| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Garbage collector: type and heap bitmaps. |
| // |
| // Stack, data, and bss bitmaps |
| // |
| // Stack frames and global variables in the data and bss sections are |
| // described by bitmaps with 1 bit per pointer-sized word. A "1" bit |
| // means the word is a live pointer to be visited by the GC (referred to |
| // as "pointer"). A "0" bit means the word should be ignored by GC |
| // (referred to as "scalar", though it could be a dead pointer value). |
| // |
| // Heap bitmap |
| // |
| // The heap bitmap comprises 1 bit for each pointer-sized word in the heap, |
| // recording whether a pointer is stored in that word or not. This bitmap |
| // is stored in the heapArena metadata backing each heap arena. |
| // That is, if ha is the heapArena for the arena starting at "start", |
| // then ha.bitmap[0] holds the 64 bits for the 64 words "start" |
| // through start+63*ptrSize, ha.bitmap[1] holds the entries for |
| // start+64*ptrSize through start+127*ptrSize, and so on. |
| // Bits correspond to words in little-endian order. ha.bitmap[0]&1 represents |
| // the word at "start", ha.bitmap[0]>>1&1 represents the word at start+8, etc. |
| // (For 32-bit platforms, s/64/32/.) |
| // |
| // We also keep a noMorePtrs bitmap which allows us to stop scanning |
| // the heap bitmap early in certain situations. If ha.noMorePtrs[i]>>j&1 |
| // is 1, then the object containing the last word described by ha.bitmap[8*i+j] |
| // has no more pointers beyond those described by ha.bitmap[8*i+j]. |
| // If ha.noMorePtrs[i]>>j&1 is set, the entries in ha.bitmap[8*i+j+1] and |
| // beyond must all be zero until the start of the next object. |
| // |
| // The bitmap for noscan spans is set to all zero at span allocation time. |
| // |
| // The bitmap for unallocated objects in scannable spans is not maintained |
| // (can be junk). |
| |
| package runtime |
| |
| import ( |
| "internal/goarch" |
| "runtime/internal/atomic" |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| // addb returns the byte pointer p+n. |
| // |
| //go:nowritebarrier |
| //go:nosplit |
| func addb(p *byte, n uintptr) *byte { |
| // Note: wrote out full expression instead of calling add(p, n) |
| // to reduce the number of temporaries generated by the |
| // compiler for this trivial expression during inlining. |
| return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n)) |
| } |
| |
| // subtractb returns the byte pointer p-n. |
| // |
| //go:nowritebarrier |
| //go:nosplit |
| func subtractb(p *byte, n uintptr) *byte { |
| // Note: wrote out full expression instead of calling add(p, -n) |
| // to reduce the number of temporaries generated by the |
| // compiler for this trivial expression during inlining. |
| return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n)) |
| } |
| |
| // add1 returns the byte pointer p+1. |
| // |
| //go:nowritebarrier |
| //go:nosplit |
| func add1(p *byte) *byte { |
| // Note: wrote out full expression instead of calling addb(p, 1) |
| // to reduce the number of temporaries generated by the |
| // compiler for this trivial expression during inlining. |
| return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1)) |
| } |
| |
| // subtract1 returns the byte pointer p-1. |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nowritebarrier |
| //go:nosplit |
| func subtract1(p *byte) *byte { |
| // Note: wrote out full expression instead of calling subtractb(p, 1) |
| // to reduce the number of temporaries generated by the |
| // compiler for this trivial expression during inlining. |
| return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1)) |
| } |
| |
| // markBits provides access to the mark bit for an object in the heap. |
| // bytep points to the byte holding the mark bit. |
| // mask is a byte with a single bit set that can be &ed with *bytep |
| // to see if the bit has been set. |
| // *m.byte&m.mask != 0 indicates the mark bit is set. |
| // index can be used along with span information to generate |
| // the address of the object in the heap. |
| // We maintain one set of mark bits for allocation and one for |
| // marking purposes. |
| type markBits struct { |
| bytep *uint8 |
| mask uint8 |
| index uintptr |
| } |
| |
| //go:nosplit |
| func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits { |
| bytep, mask := s.allocBits.bitp(allocBitIndex) |
| return markBits{bytep, mask, allocBitIndex} |
| } |
| |
| // refillAllocCache takes 8 bytes s.allocBits starting at whichByte |
| // and negates them so that ctz (count trailing zeros) instructions |
| // can be used. It then places these 8 bytes into the cached 64 bit |
| // s.allocCache. |
| func (s *mspan) refillAllocCache(whichByte uintptr) { |
| bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte))) |
| aCache := uint64(0) |
| aCache |= uint64(bytes[0]) |
| aCache |= uint64(bytes[1]) << (1 * 8) |
| aCache |= uint64(bytes[2]) << (2 * 8) |
| aCache |= uint64(bytes[3]) << (3 * 8) |
| aCache |= uint64(bytes[4]) << (4 * 8) |
| aCache |= uint64(bytes[5]) << (5 * 8) |
| aCache |= uint64(bytes[6]) << (6 * 8) |
| aCache |= uint64(bytes[7]) << (7 * 8) |
| s.allocCache = ^aCache |
| } |
| |
| // nextFreeIndex returns the index of the next free object in s at |
| // or after s.freeindex. |
| // There are hardware instructions that can be used to make this |
| // faster if profiling warrants it. |
| func (s *mspan) nextFreeIndex() uintptr { |
| sfreeindex := s.freeindex |
| snelems := s.nelems |
| if sfreeindex == snelems { |
| return sfreeindex |
| } |
| if sfreeindex > snelems { |
| throw("s.freeindex > s.nelems") |
| } |
| |
| aCache := s.allocCache |
| |
| bitIndex := sys.TrailingZeros64(aCache) |
| for bitIndex == 64 { |
| // Move index to start of next cached bits. |
| sfreeindex = (sfreeindex + 64) &^ (64 - 1) |
| if sfreeindex >= snelems { |
| s.freeindex = snelems |
| return snelems |
| } |
| whichByte := sfreeindex / 8 |
| // Refill s.allocCache with the next 64 alloc bits. |
| s.refillAllocCache(whichByte) |
| aCache = s.allocCache |
| bitIndex = sys.TrailingZeros64(aCache) |
