| MOVQ DI, AX // argc |
| MOVQ SI, BX // argv |
| SUBQ $(4*8+7), SP // 2args 2auto |
| ANDQ $~15, SP |
| MOVQ AX, 16(SP) |
| MOVQ BX, 24(SP) |
| |
| // create istack out of the given (operating system) stack. |
| // _cgo_init may update stackguard. |
| MOVQ $runtime·g0(SB), DI |
| LEAQ (-64*1024+104)(SP), BX |
| MOVQ BX, g_stackguard0(DI) |
| MOVQ BX, g_stackguard1(DI) |
| MOVQ BX, (g_stack+stack_lo)(DI) |
| MOVQ SP, (g_stack+stack_hi)(DI) |
| |
| // find out information about the processor we're on |
| MOVL $0, AX |
| CPUID |
| MOVL AX, SI |
| CMPL AX, $0 |
| JE nocpuinfo |
| |
| // Figure out how to serialize RDTSC. |
| // On Intel processors LFENCE is enough. AMD requires MFENCE. |
| // Don't know about the rest, so let's do MFENCE. |
| CMPL BX, $0x756E6547 // "Genu" |
| JNE notintel |
| CMPL DX, $0x49656E69 // "ineI" |
| JNE notintel |
| CMPL CX, $0x6C65746E // "ntel" |
| JNE notintel |
| MOVB $1, runtime·isIntel(SB) |
| MOVB $1, runtime·lfenceBeforeRdtsc(SB) |
| notintel: |
| |
| // Load EAX=1 cpuid flags |
| MOVL $1, AX |
| CPUID |
| MOVL AX, runtime·processorVersionInfo(SB) |
| |
| TESTL $(1<<26), DX // SSE2 |
| SETNE runtime·support_sse2(SB) |
| |
| TESTL $(1<<9), CX // SSSE3 |
| SETNE runtime·support_ssse3(SB) |
| |
| TESTL $(1<<19), CX // SSE4.1 |
| SETNE runtime·support_sse41(SB) |
| |
| TESTL $(1<<20), CX // SSE4.2 |
| SETNE runtime·support_sse42(SB) |
| |
| TESTL $(1<<23), CX // POPCNT |
| SETNE runtime·support_popcnt(SB) |
| |
| TESTL $(1<<25), CX // AES |
| SETNE runtime·support_aes(SB) |
| |
| TESTL $(1<<27), CX // OSXSAVE |
| SETNE runtime·support_osxsave(SB) |
| |
| // If OS support for XMM and YMM is not present |
| // support_avx will be set back to false later. |
| TESTL $(1<<28), CX // AVX |
| SETNE runtime·support_avx(SB) |
| |
| eax7: |
| // Load EAX=7/ECX=0 cpuid flags |
| CMPL SI, $7 |
| JLT osavx |
| MOVL $7, AX |
| MOVL $0, CX |
| CPUID |
| |
| TESTL $(1<<3), BX // BMI1 |
| SETNE runtime·support_bmi1(SB) |
| |
| // If OS support for XMM and YMM is not present |
| // support_avx2 will be set back to false later. |
| TESTL $(1<<5), BX |
| SETNE runtime·support_avx2(SB) |
| |
| TESTL $(1<<8), BX // BMI2 |
| SETNE runtime·support_bmi2(SB) |
| |
| TESTL $(1<<9), BX // ERMS |
| SETNE runtime·support_erms(SB) |
| |
| osavx: |
| CMPB runtime·support_osxsave(SB), $1 |
| JNE noavx |
| MOVL $0, CX |
| // For XGETBV, OSXSAVE bit is required and sufficient |
| XGETBV |
| ANDL $6, AX |
| CMPL AX, $6 // Check for OS support of XMM and YMM registers. |
| JE nocpuinfo |
| noavx: |
| MOVB $0, runtime·support_avx(SB) |
| MOVB $0, runtime·support_avx2(SB) |
| |
| nocpuinfo: |
| // if there is an _cgo_init, call it. |
| MOVQ _cgo_init(SB), AX |
| TESTQ AX, AX |
| JZ needtls |
| // g0 already in DI |
| MOVQ DI, CX // Win64 uses CX for first parameter |
| MOVQ $setg_gcc<>(SB), SI |
| CALL AX |
| |
| // update stackguard after _cgo_init |
| MOVQ $runtime·g0(SB), CX |
| MOVQ (g_stack+stack_lo)(CX), AX |
| ADDQ $const__StackGuard, AX |
| MOVQ AX, g_stackguard0(CX) |
| MOVQ AX, g_stackguard1(CX) |
| |
| #ifndef GOOS_windows |
| JMP ok |
| #endif |
| needtls: |
| #ifdef GOOS_plan9 |
| // skip TLS setup on Plan 9 |
| JMP ok |
| #endif |
| #ifdef GOOS_solaris |
| // skip TLS setup on Solaris |
| JMP ok |
| #endif |
| |
| LEAQ runtime·m0+m_tls(SB), DI |
| CALL runtime·settls(SB) |
| |
| // store through it, to make sure it works |
| get_tls(BX) |
| MOVQ $0x123, g(BX) |
| MOVQ runtime·m0+m_tls(SB), AX |
| CMPQ AX, $0x123 |
| JEQ 2(PC) |
| MOVL AX, 0 // abort |
| ok: |
| // set the per-goroutine and per-mach "registers" |
| get_tls(BX) |
| LEAQ runtime·g0(SB), CX |
| MOVQ CX, g(BX) |
| LEAQ runtime·m0(SB), AX |
| |
| // save m->g0 = g0 |
| MOVQ CX, m_g0(AX) |
| // save m0 to g0->m |
| MOVQ AX, g_m(CX) |
| |
| CLD // convention is D is always left cleared |
| CALL runtime·check(SB) |
| |
| MOVL 16(SP), AX // copy argc |
| MOVL AX, 0(SP) |
| MOVQ 24(SP), AX // copy argv |
| MOVQ AX, 8(SP) |
| CALL runtime·args(SB) |
| CALL runtime·osinit(SB) |
| CALL runtime·schedinit(SB) |
| |
| // create a new goroutine to start program |
| MOVQ $runtime·mainPC(SB), AX // entry |
| PUSHQ AX |
| PUSHQ $0 // arg size |
| CALL runtime·newproc(SB) |
| POPQ AX |
| POPQ AX |
| |
| // start this M |
| CALL runtime·mstart(SB) |
| |
| MOVL $0xf1, 0xf1 // crash |
| RET |
| |
| DATA runtime·mainPC+0(SB)/8,$runtime·main(SB) |
| GLOBL runtime·mainPC(SB),RODATA,$8 |
| |
| TEXT runtime·breakpoint(SB),NOSPLIT,$0-0 |
| BYTE $0xcc |
| RET |
| |
| TEXT runtime·asminit(SB),NOSPLIT,$0-0 |
| // No per-thread init. |
| RET |
| |
| /* |
| * go-routine |
| */ |
| |
| // void gosave(Gobuf*) |
| // save state in Gobuf; setjmp |
| TEXT runtime·gosave(SB), NOSPLIT, $0-8 |
| MOVQ buf+0(FP), AX // gobuf |
| LEAQ buf+0(FP), BX // caller's SP |
| MOVQ BX, gobuf_sp(AX) |
| MOVQ 0(SP), BX // caller's PC |
| MOVQ BX, gobuf_pc(AX) |
| MOVQ $0, gobuf_ret(AX) |
| MOVQ BP, gobuf_bp(AX) |
| // Assert ctxt is zero. See func save. |
| MOVQ gobuf_ctxt(AX), BX |
| TESTQ BX, BX |
| JZ 2(PC) |
| CALL runtime·badctxt(SB) |
| get_tls(CX) |
| MOVQ g(CX), BX |
| MOVQ BX, gobuf_g(AX) |
| RET |
| |
| // void gogo(Gobuf*) |
| // restore state from Gobuf; longjmp |
| TEXT runtime·gogo(SB), NOSPLIT, $16-8 |
| MOVQ buf+0(FP), BX // gobuf |
| MOVQ gobuf_g(BX), DX |
| MOVQ 0(DX), CX // make sure g != nil |
| get_tls(CX) |
| MOVQ DX, g(CX) |
| MOVQ gobuf_sp(BX), SP // restore SP |
| MOVQ gobuf_ret(BX), AX |
| MOVQ gobuf_ctxt(BX), DX |
| MOVQ gobuf_bp(BX), BP |
| MOVQ $0, gobuf_sp(BX) // clear to help garbage collector |
| MOVQ $0, gobuf_ret(BX) |
| MOVQ $0, gobuf_ctxt(BX) |
| MOVQ $0, gobuf_bp(BX) |
| MOVQ gobuf_pc(BX), BX |
| JMP BX |
| |
| // func mcall(fn func(*g)) |
| // Switch to m->g0's stack, call fn(g). |
| // Fn must never return. It should gogo(&g->sched) |
| // to keep running g. |
| TEXT runtime·mcall(SB), NOSPLIT, $0-8 |
| MOVQ fn+0(FP), DI |
| |
| get_tls(CX) |
| MOVQ g(CX), AX // save state in g->sched |
| MOVQ 0(SP), BX // caller's PC |
| MOVQ BX, (g_sched+gobuf_pc)(AX) |
| LEAQ fn+0(FP), BX // caller's SP |
| MOVQ BX, (g_sched+gobuf_sp)(AX) |
| MOVQ AX, (g_sched+gobuf_g)(AX) |
| MOVQ BP, (g_sched+gobuf_bp)(AX) |
| |
| // switch to m->g0 & its stack, call fn |
| MOVQ g(CX), BX |
| MOVQ g_m(BX), BX |
| MOVQ m_g0(BX), SI |
| CMPQ SI, AX // if g == m->g0 call badmcall |
| JNE 3(PC) |
| MOVQ $runtime·badmcall(SB), AX |
| JMP AX |
| MOVQ SI, g(CX) // g = m->g0 |
| MOVQ (g_sched+gobuf_sp)(SI), SP // sp = m->g0->sched.sp |
| PUSHQ AX |
| MOVQ DI, DX |
| MOVQ 0(DI), DI |
| CALL DI |
| POPQ AX |
| MOVQ $runtime·badmcall2(SB), AX |
| JMP AX |
| RET |
| |
| // systemstack_switch is a dummy routine that systemstack leaves at the bottom |
| // of the G stack. We need to distinguish the routine that |
| // lives at the bottom of the G stack from the one that lives |
| // at the top of the system stack because the one at the top of |
| // the system stack terminates the stack walk (see topofstack()). |
| TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 |
| RET |
| |
| // func systemstack(fn func()) |
| TEXT runtime·systemstack(SB), NOSPLIT, $0-8 |
| MOVQ fn+0(FP), DI // DI = fn |
| get_tls(CX) |
| MOVQ g(CX), AX // AX = g |
| MOVQ g_m(AX), BX // BX = m |
| |
| MOVQ m_gsignal(BX), DX // DX = gsignal |
| CMPQ AX, DX |
| JEQ noswitch |
| |
| MOVQ m_g0(BX), DX // DX = g0 |
| CMPQ AX, DX |
| JEQ noswitch |
| |
| MOVQ m_curg(BX), R8 |
| CMPQ AX, R8 |
