|  | // Copyright 2009 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package rand | 
|  |  | 
|  | import ( | 
|  | "errors" | 
|  | "fmt" | 
|  | "math" | 
|  | "testing" | 
|  | ) | 
|  |  | 
|  | const ( | 
|  | numTestSamples = 10000 | 
|  | ) | 
|  |  | 
|  | type statsResults struct { | 
|  | mean        float64 | 
|  | stddev      float64 | 
|  | closeEnough float64 | 
|  | maxError    float64 | 
|  | } | 
|  |  | 
|  | func max(a, b float64) float64 { | 
|  | if a > b { | 
|  | return a | 
|  | } | 
|  | return b | 
|  | } | 
|  |  | 
|  | func nearEqual(a, b, closeEnough, maxError float64) bool { | 
|  | absDiff := math.Abs(a - b) | 
|  | if absDiff < closeEnough { // Necessary when one value is zero and one value is close to zero. | 
|  | return true | 
|  | } | 
|  | return absDiff/max(math.Abs(a), math.Abs(b)) < maxError | 
|  | } | 
|  |  | 
|  | var testSeeds = []int64{1, 1754801282, 1698661970, 1550503961} | 
|  |  | 
|  | // checkSimilarDistribution returns success if the mean and stddev of the | 
|  | // two statsResults are similar. | 
|  | func (this *statsResults) checkSimilarDistribution(expected *statsResults) error { | 
|  | if !nearEqual(this.mean, expected.mean, expected.closeEnough, expected.maxError) { | 
|  | s := fmt.Sprintf("mean %v != %v (allowed error %v, %v)", this.mean, expected.mean, expected.closeEnough, expected.maxError) | 
|  | fmt.Println(s) | 
|  | return errors.New(s) | 
|  | } | 
|  | if !nearEqual(this.stddev, expected.stddev, 0, expected.maxError) { | 
|  | s := fmt.Sprintf("stddev %v != %v (allowed error %v, %v)", this.stddev, expected.stddev, expected.closeEnough, expected.maxError) | 
|  | fmt.Println(s) | 
|  | return errors.New(s) | 
|  | } | 
|  | return nil | 
|  | } | 
|  |  | 
|  | func getStatsResults(samples []float64) *statsResults { | 
|  | res := new(statsResults) | 
|  | var sum float64 | 
|  | for i := range samples { | 
|  | sum += samples[i] | 
|  | } | 
|  | res.mean = sum / float64(len(samples)) | 
|  | var devsum float64 | 
|  | for i := range samples { | 
|  | devsum += math.Pow(samples[i]-res.mean, 2) | 
|  | } | 
|  | res.stddev = math.Sqrt(devsum / float64(len(samples))) | 
|  | return res | 
|  | } | 
|  |  | 
|  | func checkSampleDistribution(t *testing.T, samples []float64, expected *statsResults) { | 
|  | actual := getStatsResults(samples) | 
|  | err := actual.checkSimilarDistribution(expected) | 
|  | if err != nil { | 
|  | t.Errorf(err.Error()) | 
|  | } | 
|  | } | 
|  |  | 
|  | func checkSampleSliceDistributions(t *testing.T, samples []float64, nslices int, expected *statsResults) { | 
|  | chunk := len(samples) / nslices | 
|  | for i := 0; i < nslices; i++ { | 
|  | low := i * chunk | 
|  | var high int | 
|  | if i == nslices-1 { | 
|  | high = len(samples) - 1 | 
|  | } else { | 
|  | high = (i + 1) * chunk | 
|  | } | 
|  | checkSampleDistribution(t, samples[low:high], expected) | 
|  | } | 
|  | } | 
|  |  | 
|  | // | 
|  | // Normal distribution tests | 
|  | // | 
|  |  | 
|  | func generateNormalSamples(nsamples int, mean, stddev float64, seed int64) []float64 { | 
|  | r := New(NewSource(seed)) | 
|  | samples := make([]float64, nsamples) | 
|  | for i := range samples { | 
|  | samples[i] = r.NormFloat64()*stddev + mean | 
|  | } | 
|  | return samples | 
|  | } | 
|  |  | 
|  | func testNormalDistribution(t *testing.T, nsamples int, mean, stddev float64, seed int64) { | 
|  | //fmt.Printf("testing nsamples=%v mean=%v stddev=%v seed=%v\n", nsamples, mean, stddev, seed); | 
|  |  | 
|  | samples := generateNormalSamples(nsamples, mean, stddev, seed) | 
|  | errorScale := max(1.0, stddev) // Error scales with stddev | 
|  | expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.08 * errorScale} | 
|  |  | 