| // nothing available in cached bits |
| // grab the next 8 bytes and try again. |
| } |
| result := sfreeindex + uintptr(bitIndex) |
| if result >= snelems { |
| s.freeindex = snelems |
| return snelems |
| } |
| |
| s.allocCache >>= uint(bitIndex + 1) |
| sfreeindex = result + 1 |
| |
| if sfreeindex%64 == 0 && sfreeindex != snelems { |
| // We just incremented s.freeindex so it isn't 0. |
| // As each 1 in s.allocCache was encountered and used for allocation |
| // it was shifted away. At this point s.allocCache contains all 0s. |
| // Refill s.allocCache so that it corresponds |
| // to the bits at s.allocBits starting at s.freeindex. |
| whichByte := sfreeindex / 8 |
| s.refillAllocCache(whichByte) |
| } |
| s.freeindex = sfreeindex |
| return result |
| } |
| |
| // isFree reports whether the index'th object in s is unallocated. |
| // |
| // The caller must ensure s.state is mSpanInUse, and there must have |
| // been no preemption points since ensuring this (which could allow a |
| // GC transition, which would allow the state to change). |
| func (s *mspan) isFree(index uintptr) bool { |
| if index < s.freeIndexForScan { |
| return false |
| } |
| bytep, mask := s.allocBits.bitp(index) |
| return *bytep&mask == 0 |
| } |
| |
| // divideByElemSize returns n/s.elemsize. |
| // n must be within [0, s.npages*_PageSize), |
| // or may be exactly s.npages*_PageSize |
| // if s.elemsize is from sizeclasses.go. |
| func (s *mspan) divideByElemSize(n uintptr) uintptr { |
| const doubleCheck = false |
| |
| // See explanation in mksizeclasses.go's computeDivMagic. |
| q := uintptr((uint64(n) * uint64(s.divMul)) >> 32) |
| |
| if doubleCheck && q != n/s.elemsize { |
| println(n, "/", s.elemsize, "should be", n/s.elemsize, "but got", q) |
| throw("bad magic division") |
| } |
| return q |
| } |
| |
| func (s *mspan) objIndex(p uintptr) uintptr { |
| return s.divideByElemSize(p - s.base()) |
| } |
| |
| func markBitsForAddr(p uintptr) markBits { |
| s := spanOf(p) |
| objIndex := s.objIndex(p) |
| return s.markBitsForIndex(objIndex) |
| } |
| |
| func (s *mspan) markBitsForIndex(objIndex uintptr) markBits { |
| bytep, mask := s.gcmarkBits.bitp(objIndex) |
| return markBits{bytep, mask, objIndex} |
| } |
| |
| func (s *mspan) markBitsForBase() markBits { |
| return markBits{&s.gcmarkBits.x, uint8(1), 0} |
| } |
| |
| // isMarked reports whether mark bit m is set. |
| func (m markBits) isMarked() bool { |
| return *m.bytep&m.mask != 0 |
| } |
| |
| // setMarked sets the marked bit in the markbits, atomically. |
| func (m markBits) setMarked() { |
| // Might be racing with other updates, so use atomic update always. |
| // We used to be clever here and use a non-atomic update in certain |
| // cases, but it's not worth the risk. |
| atomic.Or8(m.bytep, m.mask) |
| } |
| |
| // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically. |
| func (m markBits) setMarkedNonAtomic() { |
| *m.bytep |= m.mask |
| } |
| |
| // clearMarked clears the marked bit in the markbits, atomically. |
| func (m markBits) clearMarked() { |
| // Might be racing with other updates, so use atomic update always. |
| // We used to be clever here and use a non-atomic update in certain |
| // cases, but it's not worth the risk. |
| atomic.And8(m.bytep, ^m.mask) |
| } |
| |
| // markBitsForSpan returns the markBits for the span base address base. |
| func markBitsForSpan(base uintptr) (mbits markBits) { |
| mbits = markBitsForAddr(base) |
| if mbits.mask != 1 { |
| throw("markBitsForSpan: unaligned start") |
| } |
| return mbits |
| } |
| |
| // advance advances the markBits to the next object in the span. |
| func (m *markBits) advance() { |
| if m.mask == 1<<7 { |
| m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1)) |
| m.mask = 1 |
| } else { |
| m.mask = m.mask << 1 |
| } |
| m.index++ |
| } |
| |
| // clobberdeadPtr is a special value that is used by the compiler to |
| // clobber dead stack slots, when -clobberdead flag is set. |
| const clobberdeadPtr = uintptr(0xdeaddead | 0xdeaddead<<((^uintptr(0)>>63)*32)) |
| |
| // badPointer throws bad pointer in heap panic. |
| func badPointer(s *mspan, p, refBase, refOff uintptr) { |
| // Typically this indicates an incorrect use |
| // of unsafe or cgo to store a bad pointer in |
| // the Go heap. It may also indicate a runtime |
| // bug. |
| // |
| // TODO(austin): We could be more aggressive |
| // and detect pointers to unallocated objects |
| // in allocated spans. |
| printlock() |
| print("runtime: pointer ", hex(p)) |
| if s != nil { |
| state := s.state.get() |
| if state != mSpanInUse { |
| print(" to unallocated span") |
| } else { |
| print(" to unused region of span") |
| } |
| print(" span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", state) |
| } |
| print("\n") |
| if refBase != 0 { |
| print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n") |
| gcDumpObject("object", refBase, refOff) |
| } |
| getg().m.traceback = 2 |
| throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)") |
| } |
| |
| // findObject returns the base address for the heap object containing |
| // the address p, the object's span, and the index of the object in s. |
| // If p does not point into a heap object, it returns base == 0. |
| // |
| // If p points is an invalid heap pointer and debug.invalidptr != 0, |
| // findObject panics. |
| // |
| // refBase and refOff optionally give the base address of the object |
| // in which the pointer p was found and the byte offset at which it |
| // was found. These are used for error reporting. |
| // |
| // It is nosplit so it is safe for p to be a pointer to the current goroutine's stack. |
| // Since p is a uintptr, it would not be adjusted if the stack were to move. |
| // |
| //go:nosplit |
| func findObject(p, refBase, refOff uintptr) (base uintptr, s *mspan, objIndex uintptr) { |
| s = spanOf(p) |
| // If s is nil, the virtual address has never been part of the heap. |
| // This pointer may be to some mmap'd region, so we allow it. |
| if s == nil { |
| if (GOARCH == "amd64" || GOARCH == "arm64") && p == clobberdeadPtr && debug.invalidptr != 0 { |
