|  | // Code generated by go run gen.go; DO NOT EDIT. | 
|  |  | 
|  | package imageutil | 
|  |  | 
|  | import ( | 
|  | "image" | 
|  | ) | 
|  |  | 
|  | // DrawYCbCr draws the YCbCr source image on the RGBA destination image with | 
|  | // r.Min in dst aligned with sp in src. It reports whether the draw was | 
|  | // successful. If it returns false, no dst pixels were changed. | 
|  | // | 
|  | // This function assumes that r is entirely within dst's bounds and the | 
|  | // translation of r from dst coordinate space to src coordinate space is | 
|  | // entirely within src's bounds. | 
|  | func DrawYCbCr(dst *image.RGBA, r image.Rectangle, src *image.YCbCr, sp image.Point) (ok bool) { | 
|  | // This function exists in the image/internal/imageutil package because it | 
|  | // is needed by both the image/draw and image/jpeg packages, but it doesn't | 
|  | // seem right for one of those two to depend on the other. | 
|  | // | 
|  | // Another option is to have this code be exported in the image package, | 
|  | // but we'd need to make sure we're totally happy with the API (for the | 
|  | // rest of Go 1 compatibility), and decide if we want to have a more | 
|  | // general purpose DrawToRGBA method for other image types. One possibility | 
|  | // is: | 
|  | // | 
|  | // func (src *YCbCr) CopyToRGBA(dst *RGBA, dr, sr Rectangle) (effectiveDr, effectiveSr Rectangle) | 
|  | // | 
|  | // in the spirit of the built-in copy function for 1-dimensional slices, | 
|  | // that also allowed a CopyFromRGBA method if needed. | 
|  |  | 
|  | x0 := (r.Min.X - dst.Rect.Min.X) * 4 | 
|  | x1 := (r.Max.X - dst.Rect.Min.X) * 4 | 
|  | y0 := r.Min.Y - dst.Rect.Min.Y | 
|  | y1 := r.Max.Y - dst.Rect.Min.Y | 
|  | switch src.SubsampleRatio { | 
|  |  | 
|  | case image.YCbCrSubsampleRatio444: | 
|  | for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { | 
|  | dpix := dst.Pix[y*dst.Stride:] | 
|  | yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) | 
|  |  | 
|  | ci := (sy-src.Rect.Min.Y)*src.CStride + (sp.X - src.Rect.Min.X) | 
|  | for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 { | 
|  |  | 
|  | // This is an inline version of image/color/ycbcr.go's func YCbCrToRGB. | 
|  | yy1 := int32(src.Y[yi]) * 0x10101 | 
|  | cb1 := int32(src.Cb[ci]) - 128 | 
|  | cr1 := int32(src.Cr[ci]) - 128 | 
|  |  | 
|  | // The bit twiddling below is equivalent to | 
|  | // | 
|  | // r := (yy1 + 91881*cr1) >> 16 | 
|  | // if r < 0 { | 
|  | //     r = 0 | 
|  | // } else if r > 0xff { | 
|  | //     r = ^int32(0) | 
|  | // } | 
|  | // | 
|  | // but uses fewer branches and is faster. | 
|  | // Note that the uint8 type conversion in the return | 
|  | // statement will convert ^int32(0) to 0xff. | 
|  | // The code below to compute g and b uses a similar pattern. | 
|  | r := yy1 + 91881*cr1 | 
|  | if uint32(r)&0xff000000 == 0 { | 
|  | r >>= 16 | 
|  | } else { | 
|  | r = ^(r >> 31) | 
|  | } | 
|  |  | 
