| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package flate |
| |
| import ( |
| "io" |
| ) |
| |
| const ( |
| // The largest offset code. |
| offsetCodeCount = 30 |
| |
| // The special code used to mark the end of a block. |
| endBlockMarker = 256 |
| |
| // The first length code. |
| lengthCodesStart = 257 |
| |
| // The number of codegen codes. |
| codegenCodeCount = 19 |
| badCode = 255 |
| |
| // bufferFlushSize indicates the buffer size |
| // after which bytes are flushed to the writer. |
| // Should preferably be a multiple of 6, since |
| // we accumulate 6 bytes between writes to the buffer. |
| bufferFlushSize = 240 |
| |
| // bufferSize is the actual output byte buffer size. |
| // It must have additional headroom for a flush |
| // which can contain up to 8 bytes. |
| bufferSize = bufferFlushSize + 8 |
| ) |
| |
| // The number of extra bits needed by length code X - LENGTH_CODES_START. |
| var lengthExtraBits = []int8{ |
| /* 257 */ 0, 0, 0, |
| /* 260 */ 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, |
| /* 270 */ 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, |
| /* 280 */ 4, 5, 5, 5, 5, 0, |
| } |
| |
| // The length indicated by length code X - LENGTH_CODES_START. |
| var lengthBase = []uint32{ |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, |
| 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, |
| 64, 80, 96, 112, 128, 160, 192, 224, 255, |
| } |
| |
| // offset code word extra bits. |
| var offsetExtraBits = []int8{ |
| 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, |
| 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, |
| 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, |
| } |
| |
| var offsetBase = []uint32{ |
| 0x000000, 0x000001, 0x000002, 0x000003, 0x000004, |
| 0x000006, 0x000008, 0x00000c, 0x000010, 0x000018, |
| 0x000020, 0x000030, 0x000040, 0x000060, 0x000080, |
| 0x0000c0, 0x000100, 0x000180, 0x000200, 0x000300, |
| 0x000400, 0x000600, 0x000800, 0x000c00, 0x001000, |
| 0x001800, 0x002000, 0x003000, 0x004000, 0x006000, |
| } |
| |
| // The odd order in which the codegen code sizes are written. |
| var codegenOrder = []uint32{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15} |
| |
| type huffmanBitWriter struct { |
| // writer is the underlying writer. |
| // Do not use it directly; use the write method, which ensures |
| // that Write errors are sticky. |
| writer io.Writer |
| |
| // Data waiting to be written is bytes[0:nbytes] |
| // and then the low nbits of bits. |
| bits uint64 |
| nbits uint |
| bytes [bufferSize]byte |
| codegenFreq [codegenCodeCount]int32 |
| nbytes int |
| literalFreq []int32 |
| offsetFreq []int32 |
| codegen []uint8 |
| literalEncoding *huffmanEncoder |
| offsetEncoding *huffmanEncoder |
| codegenEncoding *huffmanEncoder |
| err error |
| } |
| |
| func newHuffmanBitWriter(w io.Writer) *huffmanBitWriter { |
| return &huffmanBitWriter{ |
| writer: w, |
| literalFreq: make([]int32, maxNumLit), |
| offsetFreq: make([]int32, offsetCodeCount), |
| codegen: make([]uint8, maxNumLit+offsetCodeCount+1), |
| literalEncoding: newHuffmanEncoder(maxNumLit), |
| codegenEncoding: newHuffmanEncoder(codegenCodeCount), |
| offsetEncoding: newHuffmanEncoder(offsetCodeCount), |
| } |
| } |
| |
| func (w *huffmanBitWriter) reset(writer io.Writer) { |
| w.writer = writer |
| w.bits, w.nbits, w.nbytes, w.err = 0, 0, 0, nil |
| w.bytes = [bufferSize]byte{} |