| // Crash if clobberdeadPtr is seen. Only on AMD64 and ARM64 for now, |
| // as they are the only platform where compiler's clobberdead mode is |
| // implemented. On these platforms clobberdeadPtr cannot be a valid address. |
| badPointer(s, p, refBase, refOff) |
| } |
| return |
| } |
| // If p is a bad pointer, it may not be in s's bounds. |
| // |
| // Check s.state to synchronize with span initialization |
| // before checking other fields. See also spanOfHeap. |
| if state := s.state.get(); state != mSpanInUse || p < s.base() || p >= s.limit { |
| // Pointers into stacks are also ok, the runtime manages these explicitly. |
| if state == mSpanManual { |
| return |
| } |
| // The following ensures that we are rigorous about what data |
| // structures hold valid pointers. |
| if debug.invalidptr != 0 { |
| badPointer(s, p, refBase, refOff) |
| } |
| return |
| } |
| |
| objIndex = s.objIndex(p) |
| base = s.base() + objIndex*s.elemsize |
| return |
| } |
| |
| // reflect_verifyNotInHeapPtr reports whether converting the not-in-heap pointer into a unsafe.Pointer is ok. |
| // |
| //go:linkname reflect_verifyNotInHeapPtr reflect.verifyNotInHeapPtr |
| func reflect_verifyNotInHeapPtr(p uintptr) bool { |
| // Conversion to a pointer is ok as long as findObject above does not call badPointer. |
| // Since we're already promised that p doesn't point into the heap, just disallow heap |
| // pointers and the special clobbered pointer. |
| return spanOf(p) == nil && p != clobberdeadPtr |
| } |
| |
| const ptrBits = 8 * goarch.PtrSize |
| |
| // heapBits provides access to the bitmap bits for a single heap word. |
| // The methods on heapBits take value receivers so that the compiler |
| // can more easily inline calls to those methods and registerize the |
| // struct fields independently. |
| type heapBits struct { |
| // heapBits will report on pointers in the range [addr,addr+size). |
| // The low bit of mask contains the pointerness of the word at addr |
| // (assuming valid>0). |
| addr, size uintptr |
| |
| // The next few pointer bits representing words starting at addr. |
| // Those bits already returned by next() are zeroed. |
| mask uintptr |
| // Number of bits in mask that are valid. mask is always less than 1<<valid. |
| valid uintptr |
| } |
| |
| // heapBitsForAddr returns the heapBits for the address addr. |
| // The caller must ensure [addr,addr+size) is in an allocated span. |
| // In particular, be careful not to point past the end of an object. |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nosplit |
| func heapBitsForAddr(addr, size uintptr) heapBits { |
| // Find arena |
| ai := arenaIndex(addr) |
| ha := mheap_.arenas[ai.l1()][ai.l2()] |
| |
| // Word index in arena. |
| word := addr / goarch.PtrSize % heapArenaWords |
| |
| // Word index and bit offset in bitmap array. |
| idx := word / ptrBits |
| off := word % ptrBits |
| |
| // Grab relevant bits of bitmap. |
| mask := ha.bitmap[idx] >> off |
| valid := ptrBits - off |
| |
| // Process depending on where the object ends. |
| nptr := size / goarch.PtrSize |
| if nptr < valid { |
| // Bits for this object end before the end of this bitmap word. |
| // Squash bits for the following objects. |
| mask &= 1<<(nptr&(ptrBits-1)) - 1 |
| valid = nptr |
| } else if nptr == valid { |
| // Bits for this object end at exactly the end of this bitmap word. |
| // All good. |
| } else { |
| // Bits for this object extend into the next bitmap word. See if there |
| // may be any pointers recorded there. |
| if uintptr(ha.noMorePtrs[idx/8])>>(idx%8)&1 != 0 { |
| // No more pointers in this object after this bitmap word. |
| // Update size so we know not to look there. |
| size = valid * goarch.PtrSize |
| } |
| } |
| |
| return heapBits{addr: addr, size: size, mask: mask, valid: valid} |
| } |
| |
| // Returns the (absolute) address of the next known pointer and |
| // a heapBits iterator representing any remaining pointers. |
| // If there are no more pointers, returns address 0. |
| // Note that next does not modify h. The caller must record the result. |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nosplit |
| func (h heapBits) next() (heapBits, uintptr) { |
| for { |
| if h.mask != 0 { |
| var i int |
| if goarch.PtrSize == 8 { |
| i = sys.TrailingZeros64(uint64(h.mask)) |
| } else { |
| i = sys.TrailingZeros32(uint32(h.mask)) |
| } |
| h.mask ^= uintptr(1) << (i & (ptrBits - 1)) |
| return h, h.addr + uintptr(i)*goarch.PtrSize |
| } |
| |
| // Skip words that we've already processed. |
| h.addr += h.valid * goarch.PtrSize |
| h.size -= h.valid * goarch.PtrSize |
| if h.size == 0 { |
| return h, 0 // no more pointers |
| } |
| |
| // Grab more bits and try again. |
| h = heapBitsForAddr(h.addr, h.size) |
| } |
| } |
| |
| // nextFast is like next, but can return 0 even when there are more pointers |
| // to be found. Callers should call next if nextFast returns 0 as its second |
| // return value. |
| // |
| // if addr, h = h.nextFast(); addr == 0 { |
| // if addr, h = h.next(); addr == 0 { |
| // ... no more pointers ... |
| // } |
| // } |
| // ... process pointer at addr ... |
| // |
| // nextFast is designed to be inlineable. |
| // |
| //go:nosplit |
| func (h heapBits) nextFast() (heapBits, uintptr) { |
| // TESTQ/JEQ |
| if h.mask == 0 { |
| return h, 0 |
| } |
| // BSFQ |
| var i int |
| if goarch.PtrSize == 8 { |
| i = sys.TrailingZeros64(uint64(h.mask)) |
| } else { |
| i = sys.TrailingZeros32(uint32(h.mask)) |
| } |
| // BTCQ |
| h.mask ^= uintptr(1) << (i & (ptrBits - 1)) |
| // LEAQ (XX)(XX*8) |
| return h, h.addr + uintptr(i)*goarch.PtrSize |
| } |
| |
| // bulkBarrierPreWrite executes a write barrier |
| // for every pointer slot in the memory range [src, src+size), |
| // using pointer/scalar information from [dst, dst+size). |
| // This executes the write barriers necessary before a memmove. |
| // src, dst, and size must be pointer-aligned. |
| // The range [dst, dst+size) must lie within a single object. |
| // It does not perform the actual writes. |
| // |
| // As a special case, src == 0 indicates that this is being used for a |
