| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "cmd/compile/internal/ssa" |
| "cmd/compile/internal/types" |
| "cmd/internal/dwarf" |
| "cmd/internal/obj" |
| "cmd/internal/objabi" |
| "cmd/internal/src" |
| "cmd/internal/sys" |
| "internal/race" |
| "math/rand" |
| "sort" |
| "sync" |
| "time" |
| ) |
| |
| // "Portable" code generation. |
| |
| var ( |
| nBackendWorkers int // number of concurrent backend workers, set by a compiler flag |
| compilequeue []*Node // functions waiting to be compiled |
| ) |
| |
| func emitptrargsmap(fn *Node) { |
| if fn.funcname() == "_" || fn.Func.Nname.Sym.Linkname != "" { |
| return |
| } |
| lsym := Ctxt.Lookup(fn.Func.lsym.Name + ".args_stackmap") |
| |
| nptr := int(fn.Type.ArgWidth() / int64(Widthptr)) |
| bv := bvalloc(int32(nptr) * 2) |
| nbitmap := 1 |
| if fn.Type.NumResults() > 0 { |
| nbitmap = 2 |
| } |
| off := duint32(lsym, 0, uint32(nbitmap)) |
| off = duint32(lsym, off, uint32(bv.n)) |
| |
| if fn.IsMethod() { |
| onebitwalktype1(fn.Type.Recvs(), 0, bv) |
| } |
| if fn.Type.NumParams() > 0 { |
| onebitwalktype1(fn.Type.Params(), 0, bv) |
| } |
| off = dbvec(lsym, off, bv) |
| |
| if fn.Type.NumResults() > 0 { |
| onebitwalktype1(fn.Type.Results(), 0, bv) |
| off = dbvec(lsym, off, bv) |
| } |
| |
| ggloblsym(lsym, int32(off), obj.RODATA|obj.LOCAL) |
| } |
| |
| // cmpstackvarlt reports whether the stack variable a sorts before b. |
| // |
| // Sort the list of stack variables. Autos after anything else, |
| // within autos, unused after used, within used, things with |
| // pointers first, zeroed things first, and then decreasing size. |
| // Because autos are laid out in decreasing addresses |
| // on the stack, pointers first, zeroed things first and decreasing size |
| // really means, in memory, things with pointers needing zeroing at |
| // the top of the stack and increasing in size. |
| // Non-autos sort on offset. |
| func cmpstackvarlt(a, b *Node) bool { |
| if (a.Class() == PAUTO) != (b.Class() == PAUTO) { |
| return b.Class() == PAUTO |
| } |
| |
| if a.Class() != PAUTO { |
| return a.Xoffset < b.Xoffset |
| } |
| |
| if a.Name.Used() != b.Name.Used() { |
| return a.Name.Used() |
| } |
| |
| ap := types.Haspointers(a.Type) |
| bp := types.Haspointers(b.Type) |
| if ap != bp { |
| return ap |
| } |
| |
| ap = a.Name.Needzero() |
| bp = b.Name.Needzero() |
| if ap != bp { |
| return ap |
| } |
| |
| if a.Type.Width != b.Type.Width { |
| return a.Type.Width > b.Type.Width |
| } |
| |
| return a.Sym.Name < b.Sym.Name |
| } |
| |
| // byStackvar implements sort.Interface for []*Node using cmpstackvarlt. |
| type byStackVar []*Node |
| |
| func (s byStackVar) Len() int { return len(s) } |
| func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) } |
| func (s byStackVar) Swap(i, j int) { s[i], s[j] = s[j], s[i] } |
| |
| func (s *ssafn) AllocFrame(f *ssa.Func) { |
| s.stksize = 0 |
| s.stkptrsize = 0 |
| fn := s.curfn.Func |
| |
| // Mark the PAUTO's unused. |
| for _, ln := range fn.Dcl { |
| if ln.Class() == PAUTO { |
| ln.Name.SetUsed(false) |
| } |
| } |
| |
| for _, l := range f.RegAlloc { |
| if ls, ok := l.(ssa.LocalSlot); ok { |
| ls.N.(*Node).Name.SetUsed(true) |
| } |
| } |
| |
| scratchUsed := false |
| for _, b := range f.Blocks { |
| for _, v := range b.Values { |
| if n, ok := v.Aux.(*Node); ok { |
| switch n.Class() { |
| case PPARAM, PPARAMOUT: |
| // Don't modify nodfp; it is a global. |
| if n != nodfp { |
| n.Name.SetUsed(true) |
| } |
| case PAUTO: |