| } |
| |
| func (w *huffmanBitWriter) flush() { |
| if w.err != nil { |
| w.nbits = 0 |
| return |
| } |
| n := w.nbytes |
| for w.nbits != 0 { |
| w.bytes[n] = byte(w.bits) |
| w.bits >>= 8 |
| if w.nbits > 8 { // Avoid underflow |
| w.nbits -= 8 |
| } else { |
| w.nbits = 0 |
| } |
| n++ |
| } |
| w.bits = 0 |
| w.write(w.bytes[:n]) |
| w.nbytes = 0 |
| } |
| |
| func (w *huffmanBitWriter) write(b []byte) { |
| if w.err != nil { |
| return |
| } |
| _, w.err = w.writer.Write(b) |
| } |
| |
| func (w *huffmanBitWriter) writeBits(b int32, nb uint) { |
| if w.err != nil { |
| return |
| } |
| w.bits |= uint64(b) << w.nbits |
| w.nbits += nb |
| if w.nbits >= 48 { |
| bits := w.bits |
| w.bits >>= 48 |
| w.nbits -= 48 |
| n := w.nbytes |
| bytes := w.bytes[n : n+6] |
| bytes[0] = byte(bits) |
| bytes[1] = byte(bits >> 8) |
| bytes[2] = byte(bits >> 16) |
| bytes[3] = byte(bits >> 24) |
| bytes[4] = byte(bits >> 32) |
| bytes[5] = byte(bits >> 40) |
| n += 6 |
| if n >= bufferFlushSize { |
| w.write(w.bytes[:n]) |
| n = 0 |
| } |
| w.nbytes = n |
| } |
| } |
| |
| func (w *huffmanBitWriter) writeBytes(bytes []byte) { |
| if w.err != nil { |
| return |
| } |
| n := w.nbytes |
| if w.nbits&7 != 0 { |
| w.err = InternalError("writeBytes with unfinished bits") |
| return |
| } |
| for w.nbits != 0 { |
| w.bytes[n] = byte(w.bits) |
| w.bits >>= 8 |
| w.nbits -= 8 |
| n++ |
| } |
| if n != 0 { |
| w.write(w.bytes[:n]) |
| } |
| w.nbytes = 0 |
| w.write(bytes) |
| } |
| |
| // RFC 1951 3.2.7 specifies a special run-length encoding for specifying |
| // the literal and offset lengths arrays (which are concatenated into a single |
| // array). This method generates that run-length encoding. |
| // |
| // The result is written into the codegen array, and the frequencies |
| // of each code is written into the codegenFreq array. |
| // Codes 0-15 are single byte codes. Codes 16-18 are followed by additional |
| // information. Code badCode is an end marker |
| // |
| // numLiterals The number of literals in literalEncoding |
| // numOffsets The number of offsets in offsetEncoding |
| // litenc, offenc The literal and offset encoder to use |
| func (w *huffmanBitWriter) generateCodegen(numLiterals int, numOffsets int, litEnc, offEnc *huffmanEncoder) { |
| for i := range w.codegenFreq { |
| w.codegenFreq[i] = 0 |
| } |
| // Note that we are using codegen both as a temporary variable for holding |
| // a copy of the frequencies, and as the place where we put the result. |
| // This is fine because the output is always shorter than the input used |
| // so far. |
| codegen := w.codegen // cache |
| // Copy the concatenated code sizes to codegen. Put a marker at the end. |
| cgnl := codegen[:numLiterals] |
| for i := range cgnl { |
| cgnl[i] = uint8(litEnc.codes[i].len) |
| } |
| |
| cgnl = codegen[numLiterals : numLiterals+numOffsets] |
| for i := range cgnl { |
| cgnl[i] = uint8(offEnc.codes[i].len) |
| } |
| codegen[numLiterals+numOffsets] = badCode |
| |
| size := codegen[0] |
| count := 1 |
| outIndex := 0 |
| for inIndex := 1; size != badCode; inIndex++ { |
| // INVARIANT: We have seen "count" copies of size that have not yet |
| // had output generated for them. |
| nextSize := codegen[inIndex] |
| if nextSize == size { |
| count++ |
| continue |
| } |
| // We need to generate codegen indicating "count" of size. |
| if size != 0 { |
| codegen[outIndex] = size |