| JEQ switch |
| |
| // Bad: g is not gsignal, not g0, not curg. What is it? |
| MOVQ $runtime·badsystemstack(SB), AX |
| CALL AX |
| |
| switch: |
| // save our state in g->sched. Pretend to |
| // be systemstack_switch if the G stack is scanned. |
| MOVQ $runtime·systemstack_switch(SB), SI |
| MOVQ SI, (g_sched+gobuf_pc)(AX) |
| MOVQ SP, (g_sched+gobuf_sp)(AX) |
| MOVQ AX, (g_sched+gobuf_g)(AX) |
| MOVQ BP, (g_sched+gobuf_bp)(AX) |
| |
| // switch to g0 |
| MOVQ DX, g(CX) |
| MOVQ (g_sched+gobuf_sp)(DX), BX |
| // make it look like mstart called systemstack on g0, to stop traceback |
| SUBQ $8, BX |
| MOVQ $runtime·mstart(SB), DX |
| MOVQ DX, 0(BX) |
| MOVQ BX, SP |
| |
| // call target function |
| MOVQ DI, DX |
| MOVQ 0(DI), DI |
| CALL DI |
| |
| // switch back to g |
| get_tls(CX) |
| MOVQ g(CX), AX |
| MOVQ g_m(AX), BX |
| MOVQ m_curg(BX), AX |
| MOVQ AX, g(CX) |
| MOVQ (g_sched+gobuf_sp)(AX), SP |
| MOVQ $0, (g_sched+gobuf_sp)(AX) |
| RET |
| |
| noswitch: |
| // already on m stack; tail call the function |
| // Using a tail call here cleans up tracebacks since we won't stop |
| // at an intermediate systemstack. |
| MOVQ DI, DX |
| MOVQ 0(DI), DI |
| JMP DI |
| |
| /* |
| * support for morestack |
| */ |
| |
| // Called during function prolog when more stack is needed. |
| // |
| // The traceback routines see morestack on a g0 as being |
| // the top of a stack (for example, morestack calling newstack |
| // calling the scheduler calling newm calling gc), so we must |
| // record an argument size. For that purpose, it has no arguments. |
| TEXT runtime·morestack(SB),NOSPLIT,$0-0 |
| // Cannot grow scheduler stack (m->g0). |
| get_tls(CX) |
| MOVQ g(CX), BX |
| MOVQ g_m(BX), BX |
| MOVQ m_g0(BX), SI |
| CMPQ g(CX), SI |
| JNE 3(PC) |
| CALL runtime·badmorestackg0(SB) |
| INT $3 |
| |
| // Cannot grow signal stack (m->gsignal). |
| MOVQ m_gsignal(BX), SI |
| CMPQ g(CX), SI |
| JNE 3(PC) |
| CALL runtime·badmorestackgsignal(SB) |
| INT $3 |
| |
| // Called from f. |
| // Set m->morebuf to f's caller. |
| MOVQ 8(SP), AX // f's caller's PC |
| MOVQ AX, (m_morebuf+gobuf_pc)(BX) |
| LEAQ 16(SP), AX // f's caller's SP |
| MOVQ AX, (m_morebuf+gobuf_sp)(BX) |
| get_tls(CX) |
| MOVQ g(CX), SI |
| MOVQ SI, (m_morebuf+gobuf_g)(BX) |
| |
| // Set g->sched to context in f. |
| MOVQ 0(SP), AX // f's PC |
| MOVQ AX, (g_sched+gobuf_pc)(SI) |
| MOVQ SI, (g_sched+gobuf_g)(SI) |
| LEAQ 8(SP), AX // f's SP |
| MOVQ AX, (g_sched+gobuf_sp)(SI) |
| MOVQ BP, (g_sched+gobuf_bp)(SI) |
| MOVQ DX, (g_sched+gobuf_ctxt)(SI) |
| |
| // Call newstack on m->g0's stack. |
| MOVQ m_g0(BX), BX |
| MOVQ BX, g(CX) |
| MOVQ (g_sched+gobuf_sp)(BX), SP |
| CALL runtime·newstack(SB) |
| MOVQ $0, 0x1003 // crash if newstack returns |
| RET |
| |
| // morestack but not preserving ctxt. |
| TEXT runtime·morestack_noctxt(SB),NOSPLIT,$0 |
| MOVL $0, DX |
| JMP runtime·morestack(SB) |
| |
| // reflectcall: call a function with the given argument list |
| // func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32). |
| // we don't have variable-sized frames, so we use a small number |
| // of constant-sized-frame functions to encode a few bits of size in the pc. |
| // Caution: ugly multiline assembly macros in your future! |
| |
| #define DISPATCH(NAME,MAXSIZE) \ |
| CMPQ CX, $MAXSIZE; \ |
| JA 3(PC); \ |
| MOVQ $NAME(SB), AX; \ |
| JMP AX |
| // Note: can't just "JMP NAME(SB)" - bad inlining results. |
| |
| TEXT reflect·call(SB), NOSPLIT, $0-0 |
| JMP ·reflectcall(SB) |
| |
| TEXT ·reflectcall(SB), NOSPLIT, $0-32 |
| MOVLQZX argsize+24(FP), CX |
| DISPATCH(runtime·call32, 32) |
| DISPATCH(runtime·call64, 64) |
| DISPATCH(runtime·call128, 128) |
| DISPATCH(runtime·call256, 256) |
| DISPATCH(runtime·call512, 512) |
| DISPATCH(runtime·call1024, 1024) |
| DISPATCH(runtime·call2048, 2048) |
| DISPATCH(runtime·call4096, 4096) |
| DISPATCH(runtime·call8192, 8192) |
| DISPATCH(runtime·call16384, 16384) |
| DISPATCH(runtime·call32768, 32768) |
| DISPATCH(runtime·call65536, 65536) |
| DISPATCH(runtime·call131072, 131072) |
| DISPATCH(runtime·call262144, 262144) |
| DISPATCH(runtime·call524288, 524288) |
| DISPATCH(runtime·call1048576, 1048576) |
| DISPATCH(runtime·call2097152, 2097152) |
| DISPATCH(runtime·call4194304, 4194304) |
| DISPATCH(runtime·call8388608, 8388608) |
| DISPATCH(runtime·call16777216, 16777216) |
| DISPATCH(runtime·call33554432, 33554432) |
| DISPATCH(runtime·call67108864, 67108864) |
| DISPATCH(runtime·call134217728, 134217728) |
| DISPATCH(runtime·call268435456, 268435456) |
| DISPATCH(runtime·call536870912, 536870912) |
| DISPATCH(runtime·call1073741824, 1073741824) |
| MOVQ $runtime·badreflectcall(SB), AX |
| JMP AX |
| |
| #define CALLFN(NAME,MAXSIZE) \ |
| TEXT NAME(SB), WRAPPER, $MAXSIZE-32; \ |
| NO_LOCAL_POINTERS; \ |
| /* copy arguments to stack */ \ |
| MOVQ argptr+16(FP), SI; \ |
| MOVLQZX argsize+24(FP), CX; \ |
| MOVQ SP, DI; \ |
| REP;MOVSB; \ |
| /* call function */ \ |
| MOVQ f+8(FP), DX; \ |
| PCDATA $PCDATA_StackMapIndex, $0; \ |
| CALL (DX); \ |
| /* copy return values back */ \ |
| MOVQ argtype+0(FP), DX; \ |
| MOVQ argptr+16(FP), DI; \ |
| MOVLQZX argsize+24(FP), CX; \ |
| MOVLQZX retoffset+28(FP), BX; \ |
| MOVQ SP, SI; \ |
| ADDQ BX, DI; \ |
| ADDQ BX, SI; \ |
| SUBQ BX, CX; \ |
| CALL callRet<>(SB); \ |
| RET |
| |
| // callRet copies return values back at the end of call*. This is a |
| // separate function so it can allocate stack space for the arguments |
| // to reflectcallmove. It does not follow the Go ABI; it expects its |
| // arguments in registers. |
| TEXT callRet<>(SB), NOSPLIT, $32-0 |
| NO_LOCAL_POINTERS |
| MOVQ DX, 0(SP) |
| MOVQ DI, 8(SP) |
| MOVQ SI, 16(SP) |
| MOVQ CX, 24(SP) |
| CALL runtime·reflectcallmove(SB) |
| RET |
| |
| CALLFN(·call32, 32) |
| CALLFN(·call64, 64) |
| CALLFN(·call128, 128) |
| CALLFN(·call256, 256) |
| CALLFN(·call512, 512) |
| CALLFN(·call1024, 1024) |
| CALLFN(·call2048, 2048) |
| CALLFN(·call4096, 4096) |
| CALLFN(·call8192, 8192) |
| CALLFN(·call16384, 16384) |
| CALLFN(·call32768, 32768) |
| CALLFN(·call65536, 65536) |
| CALLFN(·call131072, 131072) |
| CALLFN(·call262144, 262144) |
| CALLFN(·call524288, 524288) |
| CALLFN(·call1048576, 1048576) |
| CALLFN(·call2097152, 2097152) |
| CALLFN(·call4194304, 4194304) |
| CALLFN(·call8388608, 8388608) |
| CALLFN(·call16777216, 16777216) |
| CALLFN(·call33554432, 33554432) |
| CALLFN(·call67108864, 67108864) |
| CALLFN(·call134217728, 134217728) |
| CALLFN(·call268435456, 268435456) |
| CALLFN(·call536870912, 536870912) |
| CALLFN(·call1073741824, 1073741824) |
| |
| TEXT runtime·procyield(SB),NOSPLIT,$0-0 |
| MOVL cycles+0(FP), AX |
| again: |
| PAUSE |
| SUBL $1, AX |
| JNZ again |
| RET |
| |
| |
| TEXT ·publicationBarrier(SB),NOSPLIT,$0-0 |
| // Stores are already ordered on x86, so this is just a |
| // compile barrier. |
| RET |
| |
| // void jmpdefer(fn, sp); |
| // called from deferreturn. |
| // 1. pop the caller |
| // 2. sub 5 bytes from the callers return |
| // 3. jmp to the argument |
| TEXT runtime·jmpdefer(SB), NOSPLIT, $0-16 |
| MOVQ fv+0(FP), DX // fn |
| MOVQ argp+8(FP), BX // caller sp |
| LEAQ -8(BX), SP // caller sp after CALL |
| MOVQ -8(SP), BP // restore BP as if deferreturn returned (harmless if framepointers not in use) |
| SUBQ $5, (SP) // return to CALL again |
| MOVQ 0(DX), BX |
| JMP BX // but first run the deferred function |
| |