| n.Name.SetUsed(true) |
| } |
| } |
| if !scratchUsed { |
| scratchUsed = v.Op.UsesScratch() |
| } |
| |
| } |
| } |
| |
| if f.Config.NeedsFpScratch && scratchUsed { |
| s.scratchFpMem = tempAt(src.NoXPos, s.curfn, types.Types[TUINT64]) |
| } |
| |
| sort.Sort(byStackVar(fn.Dcl)) |
| |
| // Reassign stack offsets of the locals that are used. |
| lastHasPtr := false |
| for i, n := range fn.Dcl { |
| if n.Op != ONAME || n.Class() != PAUTO { |
| continue |
| } |
| if !n.Name.Used() { |
| fn.Dcl = fn.Dcl[:i] |
| break |
| } |
| |
| dowidth(n.Type) |
| w := n.Type.Width |
| if w >= thearch.MAXWIDTH || w < 0 { |
| Fatalf("bad width") |
| } |
| if w == 0 && lastHasPtr { |
| // Pad between a pointer-containing object and a zero-sized object. |
| // This prevents a pointer to the zero-sized object from being interpreted |
| // as a pointer to the pointer-containing object (and causing it |
| // to be scanned when it shouldn't be). See issue 24993. |
| w = 1 |
| } |
| s.stksize += w |
| s.stksize = Rnd(s.stksize, int64(n.Type.Align)) |
| if types.Haspointers(n.Type) { |
| s.stkptrsize = s.stksize |
| lastHasPtr = true |
| } else { |
| lastHasPtr = false |
| } |
| if thearch.LinkArch.InFamily(sys.MIPS, sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) { |
| s.stksize = Rnd(s.stksize, int64(Widthptr)) |
| } |
| n.Xoffset = -s.stksize |
| } |
| |
| s.stksize = Rnd(s.stksize, int64(Widthreg)) |
| s.stkptrsize = Rnd(s.stkptrsize, int64(Widthreg)) |
| } |
| |
| func funccompile(fn *Node) { |
| if Curfn != nil { |
| Fatalf("funccompile %v inside %v", fn.Func.Nname.Sym, Curfn.Func.Nname.Sym) |
| } |
| |
| if fn.Type == nil { |
| if nerrors == 0 { |
| Fatalf("funccompile missing type") |
| } |
| return |
| } |
| |
| // assign parameter offsets |
| dowidth(fn.Type) |
| |
| if fn.Nbody.Len() == 0 { |
| // Initialize ABI wrappers if necessary. |
| fn.Func.initLSym(false) |
| emitptrargsmap(fn) |
| return |
| } |
| |
| dclcontext = PAUTO |
| Curfn = fn |
| |
| compile(fn) |
| |
| Curfn = nil |
| dclcontext = PEXTERN |
| } |
| |
| func compile(fn *Node) { |
| saveerrors() |
| |
| order(fn) |
| if nerrors != 0 { |
| return |
| } |
| |
| walk(fn) |
| if nerrors != 0 { |
| return |
| } |
| if instrumenting { |
| instrument(fn) |
| } |
| |
| // From this point, there should be no uses of Curfn. Enforce that. |
| Curfn = nil |
| |
| if fn.funcname() == "_" { |
| // We don't need to generate code for this function, just report errors in its body. |
| // At this point we've generated any errors needed. |
| // (Beyond here we generate only non-spec errors, like "stack frame too large".) |
| // See issue 29870. |
| return |
| } |
| |
| // Set up the function's LSym early to avoid data races with the assemblers. |
| fn.Func.initLSym(true) |
| |
| // Make sure type syms are declared for all types that might |
| // be types of stack objects. We need to do this here |
| // because symbols must be allocated before the parallel |
| // phase of the compiler. |
| for _, n := range fn.Func.Dcl { |
| switch n.Class() { |
| case PPARAM, PPARAMOUT, PAUTO: |
| if livenessShouldTrack(n) && n.Name.Addrtaken() { |
| dtypesym(n.Type) |
| // Also make sure we allocate a linker symbol |
| // for the stack object data, for the same reason. |
| if fn.Func.lsym.Func.StackObjects == nil { |
| fn.Func.lsym.Func.StackObjects = Ctxt.Lookup(fn.Func.lsym.Name + ".stkobj") |
| } |
| } |
| } |
| } |
| |
| if compilenow(fn) { |
| compileSSA(fn, 0) |
| } else { |
| compilequeue = append(compilequeue, fn) |
| } |
