blob: 1bfdd02a67932ef5add850cacba0b1a9e5fe5929 [file] [log] [blame]
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package buildinfo provides access to information embedded in a Go binary
// about how it was built. This includes the Go toolchain version, and the
// set of modules used (for binaries built in module mode).
//
// Build information is available for the currently running binary in
// runtime/debug.ReadBuildInfo.
package buildinfo
import (
"bytes"
"debug/elf"
"debug/macho"
"debug/pe"
"debug/plan9obj"
"encoding/binary"
"errors"
"fmt"
"internal/saferio"
"internal/xcoff"
"io"
"io/fs"
"os"
"runtime/debug"
)
// Type alias for build info. We cannot move the types here, since
// runtime/debug would need to import this package, which would make it
// a much larger dependency.
type BuildInfo = debug.BuildInfo
var (
// errUnrecognizedFormat is returned when a given executable file doesn't
// appear to be in a known format, or it breaks the rules of that format,
// or when there are I/O errors reading the file.
errUnrecognizedFormat = errors.New("unrecognized file format")
// errNotGoExe is returned when a given executable file is valid but does
// not contain Go build information.
errNotGoExe = errors.New("not a Go executable")
// The build info blob left by the linker is identified by
// a 16-byte header, consisting of buildInfoMagic (14 bytes),
// the binary's pointer size (1 byte),
// and whether the binary is big endian (1 byte).
buildInfoMagic = []byte("\xff Go buildinf:")
)
// ReadFile returns build information embedded in a Go binary
// file at the given path. Most information is only available for binaries built
// with module support.
func ReadFile(name string) (info *BuildInfo, err error) {
defer func() {
if pathErr := (*fs.PathError)(nil); errors.As(err, &pathErr) {
err = fmt.Errorf("could not read Go build info: %w", err)
} else if err != nil {
err = fmt.Errorf("could not read Go build info from %s: %w", name, err)
}
}()
f, err := os.Open(name)
if err != nil {
return nil, err
}
defer f.Close()
return Read(f)
}
// Read returns build information embedded in a Go binary file
// accessed through the given ReaderAt. Most information is only available for
// binaries built with module support.
func Read(r io.ReaderAt) (*BuildInfo, error) {
vers, mod, err := readRawBuildInfo(r)
if err != nil {
return nil, err
}
bi, err := debug.ParseBuildInfo(mod)
if err != nil {
return nil, err
}
bi.GoVersion = vers
return bi, nil
}
type exe interface {
// ReadData reads and returns up to size bytes starting at virtual address addr.
ReadData(addr, size uint64) ([]byte, error)
// DataStart returns the virtual address and size of the segment or section that
// should contain build information. This is either a specially named section
// or the first writable non-zero data segment.
DataStart() (uint64, uint64)
}
// readRawBuildInfo extracts the Go toolchain version and module information
// strings from a Go binary. On success, vers should be non-empty. mod
// is empty if the binary was not built with modules enabled.
func readRawBuildInfo(r io.ReaderAt) (vers, mod string, err error) {
// Read the first bytes of the file to identify the format, then delegate to
// a format-specific function to load segment and section headers.
ident := make([]byte, 16)
if n, err := r.ReadAt(ident, 0); n < len(ident) || err != nil {
return "", "", errUnrecognizedFormat
}
var x exe
switch {
case bytes.HasPrefix(ident, []byte("\x7FELF")):
f, err := elf.NewFile(r)
if err != nil {
return "", "", errUnrecognizedFormat
}
x = &elfExe{f}
case bytes.HasPrefix(ident, []byte("MZ")):
f, err := pe.NewFile(r)
if err != nil {
return "", "", errUnrecognizedFormat
}
x = &peExe{f}
case bytes.HasPrefix(ident, []byte("\xFE\xED\xFA")) || bytes.HasPrefix(ident[1:], []byte("\xFA\xED\xFE")):
f, err := macho.NewFile(r)
if err != nil {
return "", "", errUnrecognizedFormat
}
x = &machoExe{f}
case bytes.HasPrefix(ident, []byte("\xCA\xFE\xBA\xBE")) || bytes.HasPrefix(ident, []byte("\xCA\xFE\xBA\xBF")):
f, err := macho.NewFatFile(r)
if err != nil || len(f.Arches) == 0 {
return "", "", errUnrecognizedFormat
}
x = &machoExe{f.Arches[0].File}
case bytes.HasPrefix(ident, []byte{0x01, 0xDF}) || bytes.HasPrefix(ident, []byte{0x01, 0xF7}):
f, err := xcoff.NewFile(r)
if err != nil {
return "", "", errUnrecognizedFormat
}
x = &xcoffExe{f}
case hasPlan9Magic(ident):
f, err := plan9obj.NewFile(r)
if err != nil {
return "", "", errUnrecognizedFormat
}
x = &plan9objExe{f}
default:
return "", "", errUnrecognizedFormat
}
// Read segment or section to find the build info blob.