| // Save state of caller into g->sched. Smashes R8, R9. |
| TEXT gosave<>(SB),NOSPLIT,$0 |
| get_tls(R8) |
| MOVQ g(R8), R8 |
| MOVQ 0(SP), R9 |
| MOVQ R9, (g_sched+gobuf_pc)(R8) |
| LEAQ 8(SP), R9 |
| MOVQ R9, (g_sched+gobuf_sp)(R8) |
| MOVQ $0, (g_sched+gobuf_ret)(R8) |
| MOVQ BP, (g_sched+gobuf_bp)(R8) |
| // Assert ctxt is zero. See func save. |
| MOVQ (g_sched+gobuf_ctxt)(R8), R9 |
| TESTQ R9, R9 |
| JZ 2(PC) |
| CALL runtime·badctxt(SB) |
| RET |
| |
| // func asmcgocall(fn, arg unsafe.Pointer) int32 |
| // Call fn(arg) on the scheduler stack, |
| // aligned appropriately for the gcc ABI. |
| // See cgocall.go for more details. |
| TEXT ·asmcgocall(SB),NOSPLIT,$0-20 |
| MOVQ fn+0(FP), AX |
| MOVQ arg+8(FP), BX |
| |
| MOVQ SP, DX |
| |
| // Figure out if we need to switch to m->g0 stack. |
| // We get called to create new OS threads too, and those |
| // come in on the m->g0 stack already. |
| get_tls(CX) |
| MOVQ g(CX), R8 |
| CMPQ R8, $0 |
| JEQ nosave |
| MOVQ g_m(R8), R8 |
| MOVQ m_g0(R8), SI |
| MOVQ g(CX), DI |
| CMPQ SI, DI |
| JEQ nosave |
| MOVQ m_gsignal(R8), SI |
| CMPQ SI, DI |
| JEQ nosave |
| |
| // Switch to system stack. |
| MOVQ m_g0(R8), SI |
| CALL gosave<>(SB) |
| MOVQ SI, g(CX) |
| MOVQ (g_sched+gobuf_sp)(SI), SP |
| |
| // Now on a scheduling stack (a pthread-created stack). |
| // Make sure we have enough room for 4 stack-backed fast-call |
| // registers as per windows amd64 calling convention. |
| SUBQ $64, SP |
| ANDQ $~15, SP // alignment for gcc ABI |
| MOVQ DI, 48(SP) // save g |
| MOVQ (g_stack+stack_hi)(DI), DI |
| SUBQ DX, DI |
| MOVQ DI, 40(SP) // save depth in stack (can't just save SP, as stack might be copied during a callback) |
| MOVQ BX, DI // DI = first argument in AMD64 ABI |
| MOVQ BX, CX // CX = first argument in Win64 |
| CALL AX |
| |
| // Restore registers, g, stack pointer. |
| get_tls(CX) |
| MOVQ 48(SP), DI |
| MOVQ (g_stack+stack_hi)(DI), SI |
| SUBQ 40(SP), SI |
| MOVQ DI, g(CX) |
| MOVQ SI, SP |
| |
| MOVL AX, ret+16(FP) |
| RET |
| |
| nosave: |
| // Running on a system stack, perhaps even without a g. |
| // Having no g can happen during thread creation or thread teardown |
| // (see needm/dropm on Solaris, for example). |
| // This code is like the above sequence but without saving/restoring g |
| // and without worrying about the stack moving out from under us |
| // (because we're on a system stack, not a goroutine stack). |
| // The above code could be used directly if already on a system stack, |
| // but then the only path through this code would be a rare case on Solaris. |
| // Using this code for all "already on system stack" calls exercises it more, |
| // which should help keep it correct. |
| SUBQ $64, SP |
| ANDQ $~15, SP |
| MOVQ $0, 48(SP) // where above code stores g, in case someone looks during debugging |
| MOVQ DX, 40(SP) // save original stack pointer |
| MOVQ BX, DI // DI = first argument in AMD64 ABI |
| MOVQ BX, CX // CX = first argument in Win64 |
| CALL AX |
| MOVQ 40(SP), SI // restore original stack pointer |
| MOVQ SI, SP |
| MOVL AX, ret+16(FP) |
| RET |
| |
| // cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt) |
| // Turn the fn into a Go func (by taking its address) and call |
| // cgocallback_gofunc. |
| TEXT runtime·cgocallback(SB),NOSPLIT,$32-32 |
| LEAQ fn+0(FP), AX |
| MOVQ AX, 0(SP) |
| MOVQ frame+8(FP), AX |
| MOVQ AX, 8(SP) |
| MOVQ framesize+16(FP), AX |
| MOVQ AX, 16(SP) |
| MOVQ ctxt+24(FP), AX |
| MOVQ AX, 24(SP) |
| MOVQ $runtime·cgocallback_gofunc(SB), AX |
| CALL AX |
| RET |
| |
| // cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt) |
| // See cgocall.go for more details. |
| TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32 |
| NO_LOCAL_POINTERS |
| |
| // If g is nil, Go did not create the current thread. |
| // Call needm to obtain one m for temporary use. |
| // In this case, we're running on the thread stack, so there's |
| // lots of space, but the linker doesn't know. Hide the call from |
| // the linker analysis by using an indirect call through AX. |
| get_tls(CX) |
| #ifdef GOOS_windows |
| MOVL $0, BX |
| CMPQ CX, $0 |
| JEQ 2(PC) |
| #endif |
| MOVQ g(CX), BX |
| CMPQ BX, $0 |
| JEQ needm |
| MOVQ g_m(BX), BX |
| MOVQ BX, R8 // holds oldm until end of function |
| JMP havem |
| needm: |
| MOVQ $0, 0(SP) |
| MOVQ $runtime·needm(SB), AX |
| CALL AX |
| MOVQ 0(SP), R8 |
| get_tls(CX) |
| MOVQ g(CX), BX |
| MOVQ g_m(BX), BX |
| |
| // Set m->sched.sp = SP, so that if a panic happens |
| // during the function we are about to execute, it will |
| // have a valid SP to run on the g0 stack. |
| // The next few lines (after the havem label) |
| // will save this SP onto the stack and then write |
| // the same SP back to m->sched.sp. That seems redundant, |
| // but if an unrecovered panic happens, unwindm will |
| // restore the g->sched.sp from the stack location |
| // and then systemstack will try to use it. If we don't set it here, |
| // that restored SP will be uninitialized (typically 0) and |
| // will not be usable. |
| MOVQ m_g0(BX), SI |
| MOVQ SP, (g_sched+gobuf_sp)(SI) |
| |
| havem: |
| // Now there's a valid m, and we're running on its m->g0. |
| // Save current m->g0->sched.sp on stack and then set it to SP. |
| // Save current sp in m->g0->sched.sp in preparation for |
| // switch back to m->curg stack. |
| // NOTE: unwindm knows that the saved g->sched.sp is at 0(SP). |
| MOVQ m_g0(BX), SI |
| MOVQ (g_sched+gobuf_sp)(SI), AX |
| MOVQ AX, 0(SP) |
| MOVQ SP, (g_sched+gobuf_sp)(SI) |
| |
| // Switch to m->curg stack and call runtime.cgocallbackg. |
| // Because we are taking over the execution of m->curg |
| // but *not* resuming what had been running, we need to |
| // save that information (m->curg->sched) so we can restore it. |
| // We can restore m->curg->sched.sp easily, because calling |
| // runtime.cgocallbackg leaves SP unchanged upon return. |
| // To save m->curg->sched.pc, we push it onto the stack. |
| // This has the added benefit that it looks to the traceback |
| // routine like cgocallbackg is going to return to that |
| // PC (because the frame we allocate below has the same |
| // size as cgocallback_gofunc's frame declared above) |
| // so that the traceback will seamlessly trace back into |
| // the earlier calls. |
| // |
| // In the new goroutine, 8(SP) holds the saved R8. |
| MOVQ m_curg(BX), SI |
| MOVQ SI, g(CX) |
| MOVQ (g_sched+gobuf_sp)(SI), DI // prepare stack as DI |
| MOVQ (g_sched+gobuf_pc)(SI), BX |
| MOVQ BX, -8(DI) |
| // Compute the size of the frame, including return PC and, if |
| // GOEXPERIMENT=framepointer, the saved base pointer |
| MOVQ ctxt+24(FP), BX |
| LEAQ fv+0(FP), AX |
| SUBQ SP, AX |
| SUBQ AX, DI |
| MOVQ DI, SP |
| |
| MOVQ R8, 8(SP) |
| MOVQ BX, 0(SP) |
| CALL runtime·cgocallbackg(SB) |
| MOVQ 8(SP), R8 |
| |
| // Compute the size of the frame again. FP and SP have |
| // completely different values here than they did above, |
| // but only their difference matters. |
| LEAQ fv+0(FP), AX |
| SUBQ SP, AX |
| |
| // Restore g->sched (== m->curg->sched) from saved values. |
| get_tls(CX) |
| MOVQ g(CX), SI |
| MOVQ SP, DI |
| ADDQ AX, DI |
| MOVQ -8(DI), BX |
| MOVQ BX, (g_sched+gobuf_pc)(SI) |
| MOVQ DI, (g_sched+gobuf_sp)(SI) |
| |
| // Switch back to m->g0's stack and restore m->g0->sched.sp. |
| // (Unlike m->curg, the g0 goroutine never uses sched.pc, |
| // so we do not have to restore it.) |
