blob: 6851ca9f401b7fc48335083ccd88c2de657dc931 [file] [log] [blame]
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
import "sort"
// cse does common-subexpression elimination on the Function.
// Values are just relinked, nothing is deleted. A subsequent deadcode
// pass is required to actually remove duplicate expressions.
func cse(f *Func) {
// Two values are equivalent if they satisfy the following definition:
// equivalent(v, w):
// v.op == w.op
// v.type == w.type
// v.aux == w.aux
// v.auxint == w.auxint
// len(v.args) == len(w.args)
// v.block == w.block if v.op == OpPhi
// equivalent(v.args[i], w.args[i]) for i in 0..len(v.args)-1
// The algorithm searches for a partition of f's values into
// equivalence classes using the above definition.
// It starts with a coarse partition and iteratively refines it
// until it reaches a fixed point.
// Make initial partition based on opcode, type-name, aux, auxint, nargs, phi-block, and the ops of v's first args
type key struct {
op Op
typ string
aux interface{}
auxint int64
nargs int
block ID // block id for phi vars, -1 otherwise
arg0op Op // v.Args[0].Op if len(v.Args) > 0, OpInvalid otherwise
arg1op Op // v.Args[1].Op if len(v.Args) > 1, OpInvalid otherwise
}
m := map[key]eqclass{}
for _, b := range f.Blocks {
for _, v := range b.Values {
bid := ID(-1)
if v.Op == OpPhi {
bid = b.ID
}
arg0op := OpInvalid
if len(v.Args) > 0 {
arg0op = v.Args[0].Op
}
arg1op := OpInvalid
if len(v.Args) > 1 {
arg1op = v.Args[1].Op
}
k := key{v.Op, v.Type.String(), v.Aux, v.AuxInt, len(v.Args), bid, arg0op, arg1op}
m[k] = append(m[k], v)
}
}
// A partition is a set of disjoint eqclasses.
var partition []eqclass
for _, v := range m {
partition = append(partition, v)
}
// TODO: Sort partition here for perfect reproducibility?
// Sort by what? Partition size?
// (Could that improve efficiency by discovering splits earlier?)
// map from value id back to eqclass id
valueEqClass := make([]int, f.NumValues())
for i, e := range partition {
for _, v := range e {
valueEqClass[v.ID] = i
}
}
// Find an equivalence class where some members of the class have
// non-equivalent arguments. Split the equivalence class appropriately.
// Repeat until we can't find any more splits.
for {
changed := false
// partition can grow in the loop. By not using a range loop here,
// we process new additions as they arrive, avoiding O(n^2) behavior.
for i := 0; i < len(partition); i++ {
e := partition[i]
v := e[0]
// all values in this equiv class that are not equivalent to v get moved
// into another equiv class.
// To avoid allocating while building that equivalence class,
// move the values equivalent to v to the beginning of e,
// other values to the end of e, and track where the split is.
allvals := e
split := len(e)
eqloop:
for j := 1; j < len(e); {
w := e[j]
for i := 0; i < len(v.Args); i++ {
if valueEqClass[v.Args[i].ID] != valueEqClass[w.Args[i].ID] || !v.Type.Equal(w.Type) {
// w is not equivalent to v.
// move it to the end, shrink e, and move the split.
e[j], e[len(e)-1] = e[len(e)-1], e[j]
e = e[:len(e)-1]
split--
valueEqClass[w.ID] = len(partition)
changed = true
continue eqloop
}
}
// v and w are equivalent. Keep w in e.
j++
}
partition[i] = e
if split < len(allvals) {
partition = append(partition, allvals[split:])
}
}
if !changed {
break
}
}
// Compute dominator tree
idom := dominators(f)
// Compute substitutions we would like to do. We substitute v for w
// if v and w are in the same equivalence class and v dominates w.
rewrite := make([]*Value, f.NumValues())
for _, e := range partition {
sort.Sort(e) // ensure deterministic ordering
for len(e) > 1 {
// Find a maximal dominant element in e
v := e[0]
for _, w := range e[1:] {
if dom(w.Block, v.Block, idom) {
v = w
}
}
// Replace all elements of e which v dominates
for i := 0; i < len(e); {
w := e[i]
if w == v {
e, e[i] = e[:len(e)-1], e[len(e)-1]
} else if dom(v.Block, w.Block, idom) {
rewrite[w.ID] = v
e, e[i] = e[:len(e)-1], e[len(e)-1]
} else {
i++
}
}
// TODO(khr): if value is a control value, do we need to keep it block-local?
}
}
// Apply substitutions
for _, b := range f.Blocks {
for _, v := range b.Values {
for i, w := range v.Args {
if x := rewrite[w.ID]; x != nil {
v.SetArg(i, x)
}
}
}
}
}
// returns true if b dominates c.
// TODO(khr): faster
func dom(b, c *Block, idom []*Block) bool {
// Walk up from c in the dominator tree looking for b.
for c != nil {
if c == b {
return true
}
c = idom[c.ID]
}
// Reached the entry block, never saw b.
return false
}
// An eqclass approximates an equivalence class. During the
// algorithm it may represent the union of several of the
// final equivalence classes.
type eqclass []*Value
// Sort an equivalence class by value ID.
func (e eqclass) Len() int { return len(e) }
func (e eqclass) Swap(i, j int) { e[i], e[j] = e[j], e[i] }
func (e eqclass) Less(i, j int) bool { return e[i].ID < e[j].ID }