| // memclr. bulkBarrierPreWrite will pass 0 for the src of each write |
| // barrier. |
| // |
| // Callers should call bulkBarrierPreWrite immediately before |
| // calling memmove(dst, src, size). This function is marked nosplit |
| // to avoid being preempted; the GC must not stop the goroutine |
| // between the memmove and the execution of the barriers. |
| // The caller is also responsible for cgo pointer checks if this |
| // may be writing Go pointers into non-Go memory. |
| // |
| // The pointer bitmap is not maintained for allocations containing |
| // no pointers at all; any caller of bulkBarrierPreWrite must first |
| // make sure the underlying allocation contains pointers, usually |
| // by checking typ.ptrdata. |
| // |
| // Callers must perform cgo checks if writeBarrier.cgo. |
| // |
| //go:nosplit |
| func bulkBarrierPreWrite(dst, src, size uintptr) { |
| if (dst|src|size)&(goarch.PtrSize-1) != 0 { |
| throw("bulkBarrierPreWrite: unaligned arguments") |
| } |
| if !writeBarrier.needed { |
| return |
| } |
| if s := spanOf(dst); s == nil { |
| // If dst is a global, use the data or BSS bitmaps to |
| // execute write barriers. |
| for _, datap := range activeModules() { |
| if datap.data <= dst && dst < datap.edata { |
| bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) |
| return |
| } |
| } |
| for _, datap := range activeModules() { |
| if datap.bss <= dst && dst < datap.ebss { |
| bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) |
| return |
| } |
| } |
| return |
| } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst { |
| // dst was heap memory at some point, but isn't now. |
| // It can't be a global. It must be either our stack, |
| // or in the case of direct channel sends, it could be |
| // another stack. Either way, no need for barriers. |
| // This will also catch if dst is in a freed span, |
| // though that should never have. |
| return |
| } |
| |
| buf := &getg().m.p.ptr().wbBuf |
| h := heapBitsForAddr(dst, size) |
| if src == 0 { |
| for { |
| var addr uintptr |
| if h, addr = h.next(); addr == 0 { |
| break |
| } |
| dstx := (*uintptr)(unsafe.Pointer(addr)) |
| if !buf.putFast(*dstx, 0) { |
| wbBufFlush(nil, 0) |
| } |
| } |
| } else { |
| for { |
| var addr uintptr |
| if h, addr = h.next(); addr == 0 { |
| break |
| } |
| dstx := (*uintptr)(unsafe.Pointer(addr)) |
| srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst))) |
| if !buf.putFast(*dstx, *srcx) { |
| wbBufFlush(nil, 0) |
| } |
| } |
| } |
| } |
| |
| // bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but |
| // does not execute write barriers for [dst, dst+size). |
| // |
| // In addition to the requirements of bulkBarrierPreWrite |
| // callers need to ensure [dst, dst+size) is zeroed. |
| // |
| // This is used for special cases where e.g. dst was just |
| // created and zeroed with malloc. |
| // |
| //go:nosplit |
| func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr) { |
| if (dst|src|size)&(goarch.PtrSize-1) != 0 { |
| throw("bulkBarrierPreWrite: unaligned arguments") |
| } |
| if !writeBarrier.needed { |
| return |
| } |
| buf := &getg().m.p.ptr().wbBuf |
| h := heapBitsForAddr(dst, size) |
| for { |
| var addr uintptr |
| if h, addr = h.next(); addr == 0 { |
| break |
| } |
| srcx := (*uintptr)(unsafe.Pointer(addr - dst + src)) |
| if !buf.putFast(0, *srcx) { |
| wbBufFlush(nil, 0) |
| } |
| } |
| } |
| |
| // bulkBarrierBitmap executes write barriers for copying from [src, |
| // src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is |
| // assumed to start maskOffset bytes into the data covered by the |
| // bitmap in bits (which may not be a multiple of 8). |
| // |
| // This is used by bulkBarrierPreWrite for writes to data and BSS. |
| // |
| //go:nosplit |
| func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) { |
| word := maskOffset / goarch.PtrSize |
| bits = addb(bits, word/8) |
| mask := uint8(1) << (word % 8) |
| |
| buf := &getg().m.p.ptr().wbBuf |
| for i := uintptr(0); i < size; i += goarch.PtrSize { |
| if mask == 0 { |
| bits = addb(bits, 1) |
| if *bits == 0 { |
| // Skip 8 words. |
| i += 7 * goarch.PtrSize |
| continue |
| } |
| mask = 1 |
| } |
| if *bits&mask != 0 { |
| dstx := (*uintptr)(unsafe.Pointer(dst + i)) |
| if src == 0 { |
| if !buf.putFast(*dstx, 0) { |
| wbBufFlush(nil, 0) |
| } |
| } else { |
| srcx := (*uintptr)(unsafe.Pointer(src + i)) |
| if !buf.putFast(*dstx, *srcx) { |
| wbBufFlush(nil, 0) |
| } |
| } |
| } |
| mask <<= 1 |
| } |
| } |
| |
| // typeBitsBulkBarrier executes a write barrier for every |
| // pointer that would be copied from [src, src+size) to [dst, |
| // dst+size) by a memmove using the type bitmap to locate those |
| // pointer slots. |
| // |
| // The type typ must correspond exactly to [src, src+size) and [dst, dst+size). |
| // dst, src, and size must be pointer-aligned. |
| // The type typ must have a plain bitmap, not a GC program. |
| // The only use of this function is in channel sends, and the |
| // 64 kB channel element limit takes care of this for us. |
| // |
| // Must not be preempted because it typically runs right before memmove, |
| // and the GC must observe them as an atomic action. |
| // |
| // Callers must perform cgo checks if writeBarrier.cgo. |
| // |
| //go:nosplit |
| func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) { |
| if typ == nil { |
| throw("runtime: typeBitsBulkBarrier without type") |
| } |
| if typ.size != size { |
| println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size) |
| throw("runtime: invalid typeBitsBulkBarrier") |
| } |
| if typ.kind&kindGCProg != 0 { |
| println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog") |
| throw("runtime: invalid typeBitsBulkBarrier") |
| } |
| if !writeBarrier.needed { |
| return |
| } |
| ptrmask := typ.gcdata |
| buf := &getg().m.p.ptr().wbBuf |
| var bits uint32 |
| for i := uintptr(0); i < typ.ptrdata; i += goarch.PtrSize { |
| if i&(goarch.PtrSize*8-1) == 0 { |
| bits = uint32(*ptrmask) |
| ptrmask = addb(ptrmask, 1) |
| } else { |
| bits = bits >> 1 |
| } |
| if bits&1 != 0 { |
