| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| //go:generate go run gen_sort_variants.go |
| |
| // Package sort provides primitives for sorting slices and user-defined collections. |
| package sort |
| |
| import "math/bits" |
| |
| // An implementation of Interface can be sorted by the routines in this package. |
| // The methods refer to elements of the underlying collection by integer index. |
| type Interface interface { |
| // Len is the number of elements in the collection. |
| Len() int |
| |
| // Less reports whether the element with index i |
| // must sort before the element with index j. |
| // |
| // If both Less(i, j) and Less(j, i) are false, |
| // then the elements at index i and j are considered equal. |
| // Sort may place equal elements in any order in the final result, |
| // while Stable preserves the original input order of equal elements. |
| // |
| // Less must describe a transitive ordering: |
| // - if both Less(i, j) and Less(j, k) are true, then Less(i, k) must be true as well. |
| // - if both Less(i, j) and Less(j, k) are false, then Less(i, k) must be false as well. |
| // |
| // Note that floating-point comparison (the < operator on float32 or float64 values) |
| // is not a transitive ordering when not-a-number (NaN) values are involved. |
| // See Float64Slice.Less for a correct implementation for floating-point values. |
| Less(i, j int) bool |
| |
| // Swap swaps the elements with indexes i and j. |
| Swap(i, j int) |
| } |
| |
| // Sort sorts data in ascending order as determined by the Less method. |
| // It makes one call to data.Len to determine n and O(n*log(n)) calls to |
| // data.Less and data.Swap. The sort is not guaranteed to be stable. |
| // |
| // Note: in many situations, the newer [slices.SortFunc] function is more |
| // ergonomic and runs faster. |
| func Sort(data Interface) { |
| n := data.Len() |
| if n <= 1 { |
| return |
| } |
| limit := bits.Len(uint(n)) |
| pdqsort(data, 0, n, limit) |
| } |
| |
| type sortedHint int // hint for pdqsort when choosing the pivot |
| |
| const ( |
| unknownHint sortedHint = iota |
| increasingHint |
| decreasingHint |
| ) |
| |
| // xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf |
| type xorshift uint64 |
| |
| func (r *xorshift) Next() uint64 { |
| *r ^= *r << 13 |
| *r ^= *r >> 17 |
| *r ^= *r << 5 |
| return uint64(*r) |
| } |
| |
| func nextPowerOfTwo(length int) uint { |
| shift := uint(bits.Len(uint(length))) |
| return uint(1 << shift) |
| } |
| |
| // lessSwap is a pair of Less and Swap function for use with the |
| // auto-generated func-optimized variant of sort.go in |
| // zfuncversion.go. |
| type lessSwap struct { |
| Less func(i, j int) bool |
| Swap func(i, j int) |
| } |
| |
| type reverse struct { |
| // This embedded Interface permits Reverse to use the methods of |
| // another Interface implementation. |
| Interface |
| } |
| |
| // Less returns the opposite of the embedded implementation's Less method. |
| func (r reverse) Less(i, j int) bool { |
| return r.Interface.Less(j, i) |
| } |
| |
| // Reverse returns the reverse order for data. |
| func Reverse(data Interface) Interface { |
| return &reverse{data} |
| } |
| |
| // IsSorted reports whether data is sorted. |
| // |
| // Note: in many situations, the newer [slices.IsSortedFunc] function is more |
| // ergonomic and runs faster. |
| func IsSorted(data Interface) bool { |
| n := data.Len() |
| for i := n - 1; i > 0; i-- { |
| if data.Less(i, i-1) { |
| return false |
| } |
| } |
| return true |
| } |
| |
| // Convenience types for common cases |
| |
| // IntSlice attaches the methods of Interface to []int, sorting in increasing order. |
| type IntSlice []int |
| |