| } |
| |
| // compilenow reports whether to compile immediately. |
| // If functions are not compiled immediately, |
| // they are enqueued in compilequeue, |
| // which is drained by compileFunctions. |
| func compilenow(fn *Node) bool { |
| // Issue 38068: if this function is a method AND an inline |
| // candidate AND was not inlined (yet), put it onto the compile |
| // queue instead of compiling it immediately. This is in case we |
| // wind up inlining it into a method wrapper that is generated by |
| // compiling a function later on in the xtop list. |
| if fn.IsMethod() && isInlinableButNotInlined(fn) { |
| return false |
| } |
| return nBackendWorkers == 1 && Debug_compilelater == 0 |
| } |
| |
| // isInlinableButNotInlined returns true if 'fn' was marked as an |
| // inline candidate but then never inlined (presumably because we |
| // found no call sites). |
| func isInlinableButNotInlined(fn *Node) bool { |
| if fn.Func.Nname.Func.Inl == nil { |
| return false |
| } |
| if fn.Sym == nil { |
| return true |
| } |
| return !fn.Sym.Linksym().WasInlined() |
| } |
| |
| const maxStackSize = 1 << 30 |
| |
| // compileSSA builds an SSA backend function, |
| // uses it to generate a plist, |
| // and flushes that plist to machine code. |
| // worker indicates which of the backend workers is doing the processing. |
| func compileSSA(fn *Node, worker int) { |
| f := buildssa(fn, worker) |
| // Note: check arg size to fix issue 25507. |
| if f.Frontend().(*ssafn).stksize >= maxStackSize || fn.Type.ArgWidth() >= maxStackSize { |
| largeStackFramesMu.Lock() |
| largeStackFrames = append(largeStackFrames, largeStack{locals: f.Frontend().(*ssafn).stksize, args: fn.Type.ArgWidth(), pos: fn.Pos}) |
| largeStackFramesMu.Unlock() |
| return |
| } |
| pp := newProgs(fn, worker) |
| defer pp.Free() |
| genssa(f, pp) |
| // Check frame size again. |
| // The check above included only the space needed for local variables. |
| // After genssa, the space needed includes local variables and the callee arg region. |
| // We must do this check prior to calling pp.Flush. |
| // If there are any oversized stack frames, |
| // the assembler may emit inscrutable complaints about invalid instructions. |
| if pp.Text.To.Offset >= maxStackSize { |
| largeStackFramesMu.Lock() |
| locals := f.Frontend().(*ssafn).stksize |
| largeStackFrames = append(largeStackFrames, largeStack{locals: locals, args: fn.Type.ArgWidth(), callee: pp.Text.To.Offset - locals, pos: fn.Pos}) |
| largeStackFramesMu.Unlock() |
| return |
| } |
| |
| pp.Flush() // assemble, fill in boilerplate, etc. |
| // fieldtrack must be called after pp.Flush. See issue 20014. |
| fieldtrack(pp.Text.From.Sym, fn.Func.FieldTrack) |
| } |
| |
| func init() { |
| if race.Enabled { |
| rand.Seed(time.Now().UnixNano()) |
| } |
| } |
| |
| // compileFunctions compiles all functions in compilequeue. |
| // It fans out nBackendWorkers to do the work |
| // and waits for them to complete. |
| func compileFunctions() { |
| if len(compilequeue) != 0 { |
| sizeCalculationDisabled = true // not safe to calculate sizes concurrently |
| if race.Enabled { |
| // Randomize compilation order to try to shake out races. |
| tmp := make([]*Node, len(compilequeue)) |
| perm := rand.Perm(len(compilequeue)) |
| for i, v := range perm { |
| tmp[v] = compilequeue[i] |
| } |
| copy(compilequeue, tmp) |
| } else { |
| // Compile the longest functions first, |
| // since they're most likely to be the slowest. |
| // This helps avoid stragglers. |