| outIndex++ |
| w.codegenFreq[size]++ |
| count-- |
| for count >= 3 { |
| n := 6 |
| if n > count { |
| n = count |
| } |
| codegen[outIndex] = 16 |
| outIndex++ |
| codegen[outIndex] = uint8(n - 3) |
| outIndex++ |
| w.codegenFreq[16]++ |
| count -= n |
| } |
| } else { |
| for count >= 11 { |
| n := 138 |
| if n > count { |
| n = count |
| } |
| codegen[outIndex] = 18 |
| outIndex++ |
| codegen[outIndex] = uint8(n - 11) |
| outIndex++ |
| w.codegenFreq[18]++ |
| count -= n |
| } |
| if count >= 3 { |
| // count >= 3 && count <= 10 |
| codegen[outIndex] = 17 |
| outIndex++ |
| codegen[outIndex] = uint8(count - 3) |
| outIndex++ |
| w.codegenFreq[17]++ |
| count = 0 |
| } |
| } |
| count-- |
| for ; count >= 0; count-- { |
| codegen[outIndex] = size |
| outIndex++ |
| w.codegenFreq[size]++ |
| } |
| // Set up invariant for next time through the loop. |
| size = nextSize |
| count = 1 |
| } |
| // Marker indicating the end of the codegen. |
| codegen[outIndex] = badCode |
| } |
| |
| // dynamicSize returns the size of dynamically encoded data in bits. |
| func (w *huffmanBitWriter) dynamicSize(litEnc, offEnc *huffmanEncoder, extraBits int) (size, numCodegens int) { |
| numCodegens = len(w.codegenFreq) |
| for numCodegens > 4 && w.codegenFreq[codegenOrder[numCodegens-1]] == 0 { |
| numCodegens-- |
| } |
| header := 3 + 5 + 5 + 4 + (3 * numCodegens) + |
| w.codegenEncoding.bitLength(w.codegenFreq[:]) + |
| int(w.codegenFreq[16])*2 + |
| int(w.codegenFreq[17])*3 + |
| int(w.codegenFreq[18])*7 |
| size = header + |
| litEnc.bitLength(w.literalFreq) + |
| offEnc.bitLength(w.offsetFreq) + |
| extraBits |
| |
| return size, numCodegens |
| } |
| |
| // fixedSize returns the size of dynamically encoded data in bits. |
| func (w *huffmanBitWriter) fixedSize(extraBits int) int { |
| return 3 + |
| fixedLiteralEncoding.bitLength(w.literalFreq) + |
| fixedOffsetEncoding.bitLength(w.offsetFreq) + |
| extraBits |
| } |
| |
| // storedSize calculates the stored size, including header. |
| // The function returns the size in bits and whether the block |
| // fits inside a single block. |
| func (w *huffmanBitWriter) storedSize(in []byte) (int, bool) { |
| if in == nil { |
| return 0, false |
| } |
| if len(in) <= maxStoreBlockSize { |
| return (len(in) + 5) * 8, true |
| } |
| return 0, false |
| } |
| |
| func (w *huffmanBitWriter) writeCode(c hcode) { |
| if w.err != nil { |
| return |
| } |
| w.bits |= uint64(c.code) << w.nbits |
| w.nbits += uint(c.len) |
| if w.nbits >= 48 { |
| bits := w.bits |
| w.bits >>= 48 |
| w.nbits -= 48 |
| n := w.nbytes |
| bytes := w.bytes[n : n+6] |
| bytes[0] = byte(bits) |
| bytes[1] = byte(bits >> 8) |
| bytes[2] = byte(bits >> 16) |
| bytes[3] = byte(bits >> 24) |
| bytes[4] = byte(bits >> 32) |
| bytes[5] = byte(bits >> 40) |
| n += 6 |
| if n >= bufferFlushSize { |
| w.write(w.bytes[:n]) |
| n = 0 |
| } |
| w.nbytes = n |
| } |
| } |
| |
| // Write the header of a dynamic Huffman block to the output stream. |
| // |
| // numLiterals The number of literals specified in codegen |
| // numOffsets The number of offsets specified in codegen |
| // numCodegens The number of codegens used in codegen |
| func (w *huffmanBitWriter) writeDynamicHeader(numLiterals int, numOffsets int, numCodegens int, isEof bool) { |
| if w.err != nil { |
| return |
| } |
| var firstBits int32 = 4 |
| if isEof { |
| firstBits = 5 |
| } |
| w.writeBits(firstBits, 3) |