| func (x IntSlice) Len() int { return len(x) } |
| func (x IntSlice) Less(i, j int) bool { return x[i] < x[j] } |
| func (x IntSlice) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
| |
| // Sort is a convenience method: x.Sort() calls Sort(x). |
| func (x IntSlice) Sort() { Sort(x) } |
| |
| // Float64Slice implements Interface for a []float64, sorting in increasing order, |
| // with not-a-number (NaN) values ordered before other values. |
| type Float64Slice []float64 |
| |
| func (x Float64Slice) Len() int { return len(x) } |
| |
| // Less reports whether x[i] should be ordered before x[j], as required by the sort Interface. |
| // Note that floating-point comparison by itself is not a transitive relation: it does not |
| // report a consistent ordering for not-a-number (NaN) values. |
| // This implementation of Less places NaN values before any others, by using: |
| // |
| // x[i] < x[j] || (math.IsNaN(x[i]) && !math.IsNaN(x[j])) |
| func (x Float64Slice) Less(i, j int) bool { return x[i] < x[j] || (isNaN(x[i]) && !isNaN(x[j])) } |
| func (x Float64Slice) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
| |
| // isNaN is a copy of math.IsNaN to avoid a dependency on the math package. |
| func isNaN(f float64) bool { |
| return f != f |
| } |
| |
| // Sort is a convenience method: x.Sort() calls Sort(x). |
| func (x Float64Slice) Sort() { Sort(x) } |
| |
| // StringSlice attaches the methods of Interface to []string, sorting in increasing order. |
| type StringSlice []string |
| |
| func (x StringSlice) Len() int { return len(x) } |
| func (x StringSlice) Less(i, j int) bool { return x[i] < x[j] } |
| func (x StringSlice) Swap(i, j int) { x[i], x[j] = x[j], x[i] } |
| |
| // Sort is a convenience method: x.Sort() calls Sort(x). |
| func (x StringSlice) Sort() { Sort(x) } |
| |
| // Convenience wrappers for common cases |
| |
| // Ints sorts a slice of ints in increasing order. |
| // |
| // Note: as of Go 1.22, this function simply calls [slices.Sort]. |
| func Ints(x []int) { intsImpl(x) } |
| |
| // Float64s sorts a slice of float64s in increasing order. |
| // Not-a-number (NaN) values are ordered before other values. |
| // |
| // Note: as of Go 1.22, this function simply calls [slices.Sort]. |
| func Float64s(x []float64) { float64sImpl(x) } |
| |
| // Strings sorts a slice of strings in increasing order. |
| // |
| // Note: as of Go 1.22, this function simply calls [slices.Sort]. |
| func Strings(x []string) { stringsImpl(x) } |
| |
| // IntsAreSorted reports whether the slice x is sorted in increasing order. |
| // |
| // Note: as of Go 1.22, this function simply calls [slices.IsSorted]. |
| func IntsAreSorted(x []int) bool { return intsAreSortedImpl(x) } |
| |
| // Float64sAreSorted reports whether the slice x is sorted in increasing order, |
| // with not-a-number (NaN) values before any other values. |
| // |
| // Note: as of Go 1.22, this function simply calls [slices.IsSorted]. |
| func Float64sAreSorted(x []float64) bool { return float64sAreSortedImpl(x) } |
| |
| // StringsAreSorted reports whether the slice x is sorted in increasing order. |
| // |
| // Note: as of Go 1.22, this function simply calls [slices.IsSorted]. |
| func StringsAreSorted(x []string) bool { return stringsAreSortedImpl(x) } |
| |
| // Notes on stable sorting: |
| // The used algorithms are simple and provable correct on all input and use |
| // only logarithmic additional stack space. They perform well if compared |
| // experimentally to other stable in-place sorting algorithms. |
| // |
| // Remarks on other algorithms evaluated: |
| // - GCC's 4.6.3 stable_sort with merge_without_buffer from libstdc++: |
| // Not faster. |
| // - GCC's __rotate for block rotations: Not faster. |