| sort.Slice(compilequeue, func(i, j int) bool { |
| return compilequeue[i].Nbody.Len() > compilequeue[j].Nbody.Len() |
| }) |
| } |
| var wg sync.WaitGroup |
| Ctxt.InParallel = true |
| c := make(chan *Node, nBackendWorkers) |
| for i := 0; i < nBackendWorkers; i++ { |
| wg.Add(1) |
| go func(worker int) { |
| for fn := range c { |
| compileSSA(fn, worker) |
| } |
| wg.Done() |
| }(i) |
| } |
| for _, fn := range compilequeue { |
| c <- fn |
| } |
| close(c) |
| compilequeue = nil |
| wg.Wait() |
| Ctxt.InParallel = false |
| sizeCalculationDisabled = false |
| } |
| } |
| |
| func debuginfo(fnsym *obj.LSym, infosym *obj.LSym, curfn interface{}) ([]dwarf.Scope, dwarf.InlCalls) { |
| fn := curfn.(*Node) |
| if fn.Func.Nname != nil { |
| if expect := fn.Func.Nname.Sym.Linksym(); fnsym != expect { |
| Fatalf("unexpected fnsym: %v != %v", fnsym, expect) |
| } |
| } |
| |
| var apdecls []*Node |
| // Populate decls for fn. |
| for _, n := range fn.Func.Dcl { |
| if n.Op != ONAME { // might be OTYPE or OLITERAL |
| continue |
| } |
| switch n.Class() { |
| case PAUTO: |
| if !n.Name.Used() { |
| // Text == nil -> generating abstract function |
| if fnsym.Func.Text != nil { |
| Fatalf("debuginfo unused node (AllocFrame should truncate fn.Func.Dcl)") |
| } |
| continue |
| } |
| case PPARAM, PPARAMOUT: |
| default: |
| continue |
| } |
| apdecls = append(apdecls, n) |
| fnsym.Func.RecordAutoType(ngotype(n).Linksym()) |
| } |
| |
| decls, dwarfVars := createDwarfVars(fnsym, fn.Func, apdecls) |
| |
| // For each type referenced by the functions auto vars, attach a |
| // dummy relocation to the function symbol to insure that the type |
| // included in DWARF processing during linking. |
| typesyms := []*obj.LSym{} |
| for t, _ := range fnsym.Func.Autot { |
| typesyms = append(typesyms, t) |
| } |
| sort.Sort(obj.BySymName(typesyms)) |
| for _, sym := range typesyms { |
| r := obj.Addrel(infosym) |
| r.Sym = sym |
| r.Type = objabi.R_USETYPE |
| } |
| fnsym.Func.Autot = nil |
| |
| var varScopes []ScopeID |
| for _, decl := range decls { |
| pos := declPos(decl) |
| varScopes = append(varScopes, findScope(fn.Func.Marks, pos)) |
| } |
| |
| scopes := assembleScopes(fnsym, fn, dwarfVars, varScopes) |
| var inlcalls dwarf.InlCalls |
| if genDwarfInline > 0 { |
| inlcalls = assembleInlines(fnsym, dwarfVars) |
| } |
| return scopes, inlcalls |
| } |
| |
| func declPos(decl *Node) src.XPos { |
| if decl.Name.Defn != nil && (decl.Name.Captured() || decl.Name.Byval()) { |
| // It's not clear which position is correct for captured variables here: |
| // * decl.Pos is the wrong position for captured variables, in the inner |
| // function, but it is the right position in the outer function. |
| // * decl.Name.Defn is nil for captured variables that were arguments |
| // on the outer function, however the decl.Pos for those seems to be |
| // correct. |
| // * decl.Name.Defn is the "wrong" thing for variables declared in the |
| // header of a type switch, it's their position in the header, rather |
| // than the position of the case statement. In principle this is the |
| // right thing, but here we prefer the latter because it makes each |
| // instance of the header variable local to the lexical block of its |
| // case statement. |
| // This code is probably wrong for type switch variables that are also |
| // captured. |
| return decl.Name.Defn.Pos |
| } |
| return decl.Pos |
| } |
| |
| // createSimpleVars creates a DWARF entry for every variable declared in the |