| w.writeBits(int32(numLiterals-257), 5) |
| w.writeBits(int32(numOffsets-1), 5) |
| w.writeBits(int32(numCodegens-4), 4) |
| |
| for i := 0; i < numCodegens; i++ { |
| value := uint(w.codegenEncoding.codes[codegenOrder[i]].len) |
| w.writeBits(int32(value), 3) |
| } |
| |
| i := 0 |
| for { |
| var codeWord int = int(w.codegen[i]) |
| i++ |
| if codeWord == badCode { |
| break |
| } |
| w.writeCode(w.codegenEncoding.codes[uint32(codeWord)]) |
| |
| switch codeWord { |
| case 16: |
| w.writeBits(int32(w.codegen[i]), 2) |
| i++ |
| break |
| case 17: |
| w.writeBits(int32(w.codegen[i]), 3) |
| i++ |
| break |
| case 18: |
| w.writeBits(int32(w.codegen[i]), 7) |
| i++ |
| break |
| } |
| } |
| } |
| |
| func (w *huffmanBitWriter) writeStoredHeader(length int, isEof bool) { |
| if w.err != nil { |
| return |
| } |
| var flag int32 |
| if isEof { |
| flag = 1 |
| } |
| w.writeBits(flag, 3) |
| w.flush() |
| w.writeBits(int32(length), 16) |
| w.writeBits(int32(^uint16(length)), 16) |
| } |
| |
| func (w *huffmanBitWriter) writeFixedHeader(isEof bool) { |
| if w.err != nil { |
| return |
| } |
| // Indicate that we are a fixed Huffman block |
| var value int32 = 2 |
| if isEof { |
| value = 3 |
| } |
| w.writeBits(value, 3) |
| } |
| |
| // writeBlock will write a block of tokens with the smallest encoding. |
| // The original input can be supplied, and if the huffman encoded data |
| // is larger than the original bytes, the data will be written as a |
| // stored block. |
| // If the input is nil, the tokens will always be Huffman encoded. |
| func (w *huffmanBitWriter) writeBlock(tokens []token, eof bool, input []byte) { |
| if w.err != nil { |
| return |
| } |
| |
| tokens = append(tokens, endBlockMarker) |
| numLiterals, numOffsets := w.indexTokens(tokens) |
| |
| var extraBits int |
| storedSize, storable := w.storedSize(input) |
| if storable { |
| // We only bother calculating the costs of the extra bits required by |
| // the length of offset fields (which will be the same for both fixed |
| // and dynamic encoding), if we need to compare those two encodings |
| // against stored encoding. |
| for lengthCode := lengthCodesStart + 8; lengthCode < numLiterals; lengthCode++ { |
| // First eight length codes have extra size = 0. |
| extraBits += int(w.literalFreq[lengthCode]) * int(lengthExtraBits[lengthCode-lengthCodesStart]) |
| } |
| for offsetCode := 4; offsetCode < numOffsets; offsetCode++ { |
| // First four offset codes have extra size = 0. |
| extraBits += int(w.offsetFreq[offsetCode]) * int(offsetExtraBits[offsetCode]) |
| } |
| } |
| |
| // Figure out smallest code. |
| // Fixed Huffman baseline. |
| var literalEncoding = fixedLiteralEncoding |
| var offsetEncoding = fixedOffsetEncoding |
| var size = w.fixedSize(extraBits) |
| |
| // Dynamic Huffman? |
| var numCodegens int |
| |
| // Generate codegen and codegenFrequencies, which indicates how to encode |
| // the literalEncoding and the offsetEncoding. |
| w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding) |
| w.codegenEncoding.generate(w.codegenFreq[:], 7) |
| dynamicSize, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, extraBits) |
| |
| if dynamicSize < size { |
| size = dynamicSize |
| literalEncoding = w.literalEncoding |
| offsetEncoding = w.offsetEncoding |
| } |
| |
| // Stored bytes? |
| if storable && storedSize < size { |
| w.writeStoredHeader(len(input), eof) |