| dstx := (*uintptr)(unsafe.Pointer(dst + i)) |
| srcx := (*uintptr)(unsafe.Pointer(src + i)) |
| if !buf.putFast(*dstx, *srcx) { |
| wbBufFlush(nil, 0) |
| } |
| } |
| } |
| } |
| |
| // initHeapBits initializes the heap bitmap for a span. |
| // If this is a span of single pointer allocations, it initializes all |
| // words to pointer. If force is true, clears all bits. |
| func (s *mspan) initHeapBits(forceClear bool) { |
| if forceClear || s.spanclass.noscan() { |
| // Set all the pointer bits to zero. We do this once |
| // when the span is allocated so we don't have to do it |
| // for each object allocation. |
| base := s.base() |
| size := s.npages * pageSize |
| h := writeHeapBitsForAddr(base) |
| h.flush(base, size) |
| return |
| } |
| isPtrs := goarch.PtrSize == 8 && s.elemsize == goarch.PtrSize |
| if !isPtrs { |
| return // nothing to do |
| } |
| h := writeHeapBitsForAddr(s.base()) |
| size := s.npages * pageSize |
| nptrs := size / goarch.PtrSize |
| for i := uintptr(0); i < nptrs; i += ptrBits { |
| h = h.write(^uintptr(0), ptrBits) |
| } |
| h.flush(s.base(), size) |
| } |
| |
| // countAlloc returns the number of objects allocated in span s by |
| // scanning the allocation bitmap. |
| func (s *mspan) countAlloc() int { |
| count := 0 |
| bytes := divRoundUp(s.nelems, 8) |
| // Iterate over each 8-byte chunk and count allocations |
| // with an intrinsic. Note that newMarkBits guarantees that |
| // gcmarkBits will be 8-byte aligned, so we don't have to |
| // worry about edge cases, irrelevant bits will simply be zero. |
| for i := uintptr(0); i < bytes; i += 8 { |
| // Extract 64 bits from the byte pointer and get a OnesCount. |
| // Note that the unsafe cast here doesn't preserve endianness, |
| // but that's OK. We only care about how many bits are 1, not |
| // about the order we discover them in. |
| mrkBits := *(*uint64)(unsafe.Pointer(s.gcmarkBits.bytep(i))) |
| count += sys.OnesCount64(mrkBits) |
| } |
| return count |
| } |
| |
| type writeHeapBits struct { |
| addr uintptr // address that the low bit of mask represents the pointer state of. |
| mask uintptr // some pointer bits starting at the address addr. |
| valid uintptr // number of bits in buf that are valid (including low) |
| low uintptr // number of low-order bits to not overwrite |
| } |
| |
| func writeHeapBitsForAddr(addr uintptr) (h writeHeapBits) { |
| // We start writing bits maybe in the middle of a heap bitmap word. |
| // Remember how many bits into the word we started, so we can be sure |
| // not to overwrite the previous bits. |
| h.low = addr / goarch.PtrSize % ptrBits |
| |
| // round down to heap word that starts the bitmap word. |
| h.addr = addr - h.low*goarch.PtrSize |
| |
| // We don't have any bits yet. |
| h.mask = 0 |
| h.valid = h.low |
| |
| return |
| } |
| |
| // write appends the pointerness of the next valid pointer slots |
| // using the low valid bits of bits. 1=pointer, 0=scalar. |
| func (h writeHeapBits) write(bits, valid uintptr) writeHeapBits { |
| if h.valid+valid <= ptrBits { |
| // Fast path - just accumulate the bits. |
| h.mask |= bits << h.valid |
| h.valid += valid |
| return h |
| } |
| // Too many bits to fit in this word. Write the current word |
| // out and move on to the next word. |
| |
| data := h.mask | bits<<h.valid // mask for this word |
| h.mask = bits >> (ptrBits - h.valid) // leftover for next word |
| h.valid += valid - ptrBits // have h.valid+valid bits, writing ptrBits of them |
| |
| // Flush mask to the memory bitmap. |
| // TODO: figure out how to cache arena lookup. |
| ai := arenaIndex(h.addr) |
| ha := mheap_.arenas[ai.l1()][ai.l2()] |
| idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords |
| m := uintptr(1)<<h.low - 1 |
| ha.bitmap[idx] = ha.bitmap[idx]&m | data |
| // Note: no synchronization required for this write because |
| // the allocator has exclusive access to the page, and the bitmap |
| // entries are all for a single page. Also, visibility of these |
| // writes is guaranteed by the publication barrier in mallocgc. |
| |
| // Clear noMorePtrs bit, since we're going to be writing bits |
| // into the following word. |
| ha.noMorePtrs[idx/8] &^= uint8(1) << (idx % 8) |
| // Note: same as above |
| |
| // Move to next word of bitmap. |
| h.addr += ptrBits * goarch.PtrSize |
| h.low = 0 |
| return h |
| } |
| |
| // Add padding of size bytes. |
| func (h writeHeapBits) pad(size uintptr) writeHeapBits { |
| if size == 0 { |
| return h |
| } |
| words := size / goarch.PtrSize |
| for words > ptrBits { |
| h = h.write(0, ptrBits) |
| words -= ptrBits |
| } |
| return h.write(0, words) |
| } |
| |
| // Flush the bits that have been written, and add zeros as needed |
| // to cover the full object [addr, addr+size). |
| func (h writeHeapBits) flush(addr, size uintptr) { |
| // zeros counts the number of bits needed to represent the object minus the |
| // number of bits we've already written. This is the number of 0 bits |
| // that need to be added. |
| zeros := (addr+size-h.addr)/goarch.PtrSize - h.valid |
| |
| // Add zero bits up to the bitmap word boundary |
| if zeros > 0 { |
| z := ptrBits - h.valid |
| if z > zeros { |
| z = zeros |
| } |
| h.valid += z |
| zeros -= z |
| } |
| |
| // Find word in bitmap that we're going to write. |
| ai := arenaIndex(h.addr) |
| ha := mheap_.arenas[ai.l1()][ai.l2()] |
| idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords |
| |
| // Write remaining bits. |
| if h.valid != h.low { |
| m := uintptr(1)<<h.low - 1 // don't clear existing bits below "low" |
| m |= ^(uintptr(1)<<h.valid - 1) // don't clear existing bits above "valid" |
| ha.bitmap[idx] = ha.bitmap[idx]&m | h.mask |
| } |
| if zeros == 0 { |
| return |
| } |
| |
| // Record in the noMorePtrs map that there won't be any more 1 bits, |
| // so readers can stop early. |
| ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8) |
| |
| // Advance to next bitmap word. |
| h.addr += ptrBits * goarch.PtrSize |
| |
| // Continue on writing zeros for the rest of the object. |
| // For standard use of the ptr bits this is not required, as |