| MOVQ g(CX), BX |
| MOVQ g_m(BX), BX |
| MOVQ m_g0(BX), SI |
| MOVQ SI, g(CX) |
| MOVQ (g_sched+gobuf_sp)(SI), SP |
| MOVQ 0(SP), AX |
| MOVQ AX, (g_sched+gobuf_sp)(SI) |
| |
| // If the m on entry was nil, we called needm above to borrow an m |
| // for the duration of the call. Since the call is over, return it with dropm. |
| CMPQ R8, $0 |
| JNE 3(PC) |
| MOVQ $runtime·dropm(SB), AX |
| CALL AX |
| |
| // Done! |
| RET |
| |
| // void setg(G*); set g. for use by needm. |
| TEXT runtime·setg(SB), NOSPLIT, $0-8 |
| MOVQ gg+0(FP), BX |
| #ifdef GOOS_windows |
| CMPQ BX, $0 |
| JNE settls |
| MOVQ $0, 0x28(GS) |
| RET |
| settls: |
| MOVQ g_m(BX), AX |
| LEAQ m_tls(AX), AX |
| MOVQ AX, 0x28(GS) |
| #endif |
| get_tls(CX) |
| MOVQ BX, g(CX) |
| RET |
| |
| // void setg_gcc(G*); set g called from gcc. |
| TEXT setg_gcc<>(SB),NOSPLIT,$0 |
| get_tls(AX) |
| MOVQ DI, g(AX) |
| RET |
| |
| // check that SP is in range [g->stack.lo, g->stack.hi) |
| TEXT runtime·stackcheck(SB), NOSPLIT, $0-0 |
| get_tls(CX) |
| MOVQ g(CX), AX |
| CMPQ (g_stack+stack_hi)(AX), SP |
| JHI 2(PC) |
| INT $3 |
| CMPQ SP, (g_stack+stack_lo)(AX) |
| JHI 2(PC) |
| INT $3 |
| RET |
| |
| // func cputicks() int64 |
| TEXT runtime·cputicks(SB),NOSPLIT,$0-0 |
| CMPB runtime·lfenceBeforeRdtsc(SB), $1 |
| JNE mfence |
| LFENCE |
| JMP done |
| mfence: |
| MFENCE |
| done: |
| RDTSC |
| SHLQ $32, DX |
| ADDQ DX, AX |
| MOVQ AX, ret+0(FP) |
| RET |
| |
| // hash function using AES hardware instructions |
| TEXT runtime·aeshash(SB),NOSPLIT,$0-32 |
| MOVQ p+0(FP), AX // ptr to data |
| MOVQ s+16(FP), CX // size |
| LEAQ ret+24(FP), DX |
| JMP runtime·aeshashbody(SB) |
| |
| TEXT runtime·aeshashstr(SB),NOSPLIT,$0-24 |
| MOVQ p+0(FP), AX // ptr to string struct |
| MOVQ 8(AX), CX // length of string |
| MOVQ (AX), AX // string data |
| LEAQ ret+16(FP), DX |
| JMP runtime·aeshashbody(SB) |
| |
| // AX: data |
| // CX: length |
| // DX: address to put return value |
| TEXT runtime·aeshashbody(SB),NOSPLIT,$0-0 |
| // Fill an SSE register with our seeds. |
| MOVQ h+8(FP), X0 // 64 bits of per-table hash seed |
| PINSRW $4, CX, X0 // 16 bits of length |
| PSHUFHW $0, X0, X0 // repeat length 4 times total |
| MOVO X0, X1 // save unscrambled seed |
| PXOR runtime·aeskeysched(SB), X0 // xor in per-process seed |
| AESENC X0, X0 // scramble seed |
| |
| CMPQ CX, $16 |
| JB aes0to15 |
| JE aes16 |
| CMPQ CX, $32 |
| JBE aes17to32 |
| CMPQ CX, $64 |
| JBE aes33to64 |
| CMPQ CX, $128 |
| JBE aes65to128 |
| JMP aes129plus |
| |
| aes0to15: |
| TESTQ CX, CX |
| JE aes0 |
| |
| ADDQ $16, AX |
| TESTW $0xff0, AX |
| JE endofpage |
| |
| // 16 bytes loaded at this address won't cross |
| // a page boundary, so we can load it directly. |
| MOVOU -16(AX), X1 |
| ADDQ CX, CX |
| MOVQ $masks<>(SB), AX |
| PAND (AX)(CX*8), X1 |
| final1: |
| PXOR X0, X1 // xor data with seed |
| AESENC X1, X1 // scramble combo 3 times |
| AESENC X1, X1 |
| AESENC X1, X1 |
| MOVQ X1, (DX) |
| RET |
| |
| endofpage: |
| // address ends in 1111xxxx. Might be up against |
| // a page boundary, so load ending at last byte. |
| // Then shift bytes down using pshufb. |
| MOVOU -32(AX)(CX*1), X1 |
| ADDQ CX, CX |
| MOVQ $shifts<>(SB), AX |
| PSHUFB (AX)(CX*8), X1 |
| JMP final1 |
| |
| aes0: |
| // Return scrambled input seed |
| AESENC X0, X0 |
| MOVQ X0, (DX) |
| RET |
| |
| aes16: |
| MOVOU (AX), X1 |
| JMP final1 |
| |
| aes17to32: |
| // make second starting seed |
| PXOR runtime·aeskeysched+16(SB), X1 |
| AESENC X1, X1 |
| |
| // load data to be hashed |
| MOVOU (AX), X2 |
| MOVOU -16(AX)(CX*1), X3 |
| |
| // xor with seed |
| PXOR X0, X2 |
| PXOR X1, X3 |
| |
| // scramble 3 times |
| AESENC X2, X2 |
| AESENC X3, X3 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| |
| // combine results |
| PXOR X3, X2 |
| MOVQ X2, (DX) |
| RET |
| |
| aes33to64: |
| // make 3 more starting seeds |
| MOVO X1, X2 |
| MOVO X1, X3 |
| PXOR runtime·aeskeysched+16(SB), X1 |
| PXOR runtime·aeskeysched+32(SB), X2 |
| PXOR runtime·aeskeysched+48(SB), X3 |
| AESENC X1, X1 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| |
| MOVOU (AX), X4 |
| MOVOU 16(AX), X5 |
| MOVOU -32(AX)(CX*1), X6 |
| MOVOU -16(AX)(CX*1), X7 |
| |
| PXOR X0, X4 |
| PXOR X1, X5 |
| PXOR X2, X6 |
| PXOR X3, X7 |
| |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| PXOR X6, X4 |
| PXOR X7, X5 |
| PXOR X5, X4 |
| MOVQ X4, (DX) |
| RET |
| |
| aes65to128: |
| // make 7 more starting seeds |
| MOVO X1, X2 |
| MOVO X1, X3 |
| MOVO X1, X4 |
| MOVO X1, X5 |
| MOVO X1, X6 |
| MOVO X1, X7 |
| PXOR runtime·aeskeysched+16(SB), X1 |
| PXOR runtime·aeskeysched+32(SB), X2 |
| PXOR runtime·aeskeysched+48(SB), X3 |
| PXOR runtime·aeskeysched+64(SB), X4 |
| PXOR runtime·aeskeysched+80(SB), X5 |
| PXOR runtime·aeskeysched+96(SB), X6 |
| PXOR runtime·aeskeysched+112(SB), X7 |
| AESENC X1, X1 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| // load data |
| MOVOU (AX), X8 |
| MOVOU 16(AX), X9 |
| MOVOU 32(AX), X10 |
| MOVOU 48(AX), X11 |
| MOVOU -64(AX)(CX*1), X12 |
| MOVOU -48(AX)(CX*1), X13 |
| MOVOU -32(AX)(CX*1), X14 |
| MOVOU -16(AX)(CX*1), X15 |
| |
| // xor with seed |
| PXOR X0, X8 |
| PXOR X1, X9 |
| PXOR X2, X10 |
| PXOR X3, X11 |
| PXOR X4, X12 |
| PXOR X5, X13 |
| PXOR X6, X14 |
| PXOR X7, X15 |
| |
| // scramble 3 times |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| // combine results |
| PXOR X12, X8 |
| PXOR X13, X9 |
| PXOR X14, X10 |
| PXOR X15, X11 |
| PXOR X10, X8 |
| PXOR X11, X9 |
| PXOR X9, X8 |
| MOVQ X8, (DX) |
| RET |
| |
| aes129plus: |
| // make 7 more starting seeds |
| MOVO X1, X2 |
| MOVO X1, X3 |
| MOVO X1, X4 |
| MOVO X1, X5 |
| MOVO X1, X6 |
| MOVO X1, X7 |
| PXOR runtime·aeskeysched+16(SB), X1 |
| PXOR runtime·aeskeysched+32(SB), X2 |
| PXOR runtime·aeskeysched+48(SB), X3 |
| PXOR runtime·aeskeysched+64(SB), X4 |
| PXOR runtime·aeskeysched+80(SB), X5 |
| PXOR runtime·aeskeysched+96(SB), X6 |
| PXOR runtime·aeskeysched+112(SB), X7 |
| AESENC X1, X1 |
| AESENC X2, X2 |
| AESENC X3, X3 |
| AESENC X4, X4 |
| AESENC X5, X5 |
| AESENC X6, X6 |
| AESENC X7, X7 |
| |
| // start with last (possibly overlapping) block |
| MOVOU -128(AX)(CX*1), X8 |
| MOVOU -112(AX)(CX*1), X9 |
| MOVOU -96(AX)(CX*1), X10 |
| MOVOU -80(AX)(CX*1), X11 |
| MOVOU -64(AX)(CX*1), X12 |
| MOVOU -48(AX)(CX*1), X13 |
| MOVOU -32(AX)(CX*1), X14 |
| MOVOU -16(AX)(CX*1), X15 |
| |
| // xor in seed |
| PXOR X0, X8 |
| PXOR X1, X9 |
| PXOR X2, X10 |
| PXOR X3, X11 |
| PXOR X4, X12 |
| PXOR X5, X13 |
| PXOR X6, X14 |
| PXOR X7, X15 |
| |
| // compute number of remaining 128-byte blocks |
| DECQ CX |
| SHRQ $7, CX |
| |
| aesloop: |
| // scramble state |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| // scramble state, xor in a block |
| MOVOU (AX), X0 |
| MOVOU 16(AX), X1 |
| MOVOU 32(AX), X2 |
| MOVOU 48(AX), X3 |
| AESENC X0, X8 |
| AESENC X1, X9 |
| AESENC X2, X10 |
| AESENC X3, X11 |
| MOVOU 64(AX), X4 |
| MOVOU 80(AX), X5 |
| MOVOU 96(AX), X6 |
| MOVOU 112(AX), X7 |
| AESENC X4, X12 |
| AESENC X5, X13 |
| AESENC X6, X14 |
| AESENC X7, X15 |
| |
| ADDQ $128, AX |
| DECQ CX |
| JNE aesloop |
| |
| // 3 more scrambles to finish |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| AESENC X8, X8 |
| AESENC X9, X9 |
| AESENC X10, X10 |
| AESENC X11, X11 |
| AESENC X12, X12 |
| AESENC X13, X13 |
| AESENC X14, X14 |
| AESENC X15, X15 |
| |
| PXOR X12, X8 |
| PXOR X13, X9 |
| PXOR X14, X10 |