| w.writeBytes(input) |
| return |
| } |
| |
| // Huffman. |
| if literalEncoding == fixedLiteralEncoding { |
| w.writeFixedHeader(eof) |
| } else { |
| w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof) |
| } |
| |
| // Write the tokens. |
| w.writeTokens(tokens, literalEncoding.codes, offsetEncoding.codes) |
| } |
| |
| // writeBlockDynamic encodes a block using a dynamic Huffman table. |
| // This should be used if the symbols used have a disproportionate |
| // histogram distribution. |
| // If input is supplied and the compression savings are below 1/16th of the |
| // input size the block is stored. |
| func (w *huffmanBitWriter) writeBlockDynamic(tokens []token, eof bool, input []byte) { |
| if w.err != nil { |
| return |
| } |
| |
| tokens = append(tokens, endBlockMarker) |
| numLiterals, numOffsets := w.indexTokens(tokens) |
| |
| // Generate codegen and codegenFrequencies, which indicates how to encode |
| // the literalEncoding and the offsetEncoding. |
| w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, w.offsetEncoding) |
| w.codegenEncoding.generate(w.codegenFreq[:], 7) |
| size, numCodegens := w.dynamicSize(w.literalEncoding, w.offsetEncoding, 0) |
| |
| // Store bytes, if we don't get a reasonable improvement. |
| if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) { |
| w.writeStoredHeader(len(input), eof) |
| w.writeBytes(input) |
| return |
| } |
| |
| // Write Huffman table. |
| w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof) |
| |
| // Write the tokens. |
| w.writeTokens(tokens, w.literalEncoding.codes, w.offsetEncoding.codes) |
| } |
| |
| // indexTokens indexes a slice of tokens, and updates |
| // literalFreq and offsetFreq, and generates literalEncoding |
| // and offsetEncoding. |
| // The number of literal and offset tokens is returned. |
| func (w *huffmanBitWriter) indexTokens(tokens []token) (numLiterals, numOffsets int) { |
| for i := range w.literalFreq { |
| w.literalFreq[i] = 0 |
| } |
| for i := range w.offsetFreq { |
| w.offsetFreq[i] = 0 |
| } |
| |
| for _, t := range tokens { |
| if t < matchType { |
| w.literalFreq[t.literal()]++ |
| continue |
| } |
| length := t.length() |
| offset := t.offset() |
| w.literalFreq[lengthCodesStart+lengthCode(length)]++ |
| w.offsetFreq[offsetCode(offset)]++ |
| } |
| |
| // get the number of literals |
| numLiterals = len(w.literalFreq) |
| for w.literalFreq[numLiterals-1] == 0 { |
| numLiterals-- |
| } |
| // get the number of offsets |
| numOffsets = len(w.offsetFreq) |
| for numOffsets > 0 && w.offsetFreq[numOffsets-1] == 0 { |
| numOffsets-- |
| } |
| if numOffsets == 0 { |
| // We haven't found a single match. If we want to go with the dynamic encoding, |
| // we should count at least one offset to be sure that the offset huffman tree could be encoded. |
| w.offsetFreq[0] = 1 |
| numOffsets = 1 |
| } |
| w.literalEncoding.generate(w.literalFreq, 15) |
| w.offsetEncoding.generate(w.offsetFreq, 15) |
| return |
| } |
| |
| // writeTokens writes a slice of tokens to the output. |
| // codes for literal and offset encoding must be supplied. |
| func (w *huffmanBitWriter) writeTokens(tokens []token, leCodes, oeCodes []hcode) { |
| if w.err != nil { |
| return |
| } |
| for _, t := range tokens { |
| if t < matchType { |
| w.writeCode(leCodes[t.literal()]) |
| continue |
| } |
| // Write the length |
| length := t.length() |
| lengthCode := lengthCode(length) |
