blob: 00c1e9d34081ab97a4253eba32e0f8fde092a219 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Malloc small size classes.
//
// See malloc.go for overview.
//
// The size classes are chosen so that rounding an allocation
// request up to the next size class wastes at most 12.5% (1.125x).
//
// Each size class has its own page count that gets allocated
// and chopped up when new objects of the size class are needed.
// That page count is chosen so that chopping up the run of
// pages into objects of the given size wastes at most 12.5% (1.125x)
// of the memory. It is not necessary that the cutoff here be
// the same as above.
//
// The two sources of waste multiply, so the worst possible case
// for the above constraints would be that allocations of some
// size might have a 26.6% (1.266x) overhead.
// In practice, only one of the wastes comes into play for a
// given size (sizes < 512 waste mainly on the round-up,
// sizes > 512 waste mainly on the page chopping).
//
// TODO(rsc): Compute max waste for any given size.
package runtime
// Size classes. Computed and initialized by InitSizes.
//
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
// 1 <= sizeclass < NumSizeClasses, for n.
// Size class 0 is reserved to mean "not small".
//
// class_to_size[i] = largest size in class i
// class_to_allocnpages[i] = number of pages to allocate when
// making new objects in class i
// The SizeToClass lookup is implemented using two arrays,
// one mapping sizes <= 1024 to their class and one mapping
// sizes >= 1024 and <= MaxSmallSize to their class.
// All objects are 8-aligned, so the first array is indexed by
// the size divided by 8 (rounded up). Objects >= 1024 bytes
// are 128-aligned, so the second array is indexed by the
// size divided by 128 (rounded up). The arrays are filled in
// by InitSizes.
const (
smallSizeDiv = 8
smallSizeMax = 1024
largeSizeDiv = 128
)
var class_to_size [_NumSizeClasses]uint32
var class_to_allocnpages [_NumSizeClasses]uint32
var class_to_divmagic [_NumSizeClasses]divMagic
var size_to_class8 [smallSizeMax/smallSizeDiv + 1]uint8
var size_to_class128 [(_MaxSmallSize-smallSizeMax)/largeSizeDiv + 1]uint8
func sizeToClass(size uint32) uint32 {
if size > _MaxSmallSize {
throw("invalid size")
}
if size > smallSizeMax-8 {
return uint32(size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv])
}
return uint32(size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv])
}
func initSizes() {
// Initialize the runtime·class_to_size table (and choose class sizes in the process).
class_to_size[0] = 0
sizeclass := 1 // 0 means no class
align := 8
for size := align; size <= _MaxSmallSize; size += align {
if size&(size-1) == 0 { // bump alignment once in a while
if size >= 2048 {
align = 256
} else if size >= 128 {
align = size / 8
} else if size >= 16 {
align = 16 // required for x86 SSE instructions, if we want to use them
}
}
if align&(align-1) != 0 {
throw("incorrect alignment")
}
// Make the allocnpages big enough that
// the leftover is less than 1/8 of the total,
// so wasted space is at most 12.5%.
allocsize := _PageSize
for allocsize%size > allocsize/8 {
allocsize += _PageSize
}
npages := allocsize >> _PageShift
// If the previous sizeclass chose the same
// allocation size and fit the same number of
// objects into the page, we might as well
// use just this size instead of having two
// different sizes.
if sizeclass > 1 && npages == int(class_to_allocnpages[sizeclass-1]) && allocsize/size == allocsize/int(class_to_size[sizeclass-1]) {
class_to_size[sizeclass-1] = uint32(size)
continue
}
class_to_allocnpages[sizeclass] = uint32(npages)
class_to_size[sizeclass] = uint32(size)
sizeclass++
}
if sizeclass != _NumSizeClasses {
print("runtime: sizeclass=", sizeclass, " NumSizeClasses=", _NumSizeClasses, "\n")
throw("bad NumSizeClasses")
}
// Increase object sizes if we can fit the same number of larger objects
// into the same number of pages. For example, we choose size 8448 above
// with 6 objects in 7 pages. But we can well use object size 9472,
// which is also 6 objects in 7 pages but +1024 bytes (+12.12%).