| PXOR X15, X11 |
| PXOR X10, X8 |
| PXOR X11, X9 |
| PXOR X9, X8 |
| MOVQ X8, (DX) |
| RET |
| |
| TEXT runtime·aeshash32(SB),NOSPLIT,$0-24 |
| MOVQ p+0(FP), AX // ptr to data |
| MOVQ h+8(FP), X0 // seed |
| PINSRD $2, (AX), X0 // data |
| AESENC runtime·aeskeysched+0(SB), X0 |
| AESENC runtime·aeskeysched+16(SB), X0 |
| AESENC runtime·aeskeysched+32(SB), X0 |
| MOVQ X0, ret+16(FP) |
| RET |
| |
| TEXT runtime·aeshash64(SB),NOSPLIT,$0-24 |
| MOVQ p+0(FP), AX // ptr to data |
| MOVQ h+8(FP), X0 // seed |
| PINSRQ $1, (AX), X0 // data |
| AESENC runtime·aeskeysched+0(SB), X0 |
| AESENC runtime·aeskeysched+16(SB), X0 |
| AESENC runtime·aeskeysched+32(SB), X0 |
| MOVQ X0, ret+16(FP) |
| RET |
| |
| // simple mask to get rid of data in the high part of the register. |
| DATA masks<>+0x00(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x08(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x10(SB)/8, $0x00000000000000ff |
| DATA masks<>+0x18(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x20(SB)/8, $0x000000000000ffff |
| DATA masks<>+0x28(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x30(SB)/8, $0x0000000000ffffff |
| DATA masks<>+0x38(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x40(SB)/8, $0x00000000ffffffff |
| DATA masks<>+0x48(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x50(SB)/8, $0x000000ffffffffff |
| DATA masks<>+0x58(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x60(SB)/8, $0x0000ffffffffffff |
| DATA masks<>+0x68(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x70(SB)/8, $0x00ffffffffffffff |
| DATA masks<>+0x78(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x80(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0x88(SB)/8, $0x0000000000000000 |
| DATA masks<>+0x90(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0x98(SB)/8, $0x00000000000000ff |
| DATA masks<>+0xa0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xa8(SB)/8, $0x000000000000ffff |
| DATA masks<>+0xb0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xb8(SB)/8, $0x0000000000ffffff |
| DATA masks<>+0xc0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xc8(SB)/8, $0x00000000ffffffff |
| DATA masks<>+0xd0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xd8(SB)/8, $0x000000ffffffffff |
| DATA masks<>+0xe0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xe8(SB)/8, $0x0000ffffffffffff |
| DATA masks<>+0xf0(SB)/8, $0xffffffffffffffff |
| DATA masks<>+0xf8(SB)/8, $0x00ffffffffffffff |
| GLOBL masks<>(SB),RODATA,$256 |
| |
| TEXT ·checkASM(SB),NOSPLIT,$0-1 |
| // check that masks<>(SB) and shifts<>(SB) are aligned to 16-byte |
| MOVQ $masks<>(SB), AX |
| MOVQ $shifts<>(SB), BX |
| ORQ BX, AX |
| TESTQ $15, AX |
| SETEQ ret+0(FP) |
| RET |
| |
| // these are arguments to pshufb. They move data down from |
| // the high bytes of the register to the low bytes of the register. |
| // index is how many bytes to move. |
| DATA shifts<>+0x00(SB)/8, $0x0000000000000000 |
| DATA shifts<>+0x08(SB)/8, $0x0000000000000000 |
| DATA shifts<>+0x10(SB)/8, $0xffffffffffffff0f |
| DATA shifts<>+0x18(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x20(SB)/8, $0xffffffffffff0f0e |
| DATA shifts<>+0x28(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x30(SB)/8, $0xffffffffff0f0e0d |
| DATA shifts<>+0x38(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x40(SB)/8, $0xffffffff0f0e0d0c |
| DATA shifts<>+0x48(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x50(SB)/8, $0xffffff0f0e0d0c0b |
| DATA shifts<>+0x58(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x60(SB)/8, $0xffff0f0e0d0c0b0a |
| DATA shifts<>+0x68(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x70(SB)/8, $0xff0f0e0d0c0b0a09 |
| DATA shifts<>+0x78(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x80(SB)/8, $0x0f0e0d0c0b0a0908 |
| DATA shifts<>+0x88(SB)/8, $0xffffffffffffffff |
| DATA shifts<>+0x90(SB)/8, $0x0e0d0c0b0a090807 |
| DATA shifts<>+0x98(SB)/8, $0xffffffffffffff0f |
| DATA shifts<>+0xa0(SB)/8, $0x0d0c0b0a09080706 |
| DATA shifts<>+0xa8(SB)/8, $0xffffffffffff0f0e |
| DATA shifts<>+0xb0(SB)/8, $0x0c0b0a0908070605 |
| DATA shifts<>+0xb8(SB)/8, $0xffffffffff0f0e0d |
| DATA shifts<>+0xc0(SB)/8, $0x0b0a090807060504 |
| DATA shifts<>+0xc8(SB)/8, $0xffffffff0f0e0d0c |
| DATA shifts<>+0xd0(SB)/8, $0x0a09080706050403 |
| DATA shifts<>+0xd8(SB)/8, $0xffffff0f0e0d0c0b |
| DATA shifts<>+0xe0(SB)/8, $0x0908070605040302 |
| DATA shifts<>+0xe8(SB)/8, $0xffff0f0e0d0c0b0a |
| DATA shifts<>+0xf0(SB)/8, $0x0807060504030201 |
| DATA shifts<>+0xf8(SB)/8, $0xff0f0e0d0c0b0a09 |
| GLOBL shifts<>(SB),RODATA,$256 |
| |
| // memequal(p, q unsafe.Pointer, size uintptr) bool |
| TEXT runtime·memequal(SB),NOSPLIT,$0-25 |
| MOVQ a+0(FP), SI |
| MOVQ b+8(FP), DI |
| CMPQ SI, DI |
| JEQ eq |
| MOVQ size+16(FP), BX |
| LEAQ ret+24(FP), AX |
| JMP runtime·memeqbody(SB) |
| eq: |
| MOVB $1, ret+24(FP) |
| RET |
| |
| // memequal_varlen(a, b unsafe.Pointer) bool |
| TEXT runtime·memequal_varlen(SB),NOSPLIT,$0-17 |
| MOVQ a+0(FP), SI |
| MOVQ b+8(FP), DI |
| CMPQ SI, DI |
| JEQ eq |
| MOVQ 8(DX), BX // compiler stores size at offset 8 in the closure |
| LEAQ ret+16(FP), AX |
| JMP runtime·memeqbody(SB) |
| eq: |
| MOVB $1, ret+16(FP) |
| RET |
| |
| // a in SI |
| // b in DI |
| // count in BX |
| // address of result byte in AX |
| TEXT runtime·memeqbody(SB),NOSPLIT,$0-0 |
| CMPQ BX, $8 |
| JB small |
| CMPQ BX, $64 |
| JB bigloop |
| CMPB runtime·support_avx2(SB), $1 |
| JE hugeloop_avx2 |
| |
| // 64 bytes at a time using xmm registers |
| hugeloop: |
| CMPQ BX, $64 |
| JB bigloop |
| MOVOU (SI), X0 |
| MOVOU (DI), X1 |
| MOVOU 16(SI), X2 |
| MOVOU 16(DI), X3 |
| MOVOU 32(SI), X4 |
| MOVOU 32(DI), X5 |
| MOVOU 48(SI), X6 |
| MOVOU 48(DI), X7 |
| PCMPEQB X1, X0 |
| PCMPEQB X3, X2 |
| PCMPEQB X5, X4 |
| PCMPEQB X7, X6 |
| PAND X2, X0 |
| PAND X6, X4 |
| PAND X4, X0 |
| PMOVMSKB X0, DX |
| ADDQ $64, SI |
| ADDQ $64, DI |
| SUBQ $64, BX |
| CMPL DX, $0xffff |
| JEQ hugeloop |
| MOVB $0, (AX) |
| RET |
| |
| // 64 bytes at a time using ymm registers |
| hugeloop_avx2: |
| CMPQ BX, $64 |
| JB bigloop_avx2 |
| VMOVDQU (SI), Y0 |
| VMOVDQU (DI), Y1 |
| VMOVDQU 32(SI), Y2 |
| VMOVDQU 32(DI), Y3 |
| VPCMPEQB Y1, Y0, Y4 |
| VPCMPEQB Y2, Y3, Y5 |
| VPAND Y4, Y5, Y6 |
| VPMOVMSKB Y6, DX |
| ADDQ $64, SI |
| ADDQ $64, DI |
| SUBQ $64, BX |
| CMPL DX, $0xffffffff |
| JEQ hugeloop_avx2 |
| VZEROUPPER |
| MOVB $0, (AX) |
| RET |
| |
| bigloop_avx2: |
| VZEROUPPER |
| |
| // 8 bytes at a time using 64-bit register |
| bigloop: |
| CMPQ BX, $8 |
| JBE leftover |
| MOVQ (SI), CX |
| MOVQ (DI), DX |
| ADDQ $8, SI |
| ADDQ $8, DI |
| SUBQ $8, BX |
| CMPQ CX, DX |
| JEQ bigloop |
| MOVB $0, (AX) |
| RET |
| |
| // remaining 0-8 bytes |
| leftover: |
| MOVQ -8(SI)(BX*1), CX |
| MOVQ -8(DI)(BX*1), DX |
| CMPQ CX, DX |
| SETEQ (AX) |
| RET |
| |
| small: |
| CMPQ BX, $0 |
| JEQ equal |
| |
| LEAQ 0(BX*8), CX |
| NEGQ CX |
| |
| CMPB SI, $0xf8 |
| JA si_high |
| |
| // load at SI won't cross a page boundary. |
| MOVQ (SI), SI |
| JMP si_finish |
| si_high: |
| // address ends in 11111xxx. Load up to bytes we want, move to correct position. |
| MOVQ -8(SI)(BX*1), SI |
| SHRQ CX, SI |
| si_finish: |
| |
| // same for DI. |
| CMPB DI, $0xf8 |
| JA di_high |
| MOVQ (DI), DI |
| JMP di_finish |
| di_high: |
| MOVQ -8(DI)(BX*1), DI |
| SHRQ CX, DI |
| di_finish: |
| |
| SUBQ SI, DI |
| SHLQ CX, DI |
| equal: |