| // function, claiming that they are permanently on the stack. |
| func createSimpleVars(apDecls []*Node) ([]*Node, []*dwarf.Var, map[*Node]bool) { |
| var vars []*dwarf.Var |
| var decls []*Node |
| selected := make(map[*Node]bool) |
| for _, n := range apDecls { |
| if n.IsAutoTmp() { |
| continue |
| } |
| |
| decls = append(decls, n) |
| vars = append(vars, createSimpleVar(n)) |
| selected[n] = true |
| } |
| return decls, vars, selected |
| } |
| |
| func createSimpleVar(n *Node) *dwarf.Var { |
| var abbrev int |
| offs := n.Xoffset |
| |
| switch n.Class() { |
| case PAUTO: |
| abbrev = dwarf.DW_ABRV_AUTO |
| if Ctxt.FixedFrameSize() == 0 { |
| offs -= int64(Widthptr) |
| } |
| if objabi.Framepointer_enabled(objabi.GOOS, objabi.GOARCH) || objabi.GOARCH == "arm64" { |
| // There is a word space for FP on ARM64 even if the frame pointer is disabled |
| offs -= int64(Widthptr) |
| } |
| |
| case PPARAM, PPARAMOUT: |
| abbrev = dwarf.DW_ABRV_PARAM |
| offs += Ctxt.FixedFrameSize() |
| default: |
| Fatalf("createSimpleVar unexpected class %v for node %v", n.Class(), n) |
| } |
| |
| typename := dwarf.InfoPrefix + typesymname(n.Type) |
| inlIndex := 0 |
| if genDwarfInline > 1 { |
| if n.Name.InlFormal() || n.Name.InlLocal() { |
| inlIndex = posInlIndex(n.Pos) + 1 |
| if n.Name.InlFormal() { |
| abbrev = dwarf.DW_ABRV_PARAM |
| } |
| } |
| } |
| declpos := Ctxt.InnermostPos(declPos(n)) |
| return &dwarf.Var{ |
| Name: n.Sym.Name, |
| IsReturnValue: n.Class() == PPARAMOUT, |
| IsInlFormal: n.Name.InlFormal(), |
| Abbrev: abbrev, |
| StackOffset: int32(offs), |
| Type: Ctxt.Lookup(typename), |
| DeclFile: declpos.RelFilename(), |
| DeclLine: declpos.RelLine(), |
| DeclCol: declpos.Col(), |
| InlIndex: int32(inlIndex), |
| ChildIndex: -1, |
| } |
| } |
| |
| // createComplexVars creates recomposed DWARF vars with location lists, |
| // suitable for describing optimized code. |
| func createComplexVars(fn *Func) ([]*Node, []*dwarf.Var, map[*Node]bool) { |
| debugInfo := fn.DebugInfo |
| |
| // Produce a DWARF variable entry for each user variable. |
| var decls []*Node |
| var vars []*dwarf.Var |
| ssaVars := make(map[*Node]bool) |
| |
| for varID, dvar := range debugInfo.Vars { |
| n := dvar.(*Node) |
| ssaVars[n] = true |
| for _, slot := range debugInfo.VarSlots[varID] { |
| ssaVars[debugInfo.Slots[slot].N.(*Node)] = true |
| } |
| |
| if dvar := createComplexVar(fn, ssa.VarID(varID)); dvar != nil { |
| decls = append(decls, n) |
| vars = append(vars, dvar) |
| } |
| } |
| |
| return decls, vars, ssaVars |
| } |
| |
| // createDwarfVars process fn, returning a list of DWARF variables and the |
| // Nodes they represent. |
| func createDwarfVars(fnsym *obj.LSym, fn *Func, apDecls []*Node) ([]*Node, []*dwarf.Var) { |
| // Collect a raw list of DWARF vars. |
| var vars []*dwarf.Var |
| var decls []*Node |
| var selected map[*Node]bool |
| if Ctxt.Flag_locationlists && Ctxt.Flag_optimize && fn.DebugInfo != nil { |
| decls, vars, selected = createComplexVars(fn) |
| } else { |
| decls, vars, selected = createSimpleVars(apDecls) |
| } |
| |
| dcl := apDecls |
| if fnsym.WasInlined() { |
| dcl = preInliningDcls(fnsym) |
| } |
| |
| // If optimization is enabled, the list above will typically be |
| // missing some of the original pre-optimization variables in the |
| // function (they may have been promoted to registers, folded into |
| // constants, dead-coded away, etc). Input arguments not eligible |
| // for SSA optimization are also missing. Here we add back in entries |