|  | g := yy1 - 22554*cb1 - 46802*cr1 | 
|  | if uint32(g)&0xff000000 == 0 { | 
|  | g >>= 16 | 
|  | } else { | 
|  | g = ^(g >> 31) | 
|  | } | 
|  |  | 
|  | b := yy1 + 116130*cb1 | 
|  | if uint32(b)&0xff000000 == 0 { | 
|  | b >>= 16 | 
|  | } else { | 
|  | b = ^(b >> 31) | 
|  | } | 
|  |  | 
|  | // use a temp slice to hint to the compiler that a single bounds check suffices | 
|  | rgba := dpix[x : x+4 : len(dpix)] | 
|  | rgba[0] = uint8(r) | 
|  | rgba[1] = uint8(g) | 
|  | rgba[2] = uint8(b) | 
|  | rgba[3] = 255 | 
|  | } | 
|  | } | 
|  |  | 
|  | case image.YCbCrSubsampleRatio422: | 
|  | for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { | 
|  | dpix := dst.Pix[y*dst.Stride:] | 
|  | yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) | 
|  |  | 
|  | ciBase := (sy-src.Rect.Min.Y)*src.CStride - src.Rect.Min.X/2 | 
|  | for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 { | 
|  | ci := ciBase + sx/2 | 
|  |  | 
|  | // This is an inline version of image/color/ycbcr.go's func YCbCrToRGB. | 
|  | yy1 := int32(src.Y[yi]) * 0x10101 | 
|  | cb1 := int32(src.Cb[ci]) - 128 | 
|  | cr1 := int32(src.Cr[ci]) - 128 | 
|  |  | 
|  | // The bit twiddling below is equivalent to | 
|  | // | 
|  | // r := (yy1 + 91881*cr1) >> 16 | 
|  | // if r < 0 { | 
|  | //     r = 0 | 
|  | // } else if r > 0xff { | 
|  | //     r = ^int32(0) | 
|  | // } | 
|  | // | 
|  | // but uses fewer branches and is faster. | 
|  | // Note that the uint8 type conversion in the return | 
|  | // statement will convert ^int32(0) to 0xff. | 
|  | // The code below to compute g and b uses a similar pattern. | 
|  | r := yy1 + 91881*cr1 | 
|  | if uint32(r)&0xff000000 == 0 { | 
|  | r >>= 16 | 
|  | } else { | 
|  | r = ^(r >> 31) | 
|  | } | 
|  |  | 
|  | g := yy1 - 22554*cb1 - 46802*cr1 | 
|  | if uint32(g)&0xff000000 == 0 { | 
|  | g >>= 16 | 
|  | } else { | 
|  | g = ^(g >> 31) | 
|  | } | 
|  |  | 
|  | b := yy1 + 116130*cb1 | 
|  | if uint32(b)&0xff000000 == 0 { | 
|  | b >>= 16 | 
|  | } else { | 
|  | b = ^(b >> 31) | 
|  | } | 
|  |  | 
|  | // use a temp slice to hint to the compiler that a single bounds check suffices | 
|  | rgba := dpix[x : x+4 : len(dpix)] | 
|  | rgba[0] = uint8(r) | 
|  | rgba[1] = uint8(g) | 
|  | rgba[2] = uint8(b) | 
|  | rgba[3] = 255 | 
|  | } | 
|  | } | 
|  |  | 
|  | case image.YCbCrSubsampleRatio420: | 
|  | for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { | 
|  | dpix := dst.Pix[y*dst.Stride:] | 
|  | yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) | 
|  |  | 
|  | ciBase := (sy/2-src.Rect.Min.Y/2)*src.CStride - src.Rect.Min.X/2 | 
|  | for x, sx := x0, sp.X; x != x1; x, sx, yi = x+4, sx+1, yi+1 { | 
|  | ci := ciBase + sx/2 | 
|  |  | 
|  | // This is an inline version of image/color/ycbcr.go's func YCbCrToRGB. | 
|  | yy1 := int32(src.Y[yi]) * 0x10101 | 
|  | cb1 := int32(src.Cb[ci]) - 128 | 
|  | cr1 := int32(src.Cr[ci]) - 128 | 
|  |  | 