| SETEQ (AX) |
| RET |
| |
| TEXT runtime·cmpstring(SB),NOSPLIT,$0-40 |
| MOVQ s1_base+0(FP), SI |
| MOVQ s1_len+8(FP), BX |
| MOVQ s2_base+16(FP), DI |
| MOVQ s2_len+24(FP), DX |
| LEAQ ret+32(FP), R9 |
| JMP runtime·cmpbody(SB) |
| |
| TEXT bytes·Compare(SB),NOSPLIT,$0-56 |
| MOVQ s1+0(FP), SI |
| MOVQ s1+8(FP), BX |
| MOVQ s2+24(FP), DI |
| MOVQ s2+32(FP), DX |
| LEAQ res+48(FP), R9 |
| JMP runtime·cmpbody(SB) |
| |
| // input: |
| // SI = a |
| // DI = b |
| // BX = alen |
| // DX = blen |
| // R9 = address of output word (stores -1/0/1 here) |
| TEXT runtime·cmpbody(SB),NOSPLIT,$0-0 |
| CMPQ SI, DI |
| JEQ allsame |
| CMPQ BX, DX |
| MOVQ DX, R8 |
| CMOVQLT BX, R8 // R8 = min(alen, blen) = # of bytes to compare |
| CMPQ R8, $8 |
| JB small |
| |
| CMPQ R8, $63 |
| JBE loop |
| CMPB runtime·support_avx2(SB), $1 |
| JEQ big_loop_avx2 |
| JMP big_loop |
| loop: |
| CMPQ R8, $16 |
| JBE _0through16 |
| MOVOU (SI), X0 |
| MOVOU (DI), X1 |
| PCMPEQB X0, X1 |
| PMOVMSKB X1, AX |
| XORQ $0xffff, AX // convert EQ to NE |
| JNE diff16 // branch if at least one byte is not equal |
| ADDQ $16, SI |
| ADDQ $16, DI |
| SUBQ $16, R8 |
| JMP loop |
| |
| diff64: |
| ADDQ $48, SI |
| ADDQ $48, DI |
| JMP diff16 |
| diff48: |
| ADDQ $32, SI |
| ADDQ $32, DI |
| JMP diff16 |
| diff32: |
| ADDQ $16, SI |
| ADDQ $16, DI |
| // AX = bit mask of differences |
| diff16: |
| BSFQ AX, BX // index of first byte that differs |
| XORQ AX, AX |
| MOVB (SI)(BX*1), CX |
| CMPB CX, (DI)(BX*1) |
| SETHI AX |
| LEAQ -1(AX*2), AX // convert 1/0 to +1/-1 |
| MOVQ AX, (R9) |
| RET |
| |
| // 0 through 16 bytes left, alen>=8, blen>=8 |
| _0through16: |
| CMPQ R8, $8 |
| JBE _0through8 |
| MOVQ (SI), AX |
| MOVQ (DI), CX |
| CMPQ AX, CX |
| JNE diff8 |
| _0through8: |
| MOVQ -8(SI)(R8*1), AX |
| MOVQ -8(DI)(R8*1), CX |
| CMPQ AX, CX |
| JEQ allsame |
| |
| // AX and CX contain parts of a and b that differ. |
| diff8: |
| BSWAPQ AX // reverse order of bytes |
| BSWAPQ CX |
| XORQ AX, CX |
| BSRQ CX, CX // index of highest bit difference |
| SHRQ CX, AX // move a's bit to bottom |
| ANDQ $1, AX // mask bit |
| LEAQ -1(AX*2), AX // 1/0 => +1/-1 |
| MOVQ AX, (R9) |
| RET |
| |
| // 0-7 bytes in common |
| small: |
| LEAQ (R8*8), CX // bytes left -> bits left |
| NEGQ CX // - bits lift (== 64 - bits left mod 64) |
| JEQ allsame |
| |
| // load bytes of a into high bytes of AX |
| CMPB SI, $0xf8 |
| JA si_high |
| MOVQ (SI), SI |
| JMP si_finish |
| si_high: |
| MOVQ -8(SI)(R8*1), SI |
| SHRQ CX, SI |
| si_finish: |
| SHLQ CX, SI |
| |
| // load bytes of b in to high bytes of BX |
| CMPB DI, $0xf8 |
| JA di_high |
| MOVQ (DI), DI |
| JMP di_finish |
| di_high: |
| MOVQ -8(DI)(R8*1), DI |
| SHRQ CX, DI |
| di_finish: |
| SHLQ CX, DI |
| |
| BSWAPQ SI // reverse order of bytes |
| BSWAPQ DI |
| XORQ SI, DI // find bit differences |
| JEQ allsame |
| BSRQ DI, CX // index of highest bit difference |
| SHRQ CX, SI // move a's bit to bottom |
| ANDQ $1, SI // mask bit |
| LEAQ -1(SI*2), AX // 1/0 => +1/-1 |
| MOVQ AX, (R9) |
| RET |
| |
| allsame: |
| XORQ AX, AX |
| XORQ CX, CX |
| CMPQ BX, DX |
| SETGT AX // 1 if alen > blen |
| SETEQ CX // 1 if alen == blen |
| LEAQ -1(CX)(AX*2), AX // 1,0,-1 result |
| MOVQ AX, (R9) |
| RET |
| |
| // this works for >= 64 bytes of data. |
| big_loop: |
| MOVOU (SI), X0 |
| MOVOU (DI), X1 |
| PCMPEQB X0, X1 |
| PMOVMSKB X1, AX |
| XORQ $0xffff, AX |
| JNE diff16 |
| |
| MOVOU 16(SI), X0 |
| MOVOU 16(DI), X1 |
| PCMPEQB X0, X1 |
| PMOVMSKB X1, AX |
| XORQ $0xffff, AX |
| JNE diff32 |
| |
| MOVOU 32(SI), X0 |
| MOVOU 32(DI), X1 |
| PCMPEQB X0, X1 |
| PMOVMSKB X1, AX |
| XORQ $0xffff, AX |
| JNE diff48 |
| |
| MOVOU 48(SI), X0 |
| MOVOU 48(DI), X1 |
| PCMPEQB X0, X1 |
| PMOVMSKB X1, AX |
| XORQ $0xffff, AX |
| JNE diff64 |
| |
| ADDQ $64, SI |
| ADDQ $64, DI |
| SUBQ $64, R8 |
| CMPQ R8, $64 |
| JBE loop |
| JMP big_loop |
| |
| // Compare 64-bytes per loop iteration. |
| // Loop is unrolled and uses AVX2. |
| big_loop_avx2: |
| VMOVDQU (SI), Y2 |
| VMOVDQU (DI), Y3 |
| VMOVDQU 32(SI), Y4 |
| VMOVDQU 32(DI), Y5 |
| VPCMPEQB Y2, Y3, Y0 |
| VPMOVMSKB Y0, AX |
| XORL $0xffffffff, AX |
| JNE diff32_avx2 |
| VPCMPEQB Y4, Y5, Y6 |
| VPMOVMSKB Y6, AX |
| XORL $0xffffffff, AX |
| JNE diff64_avx2 |
| |
| ADDQ $64, SI |
| ADDQ $64, DI |
| SUBQ $64, R8 |
| CMPQ R8, $64 |
| JB big_loop_avx2_exit |
| JMP big_loop_avx2 |
| |
| // Avoid AVX->SSE transition penalty and search first 32 bytes of 64 byte chunk. |
| diff32_avx2: |
| VZEROUPPER |
| JMP diff16 |
| |
| // Same as diff32_avx2, but for last 32 bytes. |
| diff64_avx2: |
| VZEROUPPER |
| JMP diff48 |
| |
| // For <64 bytes remainder jump to normal loop. |
| big_loop_avx2_exit: |
| VZEROUPPER |
| JMP loop |
| |
| TEXT strings·indexShortStr(SB),NOSPLIT,$0-40 |
| MOVQ s+0(FP), DI |
| // We want len in DX and AX, because PCMPESTRI implicitly consumes them |
| MOVQ s_len+8(FP), DX |
| MOVQ c+16(FP), BP |
| MOVQ c_len+24(FP), AX |
| MOVQ DI, R10 |
| LEAQ ret+32(FP), R11 |
| JMP runtime·indexShortStr(SB) |
| |
| TEXT bytes·indexShortStr(SB),NOSPLIT,$0-56 |
| MOVQ s+0(FP), DI |
| MOVQ s_len+8(FP), DX |
| MOVQ c+24(FP), BP |
| MOVQ c_len+32(FP), AX |
| MOVQ DI, R10 |
| LEAQ ret+48(FP), R11 |
| JMP runtime·indexShortStr(SB) |
| |
| // AX: length of string, that we are searching for |
| // DX: length of string, in which we are searching |
| // DI: pointer to string, in which we are searching |
| // BP: pointer to string, that we are searching for |
| // R11: address, where to put return value |
| TEXT runtime·indexShortStr(SB),NOSPLIT,$0 |
| CMPQ AX, DX |
| JA fail |
| CMPQ DX, $16 |
| JAE sse42 |
| no_sse42: |
| CMPQ AX, $2 |
| JA _3_or_more |
| MOVW (BP), BP |
| LEAQ -1(DI)(DX*1), DX |
| loop2: |
| MOVW (DI), SI |
| CMPW SI,BP |
| JZ success |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop2 |
| JMP fail |
| _3_or_more: |
| CMPQ AX, $3 |
| JA _4_or_more |
| MOVW 1(BP), BX |
| MOVW (BP), BP |
| LEAQ -2(DI)(DX*1), DX |
| loop3: |
| MOVW (DI), SI |
| CMPW SI,BP |
| JZ partial_success3 |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop3 |
| JMP fail |
| partial_success3: |
| MOVW 1(DI), SI |
| CMPW SI,BX |
| JZ success |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop3 |
| JMP fail |
| _4_or_more: |
| CMPQ AX, $4 |
| JA _5_or_more |
| MOVL (BP), BP |
| LEAQ -3(DI)(DX*1), DX |
| loop4: |
| MOVL (DI), SI |
| CMPL SI,BP |
| JZ success |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop4 |
| JMP fail |
| _5_or_more: |
| CMPQ AX, $7 |
| JA _8_or_more |
| LEAQ 1(DI)(DX*1), DX |
| SUBQ AX, DX |
| MOVL -4(BP)(AX*1), BX |
| MOVL (BP), BP |
| loop5to7: |
| MOVL (DI), SI |
| CMPL SI,BP |
| JZ partial_success5to7 |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop5to7 |
| JMP fail |
| partial_success5to7: |
| MOVL -4(AX)(DI*1), SI |
| CMPL SI,BX |
| JZ success |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop5to7 |
| JMP fail |
| _8_or_more: |
| CMPQ AX, $8 |
| JA _9_or_more |
| MOVQ (BP), BP |
| LEAQ -7(DI)(DX*1), DX |
| loop8: |
| MOVQ (DI), SI |
| CMPQ SI,BP |
| JZ success |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop8 |
| JMP fail |
| _9_or_more: |
| CMPQ AX, $15 |
| JA _16_or_more |
| LEAQ 1(DI)(DX*1), DX |
| SUBQ AX, DX |
| MOVQ -8(BP)(AX*1), BX |
| MOVQ (BP), BP |
| loop9to15: |
| MOVQ (DI), SI |
| CMPQ SI,BP |
| JZ partial_success9to15 |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop9to15 |
| JMP fail |