| // - "Practical in-place mergesort" from Jyrki Katajainen, Tomi A. Pasanen |
| // and Jukka Teuhola; Nordic Journal of Computing 3,1 (1996), 27-40: |
| // The given algorithms are in-place, number of Swap and Assignments |
| // grow as n log n but the algorithm is not stable. |
| // - "Fast Stable In-Place Sorting with O(n) Data Moves" J.I. Munro and |
| // V. Raman in Algorithmica (1996) 16, 115-160: |
| // This algorithm either needs additional 2n bits or works only if there |
| // are enough different elements available to encode some permutations |
| // which have to be undone later (so not stable on any input). |
| // - All the optimal in-place sorting/merging algorithms I found are either |
| // unstable or rely on enough different elements in each step to encode the |
| // performed block rearrangements. See also "In-Place Merging Algorithms", |
| // Denham Coates-Evely, Department of Computer Science, Kings College, |
| // January 2004 and the references in there. |
| // - Often "optimal" algorithms are optimal in the number of assignments |
| // but Interface has only Swap as operation. |
| |
| // Stable sorts data in ascending order as determined by the Less method, |
| // while keeping the original order of equal elements. |
| // |
| // It makes one call to data.Len to determine n, O(n*log(n)) calls to |
| // data.Less and O(n*log(n)*log(n)) calls to data.Swap. |
| // |
| // Note: in many situations, the newer slices.SortStableFunc function is more |
| // ergonomic and runs faster. |
| func Stable(data Interface) { |
| stable(data, data.Len()) |
| } |
| |
| /* |
| Complexity of Stable Sorting |
| |
| |
| Complexity of block swapping rotation |
| |
| Each Swap puts one new element into its correct, final position. |
| Elements which reach their final position are no longer moved. |
| Thus block swapping rotation needs |u|+|v| calls to Swaps. |
| This is best possible as each element might need a move. |
| |
| Pay attention when comparing to other optimal algorithms which |
| typically count the number of assignments instead of swaps: |
| E.g. the optimal algorithm of Dudzinski and Dydek for in-place |
| rotations uses O(u + v + gcd(u,v)) assignments which is |
| better than our O(3 * (u+v)) as gcd(u,v) <= u. |
| |
| |
| Stable sorting by SymMerge and BlockSwap rotations |
| |
| SymMerg complexity for same size input M = N: |
| Calls to Less: O(M*log(N/M+1)) = O(N*log(2)) = O(N) |
| Calls to Swap: O((M+N)*log(M)) = O(2*N*log(N)) = O(N*log(N)) |
| |
| (The following argument does not fuzz over a missing -1 or |
| other stuff which does not impact the final result). |
| |
| Let n = data.Len(). Assume n = 2^k. |
| |
| Plain merge sort performs log(n) = k iterations. |
| On iteration i the algorithm merges 2^(k-i) blocks, each of size 2^i. |
| |
| Thus iteration i of merge sort performs: |
| Calls to Less O(2^(k-i) * 2^i) = O(2^k) = O(2^log(n)) = O(n) |
| Calls to Swap O(2^(k-i) * 2^i * log(2^i)) = O(2^k * i) = O(n*i) |
| |
| In total k = log(n) iterations are performed; so in total: |
| Calls to Less O(log(n) * n) |
| Calls to Swap O(n + 2*n + 3*n + ... + (k-1)*n + k*n) |
| = O((k/2) * k * n) = O(n * k^2) = O(n * log^2(n)) |
| |
| |
| Above results should generalize to arbitrary n = 2^k + p |
| and should not be influenced by the initial insertion sort phase: |
| Insertion sort is O(n^2) on Swap and Less, thus O(bs^2) per block of |
| size bs at n/bs blocks: O(bs*n) Swaps and Less during insertion sort. |
| Merge sort iterations start at i = log(bs). With t = log(bs) constant: |
| Calls to Less O((log(n)-t) * n + bs*n) = O(log(n)*n + (bs-t)*n) |
| = O(n * log(n)) |
| Calls to Swap O(n * log^2(n) - (t^2+t)/2*n) = O(n * log^2(n)) |
| |
| */ |