| w.writeCode(leCodes[lengthCode+lengthCodesStart]) |
| extraLengthBits := uint(lengthExtraBits[lengthCode]) |
| if extraLengthBits > 0 { |
| extraLength := int32(length - lengthBase[lengthCode]) |
| w.writeBits(extraLength, extraLengthBits) |
| } |
| // Write the offset |
| offset := t.offset() |
| offsetCode := offsetCode(offset) |
| w.writeCode(oeCodes[offsetCode]) |
| extraOffsetBits := uint(offsetExtraBits[offsetCode]) |
| if extraOffsetBits > 0 { |
| extraOffset := int32(offset - offsetBase[offsetCode]) |
| w.writeBits(extraOffset, extraOffsetBits) |
| } |
| } |
| } |
| |
| // huffOffset is a static offset encoder used for huffman only encoding. |
| // It can be reused since we will not be encoding offset values. |
| var huffOffset *huffmanEncoder |
| |
| func init() { |
| offsetFreq := make([]int32, offsetCodeCount) |
| offsetFreq[0] = 1 |
| huffOffset = newHuffmanEncoder(offsetCodeCount) |
| huffOffset.generate(offsetFreq, 15) |
| } |
| |
| // writeBlockHuff encodes a block of bytes as either |
| // Huffman encoded literals or uncompressed bytes if the |
| // results only gains very little from compression. |
| func (w *huffmanBitWriter) writeBlockHuff(eof bool, input []byte) { |
| if w.err != nil { |
| return |
| } |
| |
| // Clear histogram |
| for i := range w.literalFreq { |
| w.literalFreq[i] = 0 |
| } |
| |
| // Add everything as literals |
| histogram(input, w.literalFreq) |
| |
| w.literalFreq[endBlockMarker] = 1 |
| |
| const numLiterals = endBlockMarker + 1 |
| w.offsetFreq[0] = 1 |
| const numOffsets = 1 |
| |
| w.literalEncoding.generate(w.literalFreq, 15) |
| |
| // Figure out smallest code. |
| // Always use dynamic Huffman or Store |
| var numCodegens int |
| |
| // Generate codegen and codegenFrequencies, which indicates how to encode |
| // the literalEncoding and the offsetEncoding. |
| w.generateCodegen(numLiterals, numOffsets, w.literalEncoding, huffOffset) |
| w.codegenEncoding.generate(w.codegenFreq[:], 7) |
| size, numCodegens := w.dynamicSize(w.literalEncoding, huffOffset, 0) |
| |
| // Store bytes, if we don't get a reasonable improvement. |
| if ssize, storable := w.storedSize(input); storable && ssize < (size+size>>4) { |
| w.writeStoredHeader(len(input), eof) |
| w.writeBytes(input) |
| return |
| } |
| |
| // Huffman. |
| w.writeDynamicHeader(numLiterals, numOffsets, numCodegens, eof) |
| encoding := w.literalEncoding.codes[:257] |
| n := w.nbytes |
| for _, t := range input { |
| // Bitwriting inlined, ~30% speedup |
| c := encoding[t] |
| w.bits |= uint64(c.code) << w.nbits |
| w.nbits += uint(c.len) |
| if w.nbits < 48 { |
| continue |
| } |
| // Store 6 bytes |
| bits := w.bits |
| w.bits >>= 48 |
| w.nbits -= 48 |
| bytes := w.bytes[n : n+6] |
| bytes[0] = byte(bits) |
| bytes[1] = byte(bits >> 8) |
| bytes[2] = byte(bits >> 16) |
| bytes[3] = byte(bits >> 24) |
| bytes[4] = byte(bits >> 32) |
| bytes[5] = byte(bits >> 40) |
| n += 6 |
| if n < bufferFlushSize { |
| continue |
| } |
| w.write(w.bytes[:n]) |
| if w.err != nil { |
| return // Return early in the event of write failures |
| } |
| n = 0 |
| } |
| w.nbytes = n |
| w.writeCode(encoding[endBlockMarker]) |
| } |
| |
| // histogram accumulates a histogram of b in h. |
| // |
| // len(h) must be >= 256, and h's elements must be all zeroes. |
| func histogram(b []byte, h []int32) { |
| h = h[:256] |
| for _, t := range b { |
| h[t]++ |
| } |
| } |