|  | // The bit twiddling below is equivalent to | 
|  | // | 
|  | // r := (yy1 + 91881*cr1) >> 16 | 
|  | // if r < 0 { | 
|  | //     r = 0 | 
|  | // } else if r > 0xff { | 
|  | //     r = ^int32(0) | 
|  | // } | 
|  | // | 
|  | // but uses fewer branches and is faster. | 
|  | // Note that the uint8 type conversion in the return | 
|  | // statement will convert ^int32(0) to 0xff. | 
|  | // The code below to compute g and b uses a similar pattern. | 
|  | r := yy1 + 91881*cr1 | 
|  | if uint32(r)&0xff000000 == 0 { | 
|  | r >>= 16 | 
|  | } else { | 
|  | r = ^(r >> 31) | 
|  | } | 
|  |  | 
|  | g := yy1 - 22554*cb1 - 46802*cr1 | 
|  | if uint32(g)&0xff000000 == 0 { | 
|  | g >>= 16 | 
|  | } else { | 
|  | g = ^(g >> 31) | 
|  | } | 
|  |  | 
|  | b := yy1 + 116130*cb1 | 
|  | if uint32(b)&0xff000000 == 0 { | 
|  | b >>= 16 | 
|  | } else { | 
|  | b = ^(b >> 31) | 
|  | } | 
|  |  | 
|  | // use a temp slice to hint to the compiler that a single bounds check suffices | 
|  | rgba := dpix[x : x+4 : len(dpix)] | 
|  | rgba[0] = uint8(r) | 
|  | rgba[1] = uint8(g) | 
|  | rgba[2] = uint8(b) | 
|  | rgba[3] = 255 | 
|  | } | 
|  | } | 
|  |  | 
|  | case image.YCbCrSubsampleRatio440: | 
|  | for y, sy := y0, sp.Y; y != y1; y, sy = y+1, sy+1 { | 
|  | dpix := dst.Pix[y*dst.Stride:] | 
|  | yi := (sy-src.Rect.Min.Y)*src.YStride + (sp.X - src.Rect.Min.X) | 
|  |  | 
|  | ci := (sy/2-src.Rect.Min.Y/2)*src.CStride + (sp.X - src.Rect.Min.X) | 
|  | for x := x0; x != x1; x, yi, ci = x+4, yi+1, ci+1 { | 
|  |  | 
|  | // This is an inline version of image/color/ycbcr.go's func YCbCrToRGB. | 
|  | yy1 := int32(src.Y[yi]) * 0x10101 | 
|  | cb1 := int32(src.Cb[ci]) - 128 | 
|  | cr1 := int32(src.Cr[ci]) - 128 | 
|  |  | 
|  | // The bit twiddling below is equivalent to | 
|  | // | 
|  | // r := (yy1 + 91881*cr1) >> 16 | 
|  | // if r < 0 { | 
|  | //     r = 0 | 
|  | // } else if r > 0xff { | 
|  | //     r = ^int32(0) | 
|  | // } | 
|  | // | 
|  | // but uses fewer branches and is faster. | 
|  | // Note that the uint8 type conversion in the return | 
|  | // statement will convert ^int32(0) to 0xff. | 
|  | // The code below to compute g and b uses a similar pattern. | 
|  | r := yy1 + 91881*cr1 | 
|  | if uint32(r)&0xff000000 == 0 { | 
|  | r >>= 16 | 
|  | } else { | 
|  | r = ^(r >> 31) | 
|  | } | 
|  |  | 
|  | g := yy1 - 22554*cb1 - 46802*cr1 | 
|  | if uint32(g)&0xff000000 == 0 { | 
|  | g >>= 16 | 
|  | } else { | 
|  | g = ^(g >> 31) | 
|  | } | 
|  |  | 
|  | b := yy1 + 116130*cb1 | 
|  | if uint32(b)&0xff000000 == 0 { | 
|  | b >>= 16 | 
|  | } else { | 
|  | b = ^(b >> 31) | 
|  | } | 
|  |  | 
|  | // use a temp slice to hint to the compiler that a single bounds check suffices | 
|  | rgba := dpix[x : x+4 : len(dpix)] | 
|  | rgba[0] = uint8(r) | 
|  | rgba[1] = uint8(g) | 
|  | rgba[2] = uint8(b) | 
|  | rgba[3] = 255 | 
|  | } | 
|  | } | 
|  |  | 
|  | default: | 
|  | return false | 
|  | } | 
|  | return true | 
|  | } |