|  | // Make sure that the entire set matches the expected distribution. | 
|  | checkSampleDistribution(t, samples, expected) | 
|  |  | 
|  | // Make sure that each half of the set matches the expected distribution. | 
|  | checkSampleSliceDistributions(t, samples, 2, expected) | 
|  |  | 
|  | // Make sure that each 7th of the set matches the expected distribution. | 
|  | checkSampleSliceDistributions(t, samples, 7, expected) | 
|  | } | 
|  |  | 
|  | // Actual tests | 
|  |  | 
|  | func TestStandardNormalValues(t *testing.T) { | 
|  | for _, seed := range testSeeds { | 
|  | testNormalDistribution(t, numTestSamples, 0, 1, seed) | 
|  | } | 
|  | } | 
|  |  | 
|  | func TestNonStandardNormalValues(t *testing.T) { | 
|  | for sd := 0.5; sd < 1000; sd *= 2 { | 
|  | for m := 0.5; m < 1000; m *= 2 { | 
|  | for _, seed := range testSeeds { | 
|  | testNormalDistribution(t, numTestSamples, m, sd, seed) | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // | 
|  | // Exponential distribution tests | 
|  | // | 
|  |  | 
|  | func generateExponentialSamples(nsamples int, rate float64, seed int64) []float64 { | 
|  | r := New(NewSource(seed)) | 
|  | samples := make([]float64, nsamples) | 
|  | for i := range samples { | 
|  | samples[i] = r.ExpFloat64() / rate | 
|  | } | 
|  | return samples | 
|  | } | 
|  |  | 
|  | func testExponentialDistribution(t *testing.T, nsamples int, rate float64, seed int64) { | 
|  | //fmt.Printf("testing nsamples=%v rate=%v seed=%v\n", nsamples, rate, seed); | 
|  |  | 
|  | mean := 1 / rate | 
|  | stddev := mean | 
|  |  | 
|  | samples := generateExponentialSamples(nsamples, rate, seed) | 
|  | errorScale := max(1.0, 1/rate) // Error scales with the inverse of the rate | 
|  | expected := &statsResults{mean, stddev, 0.10 * errorScale, 0.20 * errorScale} | 
|  |  | 
|  | // Make sure that the entire set matches the expected distribution. | 
|  | checkSampleDistribution(t, samples, expected) | 
|  |  | 
|  | // Make sure that each half of the set matches the expected distribution. | 
|  | checkSampleSliceDistributions(t, samples, 2, expected) | 
|  |  | 
|  | // Make sure that each 7th of the set matches the expected distribution. | 
|  | checkSampleSliceDistributions(t, samples, 7, expected) | 
|  | } | 
|  |  | 
|  | // Actual tests | 
|  |  | 
|  | func TestStandardExponentialValues(t *testing.T) { | 
|  | for _, seed := range testSeeds { | 
|  | testExponentialDistribution(t, numTestSamples, 1, seed) | 
|  | } | 
|  | } | 
|  |  | 
|  | func TestNonStandardExponentialValues(t *testing.T) { | 
|  | for rate := 0.05; rate < 10; rate *= 2 { | 
|  | for _, seed := range testSeeds { | 
|  | testExponentialDistribution(t, numTestSamples, rate, seed) | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // | 
|  | // Table generation tests | 
|  | // | 
|  |  | 
|  | func initNorm() (testKn []uint32, testWn, testFn []float32) { | 
|  | const m1 = 1 << 31 | 
|  | var ( | 
|  | dn float64 = rn | 
|  | tn         = dn | 
|  | vn float64 = 9.91256303526217e-3 | 
|  | ) | 
|  |  | 
|  | testKn = make([]uint32, 128) | 
|  | testWn = make([]float32, 128) | 
|  | testFn = make([]float32, 128) | 
|  |  | 
|  | q := vn / math.Exp(-0.5*dn*dn) | 
|  | testKn[0] = uint32((dn / q) * m1) | 
|  | testKn[1] = 0 | 
|  | testWn[0] = float32(q / m1) | 
|  | testWn[127] = float32(dn / m1) | 
|  | testFn[0] = 1.0 | 
|  | testFn[127] = float32(math.Exp(-0.5 * dn * dn)) | 
|  | for i := 126; i >= 1; i-- { | 
|  | dn = math.Sqrt(-2.0 * math.Log(vn/dn+math.Exp(-0.5*dn*dn))) | 
|  | testKn[i+1] = uint32((dn / tn) * m1) | 
|  | tn = dn | 
|  | testFn[i] = float32(math.Exp(-0.5 * dn * dn)) | 
|  | testWn[i] = float32(dn / m1) | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | func initExp() (testKe []uint32, testWe, testFe []float32) { | 