| // for selected missing vars. Note that the recipe below creates a |
| // conservative location. The idea here is that we want to |
| // communicate to the user that "yes, there is a variable named X |
| // in this function, but no, I don't have enough information to |
| // reliably report its contents." |
| // For non-SSA-able arguments, however, the correct information |
| // is known -- they have a single home on the stack. |
| for _, n := range dcl { |
| if _, found := selected[n]; found { |
| continue |
| } |
| c := n.Sym.Name[0] |
| if c == '.' || n.Type.IsUntyped() { |
| continue |
| } |
| if n.Class() == PPARAM && !canSSAType(n.Type) { |
| // SSA-able args get location lists, and may move in and |
| // out of registers, so those are handled elsewhere. |
| // Autos and named output params seem to get handled |
| // with VARDEF, which creates location lists. |
| // Args not of SSA-able type are treated here; they |
| // are homed on the stack in a single place for the |
| // entire call. |
| vars = append(vars, createSimpleVar(n)) |
| decls = append(decls, n) |
| continue |
| } |
| typename := dwarf.InfoPrefix + typesymname(n.Type) |
| decls = append(decls, n) |
| abbrev := dwarf.DW_ABRV_AUTO_LOCLIST |
| isReturnValue := (n.Class() == PPARAMOUT) |
| if n.Class() == PPARAM || n.Class() == PPARAMOUT { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| } else if n.Class() == PAUTOHEAP { |
| // If dcl in question has been promoted to heap, do a bit |
| // of extra work to recover original class (auto or param); |
| // see issue 30908. This insures that we get the proper |
| // signature in the abstract function DIE, but leaves a |
| // misleading location for the param (we want pointer-to-heap |
| // and not stack). |
| // TODO(thanm): generate a better location expression |
| stackcopy := n.Name.Param.Stackcopy |
| if stackcopy != nil && (stackcopy.Class() == PPARAM || stackcopy.Class() == PPARAMOUT) { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| isReturnValue = (stackcopy.Class() == PPARAMOUT) |
| } |
| } |
| inlIndex := 0 |
| if genDwarfInline > 1 { |
| if n.Name.InlFormal() || n.Name.InlLocal() { |
| inlIndex = posInlIndex(n.Pos) + 1 |
| if n.Name.InlFormal() { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| } |
| } |
| } |
| declpos := Ctxt.InnermostPos(n.Pos) |
| vars = append(vars, &dwarf.Var{ |
| Name: n.Sym.Name, |
| IsReturnValue: isReturnValue, |
| Abbrev: abbrev, |
| StackOffset: int32(n.Xoffset), |
| Type: Ctxt.Lookup(typename), |
| DeclFile: declpos.RelFilename(), |
| DeclLine: declpos.RelLine(), |
| DeclCol: declpos.Col(), |
| InlIndex: int32(inlIndex), |
| ChildIndex: -1, |
| }) |
| // Record go type of to insure that it gets emitted by the linker. |
| fnsym.Func.RecordAutoType(ngotype(n).Linksym()) |
| } |
| |
| return decls, vars |
| } |
| |
| // Given a function that was inlined at some point during the |
| // compilation, return a sorted list of nodes corresponding to the |
| // autos/locals in that function prior to inlining. If this is a |
| // function that is not local to the package being compiled, then the |
| // names of the variables may have been "versioned" to avoid conflicts |
| // with local vars; disregard this versioning when sorting. |
| func preInliningDcls(fnsym *obj.LSym) []*Node { |
| fn := Ctxt.DwFixups.GetPrecursorFunc(fnsym).(*Node) |
| var rdcl []*Node |
| for _, n := range fn.Func.Inl.Dcl { |
| c := n.Sym.Name[0] |
| // Avoid reporting "_" parameters, since if there are more than |