| // the bits are read from the beginning of the object. Some uses, |
| // like noscan spans, oblets, bulk write barriers, and cgocheck, might |
| // start mid-object, so these writes are still required. |
| for { |
| // Write zero bits. |
| ai := arenaIndex(h.addr) |
| ha := mheap_.arenas[ai.l1()][ai.l2()] |
| idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords |
| if zeros < ptrBits { |
| ha.bitmap[idx] &^= uintptr(1)<<zeros - 1 |
| break |
| } else if zeros == ptrBits { |
| ha.bitmap[idx] = 0 |
| break |
| } else { |
| ha.bitmap[idx] = 0 |
| zeros -= ptrBits |
| } |
| ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8) |
| h.addr += ptrBits * goarch.PtrSize |
| } |
| } |
| |
| // Read the bytes starting at the aligned pointer p into a uintptr. |
| // Read is little-endian. |
| func readUintptr(p *byte) uintptr { |
| x := *(*uintptr)(unsafe.Pointer(p)) |
| if goarch.BigEndian { |
| if goarch.PtrSize == 8 { |
| return uintptr(sys.Bswap64(uint64(x))) |
| } |
| return uintptr(sys.Bswap32(uint32(x))) |
| } |
| return x |
| } |
| |
| // heapBitsSetType records that the new allocation [x, x+size) |
| // holds in [x, x+dataSize) one or more values of type typ. |
| // (The number of values is given by dataSize / typ.size.) |
| // If dataSize < size, the fragment [x+dataSize, x+size) is |
| // recorded as non-pointer data. |
| // It is known that the type has pointers somewhere; |
| // malloc does not call heapBitsSetType when there are no pointers, |
| // because all free objects are marked as noscan during |
| // heapBitsSweepSpan. |
| // |
| // There can only be one allocation from a given span active at a time, |
| // and the bitmap for a span always falls on word boundaries, |
| // so there are no write-write races for access to the heap bitmap. |
| // Hence, heapBitsSetType can access the bitmap without atomics. |
| // |
| // There can be read-write races between heapBitsSetType and things |
| // that read the heap bitmap like scanobject. However, since |
| // heapBitsSetType is only used for objects that have not yet been |
| // made reachable, readers will ignore bits being modified by this |
| // function. This does mean this function cannot transiently modify |
| // bits that belong to neighboring objects. Also, on weakly-ordered |
| // machines, callers must execute a store/store (publication) barrier |
| // between calling this function and making the object reachable. |
| func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { |
| const doubleCheck = false // slow but helpful; enable to test modifications to this code |
| |
| if doubleCheck && dataSize%typ.size != 0 { |
| throw("heapBitsSetType: dataSize not a multiple of typ.size") |
| } |
| |
| if goarch.PtrSize == 8 && size == goarch.PtrSize { |
| // It's one word and it has pointers, it must be a pointer. |
| // Since all allocated one-word objects are pointers |
| // (non-pointers are aggregated into tinySize allocations), |
| // (*mspan).initHeapBits sets the pointer bits for us. |
| // Nothing to do here. |
| if doubleCheck { |
| h, addr := heapBitsForAddr(x, size).next() |
| if addr != x { |
| throw("heapBitsSetType: pointer bit missing") |
| } |
| _, addr = h.next() |
| if addr != 0 { |
| throw("heapBitsSetType: second pointer bit found") |
| } |
| } |
| return |
| } |
| |
| h := writeHeapBitsForAddr(x) |
| |
| // Handle GC program. |
| if typ.kind&kindGCProg != 0 { |
| // Expand the gc program into the storage we're going to use for the actual object. |
| obj := (*uint8)(unsafe.Pointer(x)) |
| n := runGCProg(addb(typ.gcdata, 4), obj) |
| // Use the expanded program to set the heap bits. |
| for i := uintptr(0); true; i += typ.size { |
| // Copy expanded program to heap bitmap. |
| p := obj |
| j := n |
| for j > 8 { |
| h = h.write(uintptr(*p), 8) |
| p = add1(p) |
| j -= 8 |
| } |
| h = h.write(uintptr(*p), j) |
| |
| if i+typ.size == dataSize { |
| break // no padding after last element |
| } |
| |
| // Pad with zeros to the start of the next element. |
| h = h.pad(typ.size - n*goarch.PtrSize) |
| } |
| |
| h.flush(x, size) |
| |
| // Erase the expanded GC program. |
| memclrNoHeapPointers(unsafe.Pointer(obj), (n+7)/8) |
| return |
| } |
| |
| // Note about sizes: |
| // |
| // typ.size is the number of words in the object, |
| // and typ.ptrdata is the number of words in the prefix |
| // of the object that contains pointers. That is, the final |
| // typ.size - typ.ptrdata words contain no pointers. |
| // This allows optimization of a common pattern where |
| // an object has a small header followed by a large scalar |
| // buffer. If we know the pointers are over, we don't have |
| // to scan the buffer's heap bitmap at all. |
| // The 1-bit ptrmasks are sized to contain only bits for |
| // the typ.ptrdata prefix, zero padded out to a full byte |
| // of bitmap. If there is more room in the allocated object, |
| // that space is pointerless. The noMorePtrs bitmap will prevent |
| // scanning large pointerless tails of an object. |
| // |
| // Replicated copies are not as nice: if there is an array of |
| // objects with scalar tails, all but the last tail does have to |
| // be initialized, because there is no way to say "skip forward". |
| |
| ptrs := typ.ptrdata / goarch.PtrSize |
| if typ.size == dataSize { // Single element |
| if ptrs <= ptrBits { // Single small element |
| m := readUintptr(typ.gcdata) |
| h = h.write(m, ptrs) |
| } else { // Single large element |
| p := typ.gcdata |
| for { |
| h = h.write(readUintptr(p), ptrBits) |
| p = addb(p, ptrBits/8) |
| ptrs -= ptrBits |
| if ptrs <= ptrBits { |
| break |
| } |
| } |
| m := readUintptr(p) |
| h = h.write(m, ptrs) |
| } |
| } else { // Repeated element |
| words := typ.size / goarch.PtrSize // total words, including scalar tail |
| if words <= ptrBits { // Repeated small element |
| n := dataSize / typ.size |
| m := readUintptr(typ.gcdata) |
| // Make larger unit to repeat |
| for words <= ptrBits/2 { |
| if n&1 != 0 { |
| h = h.write(m, words) |
| } |
| n /= 2 |
| m |= m << words |
| ptrs += words |
| words *= 2 |
| if n == 1 { |
| break |
| } |
| } |
| for n > 1 { |
