| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "runtime.h" |
| #include "defs.h" |
| #include "signals.h" |
| #include "os.h" |
| |
| void |
| runtime·dumpregs(Sigcontext *r) |
| { |
| runtime·printf("rax %X\n", r->rax); |
| runtime·printf("rbx %X\n", r->rbx); |
| runtime·printf("rcx %X\n", r->rcx); |
| runtime·printf("rdx %X\n", r->rdx); |
| runtime·printf("rdi %X\n", r->rdi); |
| runtime·printf("rsi %X\n", r->rsi); |
| runtime·printf("rbp %X\n", r->rbp); |
| runtime·printf("rsp %X\n", r->rsp); |
| runtime·printf("r8 %X\n", r->r8 ); |
| runtime·printf("r9 %X\n", r->r9 ); |
| runtime·printf("r10 %X\n", r->r10); |
| runtime·printf("r11 %X\n", r->r11); |
| runtime·printf("r12 %X\n", r->r12); |
| runtime·printf("r13 %X\n", r->r13); |
| runtime·printf("r14 %X\n", r->r14); |
| runtime·printf("r15 %X\n", r->r15); |
| runtime·printf("rip %X\n", r->rip); |
| runtime·printf("rflags %X\n", r->eflags); |
| runtime·printf("cs %X\n", (uint64)r->cs); |
| runtime·printf("fs %X\n", (uint64)r->fs); |
| runtime·printf("gs %X\n", (uint64)r->gs); |
| } |
| |
| /* |
| * This assembler routine takes the args from registers, puts them on the stack, |
| * and calls sighandler(). |
| */ |
| extern void runtime·sigtramp(void); |
| extern void runtime·sigignore(void); // just returns |
| extern void runtime·sigreturn(void); // calls runtime·sigreturn |
| |
| String |
| runtime·signame(int32 sig) |
| { |
| if(sig < 0 || sig >= NSIG) |
| return runtime·emptystring; |
| return runtime·gostringnocopy((byte*)runtime·sigtab[sig].name); |
| } |
| |
| void |
| runtime·sighandler(int32 sig, Siginfo *info, void *context, G *gp) |
| { |
| Ucontext *uc; |
| Mcontext *mc; |
| Sigcontext *r; |
| uintptr *sp; |
| |
| uc = context; |
| mc = &uc->uc_mcontext; |
| r = (Sigcontext*)mc; // same layout, more conveient names |
| |
| if(sig == SIGPROF) { |
| runtime·sigprof((uint8*)r->rip, (uint8*)r->rsp, nil, gp); |
| return; |
| } |
| |
| if(gp != nil && (runtime·sigtab[sig].flags & SigPanic)) { |
| // Make it look like a call to the signal func. |
| // Have to pass arguments out of band since |
| // augmenting the stack frame would break |
| // the unwinding code. |
| gp->sig = sig; |
| gp->sigcode0 = info->si_code; |
| gp->sigcode1 = ((uintptr*)info)[2]; |
| gp->sigpc = r->rip; |
| |
| // Only push runtime·sigpanic if r->rip != 0. |
| // If r->rip == 0, probably panicked because of a |
| // call to a nil func. Not pushing that onto sp will |
| // make the trace look like a call to runtime·sigpanic instead. |
| // (Otherwise the trace will end at runtime·sigpanic and we |
| // won't get to see who faulted.) |
| if(r->rip != 0) { |
| sp = (uintptr*)r->rsp; |
| *--sp = r->rip; |
| r->rsp = (uintptr)sp; |
| } |
| r->rip = (uintptr)runtime·sigpanic; |
| return; |
| } |
| |
| if(runtime·sigtab[sig].flags & SigQueue) { |
| if(runtime·sigsend(sig) || (runtime·sigtab[sig].flags & SigIgnore)) |
| return; |
| runtime·exit(2); // SIGINT, SIGTERM, etc |
| } |
| |
| if(runtime·panicking) // traceback already printed |
| runtime·exit(2); |
| runtime·panicking = 1; |
| |
| if(sig < 0 || sig >= NSIG) |
| runtime·printf("Signal %d\n", sig); |
| else |
| runtime·printf("%s\n", runtime·sigtab[sig].name); |
| |
| runtime·printf("PC=%X\n", r->rip); |
| runtime·printf("\n"); |
| |
| if(runtime·gotraceback()){ |
| runtime·traceback((void*)r->rip, (void*)r->rsp, 0, gp); |
| runtime·tracebackothers(gp); |
| runtime·dumpregs(r); |
| } |
| |
| runtime·exit(2); |
| } |
| |
| void |
| runtime·signalstack(byte *p, int32 n) |
| { |
| Sigaltstack st; |
| |
| st.ss_sp = p; |
| st.ss_size = n; |
| st.ss_flags = 0; |
| runtime·sigaltstack(&st, nil); |
| } |
| |
| static void |
| sigaction(int32 i, void (*fn)(int32, Siginfo*, void*, G*), bool restart) |
| { |
| Sigaction sa; |
| |
| runtime·memclr((byte*)&sa, sizeof sa); |
| sa.sa_flags = SA_ONSTACK | SA_SIGINFO | SA_RESTORER; |
| if(restart) |
| sa.sa_flags |= SA_RESTART; |
| sa.sa_mask = ~0ULL; |
| sa.sa_restorer = (void*)runtime·sigreturn; |
| if(fn == runtime·sighandler) |
| fn = (void*)runtime·sigtramp; |
| sa.sa_handler = fn; |
| runtime·rt_sigaction(i, &sa, nil, 8); |
| } |
| |
| void |
| runtime·initsig(int32 queue) |
| { |
| int32 i; |
| void *fn; |
| |
| runtime·siginit(); |
| |
| for(i = 0; i<NSIG; i++) { |
| if(runtime·sigtab[i].flags) { |
| if((runtime·sigtab[i].flags & SigQueue) != queue) |
| continue; |
| if(runtime·sigtab[i].flags & (SigCatch | SigQueue)) |
| fn = runtime·sighandler; |
| else |
| fn = runtime·sigignore; |
| sigaction(i, fn, (runtime·sigtab[i].flags & SigRestart) != 0); |
| } |
| } |
| } |
| |
| void |
| runtime·resetcpuprofiler(int32 hz) |
| { |
| Itimerval it; |
| |
| runtime·memclr((byte*)&it, sizeof it); |
| if(hz == 0) { |
| runtime·setitimer(ITIMER_PROF, &it, nil); |
| sigaction(SIGPROF, SIG_IGN, true); |
| } else { |
| sigaction(SIGPROF, runtime·sighandler, true); |
| it.it_interval.tv_sec = 0; |
| it.it_interval.tv_usec = 1000000 / hz; |
| it.it_value = it.it_interval; |
| runtime·setitimer(ITIMER_PROF, &it, nil); |
| } |
| m->profilehz = hz; |
| } |
| |
| void |
| os·sigpipe(void) |
| { |
| sigaction(SIGPIPE, SIG_DFL, false); |
| runtime·raisesigpipe(); |
| } |