// On some platforms, the blob will be in its own section, and DataStart
// returns the address of that section. On others, it's somewhere in the
// data segment; the linker puts it near the beginning.
// See cmd/link/internal/ld.Link.buildinfo.
dataAddr, dataSize := x.DataStart()
if dataSize == 0 {
return "", "", errNotGoExe
}
data, err := x.ReadData(dataAddr, dataSize)
if err != nil {
return "", "", err
}
const (
buildInfoAlign = 16
buildInfoSize = 32
)
for {
i := bytes.Index(data, buildInfoMagic)
if i < 0 || len(data)-i < buildInfoSize {
return "", "", errNotGoExe
}
if i%buildInfoAlign == 0 && len(data)-i >= buildInfoSize {
data = data[i:]
break
}
data = data[(i+buildInfoAlign-1)&^(buildInfoAlign-1):]
}
// Decode the blob.
// The first 14 bytes are buildInfoMagic.
// The next two bytes indicate pointer size in bytes (4 or 8) and endianness
// (0 for little, 1 for big).
// Two virtual addresses to Go strings follow that: runtime.buildVersion,
// and runtime.modinfo.
// On 32-bit platforms, the last 8 bytes are unused.
// If the endianness has the 2 bit set, then the pointers are zero
// and the 32-byte header is followed by varint-prefixed string data
// for the two string values we care about.
ptrSize := int(data[14])
if data[15]&2 != 0 {
vers, data = decodeString(data[32:])
mod, data = decodeString(data)
} else {
bigEndian := data[15] != 0
var bo binary.ByteOrder
if bigEndian {
bo = binary.BigEndian
} else {
bo = binary.LittleEndian
}
var readPtr func([]byte) uint64
if ptrSize == 4 {
readPtr = func(b []byte) uint64 { return uint64(bo.Uint32(b)) }
} else if ptrSize == 8 {
readPtr = bo.Uint64
} else {
return "", "", errNotGoExe
}
vers = readString(x, ptrSize, readPtr, readPtr(data[16:]))
mod = readString(x, ptrSize, readPtr, readPtr(data[16+ptrSize:]))
}
if vers == "" {
return "", "", errNotGoExe
}
if len(mod) >= 33 && mod[len(mod)-17] == '\n' {
// Strip module framing: sentinel strings delimiting the module info.
// These are cmd/go/internal/modload.infoStart and infoEnd.
mod = mod[16 : len(mod)-16]
} else {
mod = ""
}
return vers, mod, nil
}
func hasPlan9Magic(magic []byte) bool {
if len(magic) >= 4 {
m := binary.BigEndian.Uint32(magic)
switch m {
case plan9obj.Magic386, plan9obj.MagicAMD64, plan9obj.MagicARM:
return true
}
}
return false
}
func decodeString(data []byte) (s string, rest []byte) {
u, n := binary.Uvarint(data)
if n <= 0 || u > uint64(len(data)-n) {
return "", nil
}
return string(data[n : uint64(n)+u]), data[uint64(n)+u:]
}
// readString returns the string at address addr in the executable x.
func readString(x exe, ptrSize int, readPtr func([]byte) uint64, addr uint64) string {
hdr, err := x.ReadData(addr, uint64(2*ptrSize))
if err != nil || len(hdr) < 2*ptrSize {
return ""
}
dataAddr := readPtr(hdr)
dataLen := readPtr(hdr[ptrSize:])
data, err := x.ReadData(dataAddr, dataLen)
if err != nil || uint64(len(data)) < dataLen {
return ""
}
return string(data)
}
// elfExe is the ELF implementation of the exe interface.
type elfExe struct {
f *elf.File
}
func (x *elfExe) ReadData(addr, size uint64) ([]byte, error) {
for _, prog := range x.f.Progs {
if prog.Vaddr <= addr && addr <= prog.Vaddr+prog.Filesz-1 {
n := prog.Vaddr + prog.Filesz - addr
if n > size {
n = size
}
return saferio.ReadDataAt(prog, n, int64(addr-prog.Vaddr))
}
}
return nil, errUnrecognizedFormat
}
func (x *elfExe) DataStart() (uint64, uint64) {
for _, s := range x.f.Sections {
if s.Name == ".go.buildinfo" {
return s.Addr, s.Size
}
}
for _, p := range x.f.Progs {
if p.Type == elf.PT_LOAD && p.Flags&(elf.PF_X|elf.PF_W) == elf.PF_W {
return p.Vaddr, p.Memsz
}
}
return 0, 0
}
// peExe is the PE (Windows Portable Executable) implementation of the exe interface.