| partial_success9to15: |
| MOVQ -8(AX)(DI*1), SI |
| CMPQ SI,BX |
| JZ success |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop9to15 |
| JMP fail |
| _16_or_more: |
| CMPQ AX, $16 |
| JA _17_or_more |
| MOVOU (BP), X1 |
| LEAQ -15(DI)(DX*1), DX |
| loop16: |
| MOVOU (DI), X2 |
| PCMPEQB X1, X2 |
| PMOVMSKB X2, SI |
| CMPQ SI, $0xffff |
| JE success |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop16 |
| JMP fail |
| _17_or_more: |
| CMPQ AX, $31 |
| JA _32_or_more |
| LEAQ 1(DI)(DX*1), DX |
| SUBQ AX, DX |
| MOVOU -16(BP)(AX*1), X0 |
| MOVOU (BP), X1 |
| loop17to31: |
| MOVOU (DI), X2 |
| PCMPEQB X1,X2 |
| PMOVMSKB X2, SI |
| CMPQ SI, $0xffff |
| JE partial_success17to31 |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop17to31 |
| JMP fail |
| partial_success17to31: |
| MOVOU -16(AX)(DI*1), X3 |
| PCMPEQB X0, X3 |
| PMOVMSKB X3, SI |
| CMPQ SI, $0xffff |
| JE success |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop17to31 |
| JMP fail |
| // We can get here only when AVX2 is enabled and cutoff for indexShortStr is set to 63 |
| // So no need to check cpuid |
| _32_or_more: |
| CMPQ AX, $32 |
| JA _33_to_63 |
| VMOVDQU (BP), Y1 |
| LEAQ -31(DI)(DX*1), DX |
| loop32: |
| VMOVDQU (DI), Y2 |
| VPCMPEQB Y1, Y2, Y3 |
| VPMOVMSKB Y3, SI |
| CMPL SI, $0xffffffff |
| JE success_avx2 |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop32 |
| JMP fail_avx2 |
| _33_to_63: |
| LEAQ 1(DI)(DX*1), DX |
| SUBQ AX, DX |
| VMOVDQU -32(BP)(AX*1), Y0 |
| VMOVDQU (BP), Y1 |
| loop33to63: |
| VMOVDQU (DI), Y2 |
| VPCMPEQB Y1, Y2, Y3 |
| VPMOVMSKB Y3, SI |
| CMPL SI, $0xffffffff |
| JE partial_success33to63 |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop33to63 |
| JMP fail_avx2 |
| partial_success33to63: |
| VMOVDQU -32(AX)(DI*1), Y3 |
| VPCMPEQB Y0, Y3, Y4 |
| VPMOVMSKB Y4, SI |
| CMPL SI, $0xffffffff |
| JE success_avx2 |
| ADDQ $1,DI |
| CMPQ DI,DX |
| JB loop33to63 |
| fail_avx2: |
| VZEROUPPER |
| fail: |
| MOVQ $-1, (R11) |
| RET |
| success_avx2: |
| VZEROUPPER |
| JMP success |
| sse42: |
| CMPB runtime·support_sse42(SB), $1 |
| JNE no_sse42 |
| CMPQ AX, $12 |
| // PCMPESTRI is slower than normal compare, |
| // so using it makes sense only if we advance 4+ bytes per compare |
| // This value was determined experimentally and is the ~same |
| // on Nehalem (first with SSE42) and Haswell. |
| JAE _9_or_more |
| LEAQ 16(BP), SI |
| TESTW $0xff0, SI |
| JEQ no_sse42 |
| MOVOU (BP), X1 |
| LEAQ -15(DI)(DX*1), SI |
| MOVQ $16, R9 |
| SUBQ AX, R9 // We advance by 16-len(sep) each iteration, so precalculate it into R9 |
| loop_sse42: |
| // 0x0c means: unsigned byte compare (bits 0,1 are 00) |
| // for equality (bits 2,3 are 11) |
| // result is not masked or inverted (bits 4,5 are 00) |
| // and corresponds to first matching byte (bit 6 is 0) |
| PCMPESTRI $0x0c, (DI), X1 |
| // CX == 16 means no match, |
| // CX > R9 means partial match at the end of the string, |
| // otherwise sep is at offset CX from X1 start |
| CMPQ CX, R9 |
| JBE sse42_success |
| ADDQ R9, DI |
| CMPQ DI, SI |
| JB loop_sse42 |
| PCMPESTRI $0x0c, -1(SI), X1 |
| CMPQ CX, R9 |
| JA fail |
| LEAQ -1(SI), DI |
| sse42_success: |
| ADDQ CX, DI |
| success: |
| SUBQ R10, DI |
| MOVQ DI, (R11) |
| RET |
| |
| |
| TEXT bytes·IndexByte(SB),NOSPLIT,$0-40 |
| MOVQ s+0(FP), SI |
| MOVQ s_len+8(FP), BX |
| MOVB c+24(FP), AL |
| LEAQ ret+32(FP), R8 |
| JMP runtime·indexbytebody(SB) |
| |
| TEXT strings·IndexByte(SB),NOSPLIT,$0-32 |
| MOVQ s+0(FP), SI |
| MOVQ s_len+8(FP), BX |
| MOVB c+16(FP), AL |
| LEAQ ret+24(FP), R8 |
| JMP runtime·indexbytebody(SB) |
| |
| // input: |
| // SI: data |
| // BX: data len |
| // AL: byte sought |
| // R8: address to put result |
| TEXT runtime·indexbytebody(SB),NOSPLIT,$0 |
| // Shuffle X0 around so that each byte contains |
| // the character we're looking for. |
| MOVD AX, X0 |
| PUNPCKLBW X0, X0 |
| PUNPCKLBW X0, X0 |
| PSHUFL $0, X0, X0 |
| |
| CMPQ BX, $16 |
| JLT small |
| |
| MOVQ SI, DI |
| |
| CMPQ BX, $32 |
| JA avx2 |
| sse: |
| LEAQ -16(SI)(BX*1), AX // AX = address of last 16 bytes |
| JMP sseloopentry |
| |
| sseloop: |
| // Move the next 16-byte chunk of the data into X1. |
| MOVOU (DI), X1 |
| // Compare bytes in X0 to X1. |
| PCMPEQB X0, X1 |
| // Take the top bit of each byte in X1 and put the result in DX. |
| PMOVMSKB X1, DX |
| // Find first set bit, if any. |
| BSFL DX, DX |
| JNZ ssesuccess |
| // Advance to next block. |
| ADDQ $16, DI |
| sseloopentry: |
| CMPQ DI, AX |
| JB sseloop |
| |
| // Search the last 16-byte chunk. This chunk may overlap with the |
| // chunks we've already searched, but that's ok. |
| MOVQ AX, DI |
| MOVOU (AX), X1 |
| PCMPEQB X0, X1 |
| PMOVMSKB X1, DX |
| BSFL DX, DX |
| JNZ ssesuccess |
| |
| failure: |
| MOVQ $-1, (R8) |
| RET |
| |
| // We've found a chunk containing the byte. |
| // The chunk was loaded from DI. |
| // The index of the matching byte in the chunk is DX. |
| // The start of the data is SI. |
| ssesuccess: |
| SUBQ SI, DI // Compute offset of chunk within data. |
| ADDQ DX, DI // Add offset of byte within chunk. |
| MOVQ DI, (R8) |
| RET |
| |
| // handle for lengths < 16 |
| small: |
| TESTQ BX, BX |
| JEQ failure |
| |
| // Check if we'll load across a page boundary. |
| LEAQ 16(SI), AX |
| TESTW $0xff0, AX |
| JEQ endofpage |
| |
| MOVOU (SI), X1 // Load data |
| PCMPEQB X0, X1 // Compare target byte with each byte in data. |
| PMOVMSKB X1, DX // Move result bits to integer register. |
| BSFL DX, DX // Find first set bit. |
| JZ failure // No set bit, failure. |
| CMPL DX, BX |
| JAE failure // Match is past end of data. |
| MOVQ DX, (R8) |
| RET |
| |
| endofpage: |
| MOVOU -16(SI)(BX*1), X1 // Load data into the high end of X1. |
| PCMPEQB X0, X1 // Compare target byte with each byte in data. |
| PMOVMSKB X1, DX // Move result bits to integer register. |
| MOVL BX, CX |
| SHLL CX, DX |
| SHRL $16, DX // Shift desired bits down to bottom of register. |
| BSFL DX, DX // Find first set bit. |
| JZ failure // No set bit, failure. |
| MOVQ DX, (R8) |
| RET |
| |
| avx2: |
| CMPB runtime·support_avx2(SB), $1 |
| JNE sse |
| MOVD AX, X0 |
| LEAQ -32(SI)(BX*1), R11 |
| VPBROADCASTB X0, Y1 |
| avx2_loop: |
| VMOVDQU (DI), Y2 |
| VPCMPEQB Y1, Y2, Y3 |
| VPTEST Y3, Y3 |
| JNZ avx2success |
| ADDQ $32, DI |
| CMPQ DI, R11 |
| JLT avx2_loop |
| MOVQ R11, DI |
| VMOVDQU (DI), Y2 |
| VPCMPEQB Y1, Y2, Y3 |
| VPTEST Y3, Y3 |
| JNZ avx2success |
| VZEROUPPER |
| MOVQ $-1, (R8) |
| RET |
| |
| avx2success: |
| VPMOVMSKB Y3, DX |
| BSFL DX, DX |
| SUBQ SI, DI |
| ADDQ DI, DX |
| MOVQ DX, (R8) |
| VZEROUPPER |
| RET |
| |
| TEXT bytes·Equal(SB),NOSPLIT,$0-49 |
| MOVQ a_len+8(FP), BX |
| MOVQ b_len+32(FP), CX |
| CMPQ BX, CX |
| JNE eqret |
| MOVQ a+0(FP), SI |
| MOVQ b+24(FP), DI |
| LEAQ ret+48(FP), AX |
| JMP runtime·memeqbody(SB) |
| eqret: |
| MOVB $0, ret+48(FP) |
| RET |
| |
| |
| TEXT bytes·countByte(SB),NOSPLIT,$0-40 |
| MOVQ s+0(FP), SI |
| MOVQ s_len+8(FP), BX |
| MOVB c+24(FP), AL |
| LEAQ ret+32(FP), R8 |
| JMP runtime·countByte(SB) |
| |
| TEXT strings·countByte(SB),NOSPLIT,$0-32 |
| MOVQ s+0(FP), SI |
| MOVQ s_len+8(FP), BX |
| MOVB c+16(FP), AL |
| LEAQ ret+24(FP), R8 |
| JMP runtime·countByte(SB) |
| |
| // input: |
| // SI: data |
| // BX: data len |
| // AL: byte sought |
| // R8: address to put result |
| // This requires the POPCNT instruction |
| TEXT runtime·countByte(SB),NOSPLIT,$0 |