|  | const m2 = 1 << 32 | 
|  | var ( | 
|  | de float64 = re | 
|  | te         = de | 
|  | ve float64 = 3.9496598225815571993e-3 | 
|  | ) | 
|  |  | 
|  | testKe = make([]uint32, 256) | 
|  | testWe = make([]float32, 256) | 
|  | testFe = make([]float32, 256) | 
|  |  | 
|  | q := ve / math.Exp(-de) | 
|  | testKe[0] = uint32((de / q) * m2) | 
|  | testKe[1] = 0 | 
|  | testWe[0] = float32(q / m2) | 
|  | testWe[255] = float32(de / m2) | 
|  | testFe[0] = 1.0 | 
|  | testFe[255] = float32(math.Exp(-de)) | 
|  | for i := 254; i >= 1; i-- { | 
|  | de = -math.Log(ve/de + math.Exp(-de)) | 
|  | testKe[i+1] = uint32((de / te) * m2) | 
|  | te = de | 
|  | testFe[i] = float32(math.Exp(-de)) | 
|  | testWe[i] = float32(de / m2) | 
|  | } | 
|  | return | 
|  | } | 
|  |  | 
|  | // compareUint32Slices returns the first index where the two slices | 
|  | // disagree, or <0 if the lengths are the same and all elements | 
|  | // are identical. | 
|  | func compareUint32Slices(s1, s2 []uint32) int { | 
|  | if len(s1) != len(s2) { | 
|  | if len(s1) > len(s2) { | 
|  | return len(s2) + 1 | 
|  | } | 
|  | return len(s1) + 1 | 
|  | } | 
|  | for i := range s1 { | 
|  | if s1[i] != s2[i] { | 
|  | return i | 
|  | } | 
|  | } | 
|  | return -1 | 
|  | } | 
|  |  | 
|  | // compareFloat32Slices returns the first index where the two slices | 
|  | // disagree, or <0 if the lengths are the same and all elements | 
|  | // are identical. | 
|  | func compareFloat32Slices(s1, s2 []float32) int { | 
|  | if len(s1) != len(s2) { | 
|  | if len(s1) > len(s2) { | 
|  | return len(s2) + 1 | 
|  | } | 
|  | return len(s1) + 1 | 
|  | } | 
|  | for i := range s1 { | 
|  | if !nearEqual(float64(s1[i]), float64(s2[i]), 0, 1e-7) { | 
|  | return i | 
|  | } | 
|  | } | 
|  | return -1 | 
|  | } | 
|  |  | 
|  | func TestNormTables(t *testing.T) { | 
|  | testKn, testWn, testFn := initNorm() | 
|  | if i := compareUint32Slices(kn[0:], testKn); i >= 0 { | 
|  | t.Errorf("kn disagrees at index %v; %v != %v", i, kn[i], testKn[i]) | 
|  | } | 
|  | if i := compareFloat32Slices(wn[0:], testWn); i >= 0 { | 
|  | t.Errorf("wn disagrees at index %v; %v != %v", i, wn[i], testWn[i]) | 
|  | } | 
|  | if i := compareFloat32Slices(fn[0:], testFn); i >= 0 { | 
|  | t.Errorf("fn disagrees at index %v; %v != %v", i, fn[i], testFn[i]) | 
|  | } | 
|  | } | 
|  |  | 
|  | func TestExpTables(t *testing.T) { | 
|  | testKe, testWe, testFe := initExp() | 
|  | if i := compareUint32Slices(ke[0:], testKe); i >= 0 { | 
|  | t.Errorf("ke disagrees at index %v; %v != %v", i, ke[i], testKe[i]) | 
|  | } | 
|  | if i := compareFloat32Slices(we[0:], testWe); i >= 0 { | 
|  | t.Errorf("we disagrees at index %v; %v != %v", i, we[i], testWe[i]) | 
|  | } | 
|  | if i := compareFloat32Slices(fe[0:], testFe); i >= 0 { | 
|  | t.Errorf("fe disagrees at index %v; %v != %v", i, fe[i], testFe[i]) | 
|  | } | 
|  | } | 
|  |  | 
|  | // Benchmarks | 
|  |  | 
|  | func BenchmarkInt63Threadsafe(b *testing.B) { | 
|  | for n := b.N; n > 0; n-- { | 
|  | Int63() | 
|  | } | 
|  | } | 
|  |  | 
|  | func BenchmarkInt63Unthreadsafe(b *testing.B) { | 
|  | r := New(NewSource(1)) | 
|  | for n := b.N; n > 0; n-- { | 
|  | r.Int63() | 
|  | } | 
|  | } | 
|  |  | 
|  | func BenchmarkIntn1000(b *testing.B) { | 
|  | r := New(NewSource(1)) | 
|  | for n := b.N; n > 0; n-- { | 
|  | r.Intn(1000) | 
|  | } | 
|  | } | 
|  |  | 
|  | func BenchmarkInt63n1000(b *testing.B) { | 
|  | r := New(NewSource(1)) | 
|  | for n := b.N; n > 0; n-- { | 
|  | r.Int63n(1000) | 
|  | } | 
|  | } | 
|  |  | 
|  | func BenchmarkInt31n1000(b *testing.B) { | 
|  | r := New(NewSource(1)) | 
|  | for n := b.N; n > 0; n-- { | 
|  | r.Int31n(1000) | 
|  | } | 
|  | } |