type peExe struct {
f *pe.File
}
func (x *peExe) imageBase() uint64 {
switch oh := x.f.OptionalHeader.(type) {
case *pe.OptionalHeader32:
return uint64(oh.ImageBase)
case *pe.OptionalHeader64:
return oh.ImageBase
}
return 0
}
func (x *peExe) ReadData(addr, size uint64) ([]byte, error) {
addr -= x.imageBase()
for _, sect := range x.f.Sections {
if uint64(sect.VirtualAddress) <= addr && addr <= uint64(sect.VirtualAddress+sect.Size-1) {
n := uint64(sect.VirtualAddress+sect.Size) - addr
if n > size {
n = size
}
return saferio.ReadDataAt(sect, n, int64(addr-uint64(sect.VirtualAddress)))
}
}
return nil, errUnrecognizedFormat
}
func (x *peExe) DataStart() (uint64, uint64) {
// Assume data is first writable section.
const (
IMAGE_SCN_CNT_CODE = 0x00000020
IMAGE_SCN_CNT_INITIALIZED_DATA = 0x00000040
IMAGE_SCN_CNT_UNINITIALIZED_DATA = 0x00000080
IMAGE_SCN_MEM_EXECUTE = 0x20000000
IMAGE_SCN_MEM_READ = 0x40000000
IMAGE_SCN_MEM_WRITE = 0x80000000
IMAGE_SCN_MEM_DISCARDABLE = 0x2000000
IMAGE_SCN_LNK_NRELOC_OVFL = 0x1000000
IMAGE_SCN_ALIGN_32BYTES = 0x600000
)
for _, sect := range x.f.Sections {
if sect.VirtualAddress != 0 && sect.Size != 0 &&
sect.Characteristics&^IMAGE_SCN_ALIGN_32BYTES == IMAGE_SCN_CNT_INITIALIZED_DATA|IMAGE_SCN_MEM_READ|IMAGE_SCN_MEM_WRITE {
return uint64(sect.VirtualAddress) + x.imageBase(), uint64(sect.VirtualSize)
}
}
return 0, 0
}
// machoExe is the Mach-O (Apple macOS/iOS) implementation of the exe interface.
type machoExe struct {
f *macho.File
}
func (x *machoExe) ReadData(addr, size uint64) ([]byte, error) {
for _, load := range x.f.Loads {
seg, ok := load.(*macho.Segment)
if !ok {
continue
}
if seg.Addr <= addr && addr <= seg.Addr+seg.Filesz-1 {
if seg.Name == "__PAGEZERO" {
continue
}
n := seg.Addr + seg.Filesz - addr
if n > size {
n = size
}
return saferio.ReadDataAt(seg, n, int64(addr-seg.Addr))
}
}
return nil, errUnrecognizedFormat
}
func (x *machoExe) DataStart() (uint64, uint64) {
// Look for section named "__go_buildinfo".
for _, sec := range x.f.Sections {
if sec.Name == "__go_buildinfo" {
return sec.Addr, sec.Size
}
}
// Try the first non-empty writable segment.
const RW = 3
for _, load := range x.f.Loads {
seg, ok := load.(*macho.Segment)
if ok && seg.Addr != 0 && seg.Filesz != 0 && seg.Prot == RW && seg.Maxprot == RW {
return seg.Addr, seg.Memsz
}
}
return 0, 0
}
// xcoffExe is the XCOFF (AIX eXtended COFF) implementation of the exe interface.
type xcoffExe struct {
f *xcoff.File
}
func (x *xcoffExe) ReadData(addr, size uint64) ([]byte, error) {
for _, sect := range x.f.Sections {
if sect.VirtualAddress <= addr && addr <= sect.VirtualAddress+sect.Size-1 {
n := sect.VirtualAddress + sect.Size - addr
if n > size {
n = size
}
return saferio.ReadDataAt(sect, n, int64(addr-sect.VirtualAddress))
}
}
return nil, errors.New("address not mapped")
}
func (x *xcoffExe) DataStart() (uint64, uint64) {
if s := x.f.SectionByType(xcoff.STYP_DATA); s != nil {
return s.VirtualAddress, s.Size
}
return 0, 0
}
// plan9objExe is the Plan 9 a.out implementation of the exe interface.
type plan9objExe struct {
f *plan9obj.File
}
func (x *plan9objExe) DataStart() (uint64, uint64) {
if s := x.f.Section("data"); s != nil {
return uint64(s.Offset), uint64(s.Size)
}
return 0, 0
}
func (x *plan9objExe) ReadData(addr, size uint64) ([]byte, error) {
for _, sect := range x.f.Sections {
if uint64(sect.Offset) <= addr && addr <= uint64(sect.Offset+sect.Size-1) {
n := uint64(sect.Offset+sect.Size) - addr
if n > size {
n = size
}
return saferio.ReadDataAt(sect, n, int64(addr-uint64(sect.Offset)))
}
}
return nil, errors.New("address not mapped")
}