| // Shuffle X0 around so that each byte contains |
| // the character we're looking for. |
| MOVD AX, X0 |
| PUNPCKLBW X0, X0 |
| PUNPCKLBW X0, X0 |
| PSHUFL $0, X0, X0 |
| |
| CMPQ BX, $16 |
| JLT small |
| |
| MOVQ $0, R12 // Accumulator |
| |
| MOVQ SI, DI |
| |
| CMPQ BX, $32 |
| JA avx2 |
| sse: |
| LEAQ -16(SI)(BX*1), AX // AX = address of last 16 bytes |
| JMP sseloopentry |
| |
| sseloop: |
| // Move the next 16-byte chunk of the data into X1. |
| MOVOU (DI), X1 |
| // Compare bytes in X0 to X1. |
| PCMPEQB X0, X1 |
| // Take the top bit of each byte in X1 and put the result in DX. |
| PMOVMSKB X1, DX |
| // Count number of matching bytes |
| POPCNTL DX, DX |
| // Accumulate into R12 |
| ADDQ DX, R12 |
| // Advance to next block. |
| ADDQ $16, DI |
| sseloopentry: |
| CMPQ DI, AX |
| JBE sseloop |
| |
| // Get the number of bytes to consider in the last 16 bytes |
| ANDQ $15, BX |
| JZ end |
| |
| // Create mask to ignore overlap between previous 16 byte block |
| // and the next. |
| MOVQ $16,CX |
| SUBQ BX, CX |
| MOVQ $0xFFFF, R10 |
| SARQ CL, R10 |
| SALQ CL, R10 |
| |
| // Process the last 16-byte chunk. This chunk may overlap with the |
| // chunks we've already searched so we need to mask part of it. |
| MOVOU (AX), X1 |
| PCMPEQB X0, X1 |
| PMOVMSKB X1, DX |
| // Apply mask |
| ANDQ R10, DX |
| POPCNTL DX, DX |
| ADDQ DX, R12 |
| end: |
| MOVQ R12, (R8) |
| RET |
| |
| // handle for lengths < 16 |
| small: |
| TESTQ BX, BX |
| JEQ endzero |
| |
| // Check if we'll load across a page boundary. |
| LEAQ 16(SI), AX |
| TESTW $0xff0, AX |
| JEQ endofpage |
| |
| // We must ignore high bytes as they aren't part of our slice. |
| // Create mask. |
| MOVB BX, CX |
| MOVQ $1, R10 |
| SALQ CL, R10 |
| SUBQ $1, R10 |
| |
| // Load data |
| MOVOU (SI), X1 |
| // Compare target byte with each byte in data. |
| PCMPEQB X0, X1 |
| // Move result bits to integer register. |
| PMOVMSKB X1, DX |
| // Apply mask |
| ANDQ R10, DX |
| POPCNTL DX, DX |
| // Directly return DX, we don't need to accumulate |
| // since we have <16 bytes. |
| MOVQ DX, (R8) |
| RET |
| endzero: |
| MOVQ $0, (R8) |
| RET |
| |
| endofpage: |
| // We must ignore low bytes as they aren't part of our slice. |
| MOVQ $16,CX |
| SUBQ BX, CX |
| MOVQ $0xFFFF, R10 |
| SARQ CL, R10 |
| SALQ CL, R10 |
| |
| // Load data into the high end of X1. |
| MOVOU -16(SI)(BX*1), X1 |
| // Compare target byte with each byte in data. |
| PCMPEQB X0, X1 |
| // Move result bits to integer register. |
| PMOVMSKB X1, DX |
| // Apply mask |
| ANDQ R10, DX |
| // Directly return DX, we don't need to accumulate |
| // since we have <16 bytes. |
| POPCNTL DX, DX |
| MOVQ DX, (R8) |
| RET |
| |
| avx2: |
| CMPB runtime·support_avx2(SB), $1 |
| JNE sse |
| MOVD AX, X0 |
| LEAQ -32(SI)(BX*1), R11 |
| VPBROADCASTB X0, Y1 |
| avx2_loop: |
| VMOVDQU (DI), Y2 |
| VPCMPEQB Y1, Y2, Y3 |
| VPMOVMSKB Y3, DX |
| POPCNTL DX, DX |
| ADDQ DX, R12 |
| ADDQ $32, DI |
| CMPQ DI, R11 |
| JLE avx2_loop |
| |
| // If last block is already processed, |
| // skip to the end. |
| CMPQ DI, R11 |
| JEQ endavx |
| |
| // Load address of the last 32 bytes. |
| // There is an overlap with the previous block. |
| MOVQ R11, DI |
| VMOVDQU (DI), Y2 |
| VPCMPEQB Y1, Y2, Y3 |
| VPMOVMSKB Y3, DX |
| // Exit AVX mode. |
| VZEROUPPER |
| |
| // Create mask to ignore overlap between previous 32 byte block |
| // and the next. |
| ANDQ $31, BX |
| MOVQ $32,CX |
| SUBQ BX, CX |
| MOVQ $0xFFFFFFFF, R10 |
| SARQ CL, R10 |
| SALQ CL, R10 |
| // Apply mask |
| ANDQ R10, DX |
| POPCNTL DX, DX |
| ADDQ DX, R12 |
| MOVQ R12, (R8) |
| RET |
| endavx: |
| // Exit AVX mode. |
| VZEROUPPER |
| MOVQ R12, (R8) |
| RET |
| |
| TEXT runtime·return0(SB), NOSPLIT, $0 |
| MOVL $0, AX |
| RET |
| |
| |
| // Called from cgo wrappers, this function returns g->m->curg.stack.hi. |
| // Must obey the gcc calling convention. |
| TEXT _cgo_topofstack(SB),NOSPLIT,$0 |
| get_tls(CX) |
| MOVQ g(CX), AX |
| MOVQ g_m(AX), AX |
| MOVQ m_curg(AX), AX |
| MOVQ (g_stack+stack_hi)(AX), AX |
| RET |
| |
| // The top-most function running on a goroutine |
| // returns to goexit+PCQuantum. |
| TEXT runtime·goexit(SB),NOSPLIT,$0-0 |
| BYTE $0x90 // NOP |
| CALL runtime·goexit1(SB) // does not return |
| // traceback from goexit1 must hit code range of goexit |
| BYTE $0x90 // NOP |
| |
| // This is called from .init_array and follows the platform, not Go, ABI. |
| TEXT runtime·addmoduledata(SB),NOSPLIT,$0-0 |
| PUSHQ R15 // The access to global variables below implicitly uses R15, which is callee-save |
| MOVQ runtime·lastmoduledatap(SB), AX |
| MOVQ DI, moduledata_next(AX) |
| MOVQ DI, runtime·lastmoduledatap(SB) |
| POPQ R15 |
| RET |
| |
| // gcWriteBarrier performs a heap pointer write and informs the GC. |
| // |
| // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: |
| // - DI is the destination of the write |
| // - AX is the value being written at DI |
| // It clobbers FLAGS. It does not clobber any general-purpose registers, |
| // but may clobber others (e.g., SSE registers). |
| TEXT runtime·gcWriteBarrier(SB),NOSPLIT,$120 |
| // Save the registers clobbered by the fast path. This is slightly |
| // faster than having the caller spill these. |
| MOVQ R14, 104(SP) |
| MOVQ R13, 112(SP) |
| // TODO: Consider passing g.m.p in as an argument so they can be shared |
| // across a sequence of write barriers. |
| get_tls(R13) |
| MOVQ g(R13), R13 |
| MOVQ g_m(R13), R13 |
| MOVQ m_p(R13), R13 |
| MOVQ (p_wbBuf+wbBuf_next)(R13), R14 |
| // Increment wbBuf.next position. |
| LEAQ 16(R14), R14 |
| MOVQ R14, (p_wbBuf+wbBuf_next)(R13) |
| CMPQ R14, (p_wbBuf+wbBuf_end)(R13) |
| // Record the write. |
| MOVQ AX, -16(R14) // Record value |
| MOVQ (DI), R13 // TODO: This turns bad writes into bad reads. |
| MOVQ R13, -8(R14) // Record *slot |
| // Is the buffer full? (flags set in CMPQ above) |
| JEQ flush |
| ret: |
| MOVQ 104(SP), R14 |
| MOVQ 112(SP), R13 |
| // Do the write. |
| MOVQ AX, (DI) |
| RET |
| |
| flush: |
| // Save all general purpose registers since these could be |
| // clobbered by wbBufFlush and were not saved by the caller. |
| // It is possible for wbBufFlush to clobber other registers |
| // (e.g., SSE registers), but the compiler takes care of saving |
| // those in the caller if necessary. This strikes a balance |
| // with registers that are likely to be used. |
| // |
| // We don't have type information for these, but all code under |
| // here is NOSPLIT, so nothing will observe these. |
| // |
| // TODO: We could strike a different balance; e.g., saving X0 |
| // and not saving GP registers that are less likely to be used. |
| MOVQ DI, 0(SP) // Also first argument to wbBufFlush |
| MOVQ AX, 8(SP) // Also second argument to wbBufFlush |
| MOVQ BX, 16(SP) |
| MOVQ CX, 24(SP) |
| MOVQ DX, 32(SP) |
| // DI already saved |
| MOVQ SI, 40(SP) |
| MOVQ BP, 48(SP) |
| MOVQ R8, 56(SP) |
| MOVQ R9, 64(SP) |
| MOVQ R10, 72(SP) |
| MOVQ R11, 80(SP) |
| MOVQ R12, 88(SP) |
| // R13 already saved |
| // R14 already saved |
| MOVQ R15, 96(SP) |
| |
| // This takes arguments DI and AX |
| CALL runtime·wbBufFlush(SB) |
| |
| MOVQ 0(SP), DI |
| MOVQ 8(SP), AX |
| MOVQ 16(SP), BX |
| MOVQ 24(SP), CX |
| MOVQ 32(SP), DX |
| MOVQ 40(SP), SI |
| MOVQ 48(SP), BP |
| MOVQ 56(SP), R8 |
| MOVQ 64(SP), R9 |
| MOVQ 72(SP), R10 |
| MOVQ 80(SP), R11 |
| MOVQ 88(SP), R12 |
| MOVQ 96(SP), R15 |
| JMP ret |