| h = h.write(m, words) |
| n-- |
| } |
| h = h.write(m, ptrs) |
| } else { // Repeated large element |
| for i := uintptr(0); true; i += typ.size { |
| p := typ.gcdata |
| j := ptrs |
| for j > ptrBits { |
| h = h.write(readUintptr(p), ptrBits) |
| p = addb(p, ptrBits/8) |
| j -= ptrBits |
| } |
| m := readUintptr(p) |
| h = h.write(m, j) |
| if i+typ.size == dataSize { |
| break // don't need the trailing nonptr bits on the last element. |
| } |
| // Pad with zeros to the start of the next element. |
| h = h.pad(typ.size - typ.ptrdata) |
| } |
| } |
| } |
| h.flush(x, size) |
| |
| if doubleCheck { |
| h := heapBitsForAddr(x, size) |
| for i := uintptr(0); i < size; i += goarch.PtrSize { |
| // Compute the pointer bit we want at offset i. |
| want := false |
| if i < dataSize { |
| off := i % typ.size |
| if off < typ.ptrdata { |
| j := off / goarch.PtrSize |
| want = *addb(typ.gcdata, j/8)>>(j%8)&1 != 0 |
| } |
| } |
| if want { |
| var addr uintptr |
| h, addr = h.next() |
| if addr != x+i { |
| throw("heapBitsSetType: pointer entry not correct") |
| } |
| } |
| } |
| if _, addr := h.next(); addr != 0 { |
| throw("heapBitsSetType: extra pointer") |
| } |
| } |
| } |
| |
| var debugPtrmask struct { |
| lock mutex |
| data *byte |
| } |
| |
| // progToPointerMask returns the 1-bit pointer mask output by the GC program prog. |
| // size the size of the region described by prog, in bytes. |
| // The resulting bitvector will have no more than size/goarch.PtrSize bits. |
| func progToPointerMask(prog *byte, size uintptr) bitvector { |
| n := (size/goarch.PtrSize + 7) / 8 |
| x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1] |
| x[len(x)-1] = 0xa1 // overflow check sentinel |
| n = runGCProg(prog, &x[0]) |
| if x[len(x)-1] != 0xa1 { |
| throw("progToPointerMask: overflow") |
| } |
| return bitvector{int32(n), &x[0]} |
| } |
| |
| // Packed GC pointer bitmaps, aka GC programs. |
| // |
| // For large types containing arrays, the type information has a |
| // natural repetition that can be encoded to save space in the |
| // binary and in the memory representation of the type information. |
| // |
| // The encoding is a simple Lempel-Ziv style bytecode machine |
| // with the following instructions: |
| // |
| // 00000000: stop |
| // 0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes |
| // 10000000 n c: repeat the previous n bits c times; n, c are varints |
| // 1nnnnnnn c: repeat the previous n bits c times; c is a varint |
| |
| // runGCProg returns the number of 1-bit entries written to memory. |
| func runGCProg(prog, dst *byte) uintptr { |
| dstStart := dst |
| |
| // Bits waiting to be written to memory. |
| var bits uintptr |
| var nbits uintptr |
| |
| p := prog |
| Run: |
| for { |
| // Flush accumulated full bytes. |
| // The rest of the loop assumes that nbits <= 7. |
| for ; nbits >= 8; nbits -= 8 { |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| } |
| |
| // Process one instruction. |
| inst := uintptr(*p) |
| p = add1(p) |
| n := inst & 0x7F |
| if inst&0x80 == 0 { |
| // Literal bits; n == 0 means end of program. |
| if n == 0 { |
| // Program is over. |
| break Run |
| } |
| nbyte := n / 8 |
| for i := uintptr(0); i < nbyte; i++ { |
| bits |= uintptr(*p) << nbits |
| p = add1(p) |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| } |
| if n %= 8; n > 0 { |
| bits |= uintptr(*p) << nbits |
| p = add1(p) |
| nbits += n |
| } |
| continue Run |
| } |
| |
| // Repeat. If n == 0, it is encoded in a varint in the next bytes. |
| if n == 0 { |
| for off := uint(0); ; off += 7 { |
| x := uintptr(*p) |
| p = add1(p) |
| n |= (x & 0x7F) << off |
| if x&0x80 == 0 { |
| break |
| } |
| } |
| } |
| |
| // Count is encoded in a varint in the next bytes. |
| c := uintptr(0) |
| for off := uint(0); ; off += 7 { |
| x := uintptr(*p) |
| p = add1(p) |
| c |= (x & 0x7F) << off |
| if x&0x80 == 0 { |
| break |
| } |
| } |
| c *= n // now total number of bits to copy |
| |
| // If the number of bits being repeated is small, load them |
| // into a register and use that register for the entire loop |
| // instead of repeatedly reading from memory. |
| // Handling fewer than 8 bits here makes the general loop simpler. |
| // The cutoff is goarch.PtrSize*8 - 7 to guarantee that when we add |
| // the pattern to a bit buffer holding at most 7 bits (a partial byte) |
| // it will not overflow. |
| src := dst |
| const maxBits = goarch.PtrSize*8 - 7 |
| if n <= maxBits { |
| // Start with bits in output buffer. |
| pattern := bits |
| npattern := nbits |
| |
| // If we need more bits, fetch them from memory. |
| src = subtract1(src) |
| for npattern < n { |
| pattern <<= 8 |
| pattern |= uintptr(*src) |
| src = subtract1(src) |
| npattern += 8 |
| } |
| |
| // We started with the whole bit output buffer, |
| // and then we loaded bits from whole bytes. |
| // Either way, we might now have too many instead of too few. |
| // Discard the extra. |
| if npattern > n { |
| pattern >>= npattern - n |
| npattern = n |
| } |
| |
| // Replicate pattern to at most maxBits. |
| if npattern == 1 { |
| // One bit being repeated. |
| // If the bit is 1, make the pattern all 1s. |
| // If the bit is 0, the pattern is already all 0s, |
| // but we can claim that the number of bits |
| // in the word is equal to the number we need (c), |
| // because right shift of bits will zero fill. |
| if pattern == 1 { |
| pattern = 1<<maxBits - 1 |
| npattern = maxBits |
| } else { |
| npattern = c |
| } |
| } else { |
| b := pattern |
| nb := npattern |
| if nb+nb <= maxBits { |
| // Double pattern until the whole uintptr is filled. |
| for nb <= goarch.PtrSize*8 { |
| b |= b << nb |
| nb += nb |
| } |
| // Trim away incomplete copy of original pattern in high bits. |
| // TODO(rsc): Replace with table lookup or loop on systems without divide? |
| nb = maxBits / npattern * npattern |
| b &= 1<<nb - 1 |
| pattern = b |
| npattern = nb |
| } |
| } |
| |
| // Add pattern to bit buffer and flush bit buffer, c/npattern times. |
| // Since pattern contains >8 bits, there will be full bytes to flush |
| // on each iteration. |