// We need to preserve at least largeSizeDiv alignment otherwise
// sizeToClass won't work.
for i := 1; i < _NumSizeClasses; i++ {
npages := class_to_allocnpages[i]
psize := npages * _PageSize
size := class_to_size[i]
new_size := (psize / (psize / size)) &^ (largeSizeDiv - 1)
if new_size > size {
class_to_size[i] = new_size
}
}
// Check maxObjsPerSpan => number of objects invariant.
for i, size := range class_to_size {
if i != 0 && class_to_size[i-1] >= size {
throw("non-monotonic size classes")
}
if size != 0 && class_to_allocnpages[i]*pageSize/size > maxObjsPerSpan {
throw("span contains too many objects")
}
if size == 0 && i != 0 {
throw("size is 0 but class is not 0")
}
}
// Initialize the size_to_class tables.
nextsize := 0
for sizeclass = 1; sizeclass < _NumSizeClasses; sizeclass++ {
for ; nextsize < 1024 && nextsize <= int(class_to_size[sizeclass]); nextsize += 8 {
size_to_class8[nextsize/8] = uint8(sizeclass)
}
if nextsize >= 1024 {
for ; nextsize <= int(class_to_size[sizeclass]); nextsize += 128 {
size_to_class128[(nextsize-1024)/128] = uint8(sizeclass)
}
}
}
// Double-check SizeToClass.
if false {
for n := uint32(0); n < _MaxSmallSize; n++ {
sizeclass := sizeToClass(n)
if sizeclass < 1 || sizeclass >= _NumSizeClasses || class_to_size[sizeclass] < n {
print("runtime: size=", n, " sizeclass=", sizeclass, " runtime·class_to_size=", class_to_size[sizeclass], "\n")
print("incorrect SizeToClass\n")
goto dump
}
if sizeclass > 1 && class_to_size[sizeclass-1] >= n {
print("runtime: size=", n, " sizeclass=", sizeclass, " runtime·class_to_size=", class_to_size[sizeclass], "\n")
print("SizeToClass too big\n")
goto dump
}
}
}
testdefersizes()
// Copy out for statistics table.
for i := 0; i < len(class_to_size); i++ {
memstats.by_size[i].size = uint32(class_to_size[i])
}
for i := 1; i < len(class_to_size); i++ {
class_to_divmagic[i] = computeDivMagic(uint32(class_to_size[i]))
}
return
dump:
if true {
print("runtime: NumSizeClasses=", _NumSizeClasses, "\n")
print("runtime·class_to_size:")
for sizeclass = 0; sizeclass < _NumSizeClasses; sizeclass++ {
print(" ", class_to_size[sizeclass], "")
}
print("\n\n")
print("runtime: size_to_class8:")
for i := 0; i < len(size_to_class8); i++ {
print(" ", i*8, "=>", size_to_class8[i], "(", class_to_size[size_to_class8[i]], ")\n")
}
print("\n")
print("runtime: size_to_class128:")
for i := 0; i < len(size_to_class128); i++ {
print(" ", i*128, "=>", size_to_class128[i], "(", class_to_size[size_to_class128[i]], ")\n")
}
print("\n")
}
throw("InitSizes failed")
}
// Returns size of the memory block that mallocgc will allocate if you ask for the size.
func roundupsize(size uintptr) uintptr {
if size < _MaxSmallSize {
if size <= smallSizeMax-8 {
return uintptr(class_to_size[size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]])
} else {
return uintptr(class_to_size[size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]])
}
}
if size+_PageSize < size {
return size
}
return round(size, _PageSize)
}
// divMagic holds magic constants to implement division
// by a particular constant as a shift, multiply, and shift.
// That is, given
// m = computeMagic(d)
// then
// n/d == ((n>>m.shift) * m.mul) >> m.shift2
//
// The magic computation picks m such that
// d = d₁*d₂
// d₂= 2^m.shift
// m.mul = ⌈2^m.shift2 / d₁⌉
//
// The magic computation here is tailored for malloc block sizes
// and does not handle arbitrary d correctly. Malloc block sizes d are
// always even, so the first shift implements the factors of 2 in d
// and then the mul and second shift implement the odd factor
// that remains. Because the first shift divides n by at least 2 (actually 8)
// before the multiply gets involved, the huge corner cases that
// require additional adjustment are impossible, so the usual
// fixup is not needed.
//
// For more details see Hacker's Delight, Chapter 10, and
// http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
// http://ridiculousfish.com/blog/posts/labor-of-division-episode-iii.html
type divMagic struct {
shift uint8
mul uint32
shift2 uint8
baseMask uintptr
}
func computeDivMagic(d uint32) divMagic {
var m divMagic
// If the size is a power of two, heapBitsForObject can divide even faster by masking.
// Compute this mask.
if d&(d-1) == 0 {
// It is a power of 2 (assuming dinptr != 1)
m.baseMask = ^(uintptr(d) - 1)
} else {
m.baseMask = 0
}
// Compute pre-shift by factoring power of 2 out of d.
for d&1 == 0 {
m.shift++
d >>= 1
}
// Compute largest k such that ⌈2^k / d⌉ fits in a 32-bit int.
// This is always a good enough approximation.
// We could use smaller k for some divisors but there's no point.
k := uint8(63)
d64 := uint64(d)
for ((1<<k)+d64-1)/d64 >= 1<<32 {
k--
}
m.mul = uint32(((1 << k) + d64 - 1) / d64) // ⌈2^k / d⌉
m.shift2 = k
return m
}