blob: f7ee3c448f09a69675b16ac8f5df4bda6bdb7b51 [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
#include "defs.h"
#include "os.h"
#include "signals.h"
void
dumpregs(Regs *r)
{
printf("eax %x\n", r->eax);
printf("ebx %x\n", r->ebx);
printf("ecx %x\n", r->ecx);
printf("edx %x\n", r->edx);
printf("edi %x\n", r->edi);
printf("esi %x\n", r->esi);
printf("ebp %x\n", r->ebp);
printf("esp %x\n", r->esp);
printf("eip %x\n", r->eip);
printf("eflags %x\n", r->eflags);
printf("cs %x\n", r->cs);
printf("fs %x\n", r->fs);
printf("gs %x\n", r->gs);
}
String
signame(int32 sig)
{
if(sig < 0 || sig >= NSIG)
return emptystring;
return gostringnocopy((byte*)sigtab[sig].name);
}
void
sighandler(int32 sig, Siginfo *info, void *context)
{
Ucontext *uc;
Mcontext *mc;
Regs *r;
uintptr *sp;
void (*fn)(void);
G *gp;
byte *pc;
uc = context;
mc = uc->uc_mcontext;
r = &mc->ss;
if((gp = m->curg) != nil && (sigtab[sig].flags & SigPanic)) {
// Work around Leopard bug that doesn't set FPE_INTDIV.
// Look at instruction to see if it is a divide.
// Not necessary in Snow Leopard (si_code will be != 0).
if(sig == SIGFPE && info->si_code == 0) {
pc = (byte*)r->eip;
if(pc[0] == 0x66) // 16-bit instruction prefix
pc++;
if(pc[0] == 0xF6 || pc[0] == 0xF7)
info->si_code = FPE_INTDIV;
}
// Make it look like a call to the signal func.
// Have to pass arguments out of band since
// augmenting the stack frame would break
// the unwinding code.
gp->sig = sig;
gp->sigcode0 = info->si_code;
gp->sigcode1 = (uintptr)info->si_addr;
// Only push sigpanic if r->eip != 0.
// If r->eip == 0, probably panicked because of a
// call to a nil func. Not pushing that onto sp will
// make the trace look like a call to sigpanic instead.
// (Otherwise the trace will end at sigpanic and we
// won't get to see who faulted.)
if(r->eip != 0) {
sp = (uintptr*)r->esp;
*--sp = r->eip;
r->esp = (uintptr)sp;
}
r->eip = (uintptr)sigpanic;
return;
}
if(sigtab[sig].flags & SigQueue) {
if(sigsend(sig) || (sigtab[sig].flags & SigIgnore))
return;
exit(2); // SIGINT, SIGTERM, etc
}
if(panicking) // traceback already printed
exit(2);
panicking = 1;
if(sig < 0 || sig >= NSIG){
printf("Signal %d\n", sig);
}else{
printf("%s\n", sigtab[sig].name);
}
printf("pc: %x\n", r->eip);
printf("\n");
if(gotraceback()){
traceback((void*)r->eip, (void*)r->esp, 0, m->curg);
tracebackothers(m->curg);
dumpregs(r);
}
breakpoint();
exit(2);
}
void
sigignore(int32, Siginfo*, void*)
{
}
void
signalstack(byte *p, int32 n)
{
StackT st;
st.ss_sp = p;
st.ss_size = n;
st.ss_flags = 0;
sigaltstack(&st, nil);
}
void
initsig(int32 queue)
{
int32 i;
static Sigaction sa;
siginit();
sa.sa_flags |= SA_SIGINFO|SA_ONSTACK;
sa.sa_mask = 0xFFFFFFFFU;
sa.sa_tramp = sigtramp; // sigtramp's job is to call into real handler
for(i = 0; i<NSIG; i++) {
if(sigtab[i].flags) {
if((sigtab[i].flags & SigQueue) != queue)
continue;
if(sigtab[i].flags & (SigCatch | SigQueue)) {
sa.__sigaction_u.__sa_sigaction = sighandler;
} else {
sa.__sigaction_u.__sa_sigaction = sigignore;
}
if(sigtab[i].flags & SigRestart)
sa.sa_flags |= SA_RESTART;
else
sa.sa_flags &= ~SA_RESTART;
sigaction(i, &sa, nil);
}
}
}