| for ; c >= npattern; c -= npattern { |
| bits |= pattern << nbits |
| nbits += npattern |
| for nbits >= 8 { |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| nbits -= 8 |
| } |
| } |
| |
| // Add final fragment to bit buffer. |
| if c > 0 { |
| pattern &= 1<<c - 1 |
| bits |= pattern << nbits |
| nbits += c |
| } |
| continue Run |
| } |
| |
| // Repeat; n too large to fit in a register. |
| // Since nbits <= 7, we know the first few bytes of repeated data |
| // are already written to memory. |
| off := n - nbits // n > nbits because n > maxBits and nbits <= 7 |
| // Leading src fragment. |
| src = subtractb(src, (off+7)/8) |
| if frag := off & 7; frag != 0 { |
| bits |= uintptr(*src) >> (8 - frag) << nbits |
| src = add1(src) |
| nbits += frag |
| c -= frag |
| } |
| // Main loop: load one byte, write another. |
| // The bits are rotating through the bit buffer. |
| for i := c / 8; i > 0; i-- { |
| bits |= uintptr(*src) << nbits |
| src = add1(src) |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| } |
| // Final src fragment. |
| if c %= 8; c > 0 { |
| bits |= (uintptr(*src) & (1<<c - 1)) << nbits |
| nbits += c |
| } |
| } |
| |
| // Write any final bits out, using full-byte writes, even for the final byte. |
| totalBits := (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits |
| nbits += -nbits & 7 |
| for ; nbits > 0; nbits -= 8 { |
| *dst = uint8(bits) |
| dst = add1(dst) |
| bits >>= 8 |
| } |
| return totalBits |
| } |
| |
| // materializeGCProg allocates space for the (1-bit) pointer bitmask |
| // for an object of size ptrdata. Then it fills that space with the |
| // pointer bitmask specified by the program prog. |
| // The bitmask starts at s.startAddr. |
| // The result must be deallocated with dematerializeGCProg. |
| func materializeGCProg(ptrdata uintptr, prog *byte) *mspan { |
| // Each word of ptrdata needs one bit in the bitmap. |
| bitmapBytes := divRoundUp(ptrdata, 8*goarch.PtrSize) |
| // Compute the number of pages needed for bitmapBytes. |
| pages := divRoundUp(bitmapBytes, pageSize) |
| s := mheap_.allocManual(pages, spanAllocPtrScalarBits) |
| runGCProg(addb(prog, 4), (*byte)(unsafe.Pointer(s.startAddr))) |
| return s |
| } |
| func dematerializeGCProg(s *mspan) { |
| mheap_.freeManual(s, spanAllocPtrScalarBits) |
| } |
| |
| func dumpGCProg(p *byte) { |
| nptr := 0 |
| for { |
| x := *p |
| p = add1(p) |
| if x == 0 { |
| print("\t", nptr, " end\n") |
| break |
| } |
| if x&0x80 == 0 { |
| print("\t", nptr, " lit ", x, ":") |
| n := int(x+7) / 8 |
| for i := 0; i < n; i++ { |
| print(" ", hex(*p)) |
| p = add1(p) |
| } |
| print("\n") |
| nptr += int(x) |
| } else { |
| nbit := int(x &^ 0x80) |
| if nbit == 0 { |
| for nb := uint(0); ; nb += 7 { |
| x := *p |
| p = add1(p) |
| nbit |= int(x&0x7f) << nb |
| if x&0x80 == 0 { |
| break |
| } |
| } |
| } |
| count := 0 |
| for nb := uint(0); ; nb += 7 { |
| x := *p |
| p = add1(p) |
| count |= int(x&0x7f) << nb |
| if x&0x80 == 0 { |
| break |
| } |
| } |
| print("\t", nptr, " repeat ", nbit, " × ", count, "\n") |
| nptr += nbit * count |
| } |
| } |
| } |
| |
| // Testing. |
| |
| func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool { |
| target := (*stkframe)(ctxt) |
| if frame.sp <= target.sp && target.sp < frame.varp { |
| *target = *frame |
| return false |
| } |
| return true |
| } |
| |
| // reflect_gcbits returns the GC type info for x, for testing. |
| // The result is the bitmap entries (0 or 1), one entry per byte. |
| // |
| //go:linkname reflect_gcbits reflect.gcbits |
| func reflect_gcbits(x any) []byte { |
| return getgcmask(x) |
| } |
| |
| // Returns GC type info for the pointer stored in ep for testing. |
| // If ep points to the stack, only static live information will be returned |
| // (i.e. not for objects which are only dynamically live stack objects). |
| func getgcmask(ep any) (mask []byte) { |
| e := *efaceOf(&ep) |
| p := e.data |
| t := e._type |
| // data or bss |
| for _, datap := range activeModules() { |
| // data |
| if datap.data <= uintptr(p) && uintptr(p) < datap.edata { |
| bitmap := datap.gcdatamask.bytedata |
| n := (*ptrtype)(unsafe.Pointer(t)).elem.size |
| mask = make([]byte, n/goarch.PtrSize) |
| for i := uintptr(0); i < n; i += goarch.PtrSize { |
| off := (uintptr(p) + i - datap.data) / goarch.PtrSize |
| mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 |
| } |
| return |
| } |
| |
| // bss |
| if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { |
| bitmap := datap.gcbssmask.bytedata |
| n := (*ptrtype)(unsafe.Pointer(t)).elem.size |
| mask = make([]byte, n/goarch.PtrSize) |
| for i := uintptr(0); i < n; i += goarch.PtrSize { |
| off := (uintptr(p) + i - datap.bss) / goarch.PtrSize |
| mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 |
| } |
| return |
| } |
| } |
| |
| // heap |
| if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { |
| if s.spanclass.noscan() { |
| return nil |
| } |
| n := s.elemsize |
| hbits := heapBitsForAddr(base, n) |
| mask = make([]byte, n/goarch.PtrSize) |
| for { |
| var addr uintptr |
| if hbits, addr = hbits.next(); addr == 0 { |
| break |
| } |
| mask[(addr-base)/goarch.PtrSize] = 1 |
| } |
| // Callers expect this mask to end at the last pointer. |
| for len(mask) > 0 && mask[len(mask)-1] == 0 { |
| mask = mask[:len(mask)-1] |
| } |
| return |
| } |
| |
| // stack |
| if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi { |
| var frame stkframe |
| frame.sp = uintptr(p) |
| gentraceback(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0) |
| if frame.fn.valid() { |
| locals, _, _ := frame.getStackMap(nil, false) |
| if locals.n == 0 { |
| return |
| } |
| size := uintptr(locals.n) * goarch.PtrSize |
| n := (*ptrtype)(unsafe.Pointer(t)).elem.size |
| mask = make([]byte, n/goarch.PtrSize) |
| for i := uintptr(0); i < n; i += goarch.PtrSize { |
| off := (uintptr(p) + i - frame.varp + size) / goarch.PtrSize |
| mask[i/goarch.PtrSize] = locals.ptrbit(off) |
| } |
| } |
| return |
| } |
| |
| // otherwise, not something the GC knows about. |
| // possibly read-only data, like malloc(0). |
| // must not have pointers |
| return |
| } |