| // one, it can result in a collision later on, as in #23179. |
| if unversion(n.Sym.Name) == "_" || c == '.' || n.Type.IsUntyped() { |
| continue |
| } |
| rdcl = append(rdcl, n) |
| } |
| return rdcl |
| } |
| |
| // stackOffset returns the stack location of a LocalSlot relative to the |
| // stack pointer, suitable for use in a DWARF location entry. This has nothing |
| // to do with its offset in the user variable. |
| func stackOffset(slot ssa.LocalSlot) int32 { |
| n := slot.N.(*Node) |
| var base int64 |
| switch n.Class() { |
| case PAUTO: |
| if Ctxt.FixedFrameSize() == 0 { |
| base -= int64(Widthptr) |
| } |
| if objabi.Framepointer_enabled(objabi.GOOS, objabi.GOARCH) || objabi.GOARCH == "arm64" { |
| // There is a word space for FP on ARM64 even if the frame pointer is disabled |
| base -= int64(Widthptr) |
| } |
| case PPARAM, PPARAMOUT: |
| base += Ctxt.FixedFrameSize() |
| } |
| return int32(base + n.Xoffset + slot.Off) |
| } |
| |
| // createComplexVar builds a single DWARF variable entry and location list. |
| func createComplexVar(fn *Func, varID ssa.VarID) *dwarf.Var { |
| debug := fn.DebugInfo |
| n := debug.Vars[varID].(*Node) |
| |
| var abbrev int |
| switch n.Class() { |
| case PAUTO: |
| abbrev = dwarf.DW_ABRV_AUTO_LOCLIST |
| case PPARAM, PPARAMOUT: |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| default: |
| return nil |
| } |
| |
| gotype := ngotype(n).Linksym() |
| typename := dwarf.InfoPrefix + gotype.Name[len("type."):] |
| inlIndex := 0 |
| if genDwarfInline > 1 { |
| if n.Name.InlFormal() || n.Name.InlLocal() { |
| inlIndex = posInlIndex(n.Pos) + 1 |
| if n.Name.InlFormal() { |
| abbrev = dwarf.DW_ABRV_PARAM_LOCLIST |
| } |
| } |
| } |
| declpos := Ctxt.InnermostPos(n.Pos) |
| dvar := &dwarf.Var{ |
| Name: n.Sym.Name, |
| IsReturnValue: n.Class() == PPARAMOUT, |
| IsInlFormal: n.Name.InlFormal(), |
| Abbrev: abbrev, |
| Type: Ctxt.Lookup(typename), |
| // The stack offset is used as a sorting key, so for decomposed |
| // variables just give it the first one. It's not used otherwise. |
| // This won't work well if the first slot hasn't been assigned a stack |
| // location, but it's not obvious how to do better. |
| StackOffset: stackOffset(debug.Slots[debug.VarSlots[varID][0]]), |
| DeclFile: declpos.RelFilename(), |
| DeclLine: declpos.RelLine(), |
| DeclCol: declpos.Col(), |
| InlIndex: int32(inlIndex), |
| ChildIndex: -1, |
| } |
| list := debug.LocationLists[varID] |
| if len(list) != 0 { |
| dvar.PutLocationList = func(listSym, startPC dwarf.Sym) { |
| debug.PutLocationList(list, Ctxt, listSym.(*obj.LSym), startPC.(*obj.LSym)) |
| } |
| } |
| return dvar |
| } |
| |
| // fieldtrack adds R_USEFIELD relocations to fnsym to record any |
| // struct fields that it used. |
| func fieldtrack(fnsym *obj.LSym, tracked map[*types.Sym]struct{}) { |
| if fnsym == nil { |
| return |
| } |
| if objabi.Fieldtrack_enabled == 0 || len(tracked) == 0 { |
| return |
| } |
| |
| trackSyms := make([]*types.Sym, 0, len(tracked)) |
| for sym := range tracked { |
| trackSyms = append(trackSyms, sym) |
| } |
| sort.Sort(symByName(trackSyms)) |
| for _, sym := range trackSyms { |
| r := obj.Addrel(fnsym) |
| r.Sym = sym.Linksym() |
| r.Type = objabi.R_USEFIELD |
| } |
| } |
| |
| type symByName []*types.Sym |
| |
| func (a symByName) Len() int { return len(a) } |
| func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name } |
| func (a symByName) Swap(i, j int) { a[i], a[j] = a[j], a[i] } |