| // Copyright 2017 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #include "go_asm.h" |
| #include "funcdata.h" |
| #include "textflag.h" |
| |
| // func rt0_go() |
| TEXT runtime·rt0_go(SB),NOSPLIT|TOPFRAME,$0 |
| // X2 = stack; A0 = argc; A1 = argv |
| ADD $-24, X2 |
| MOV A0, 8(X2) // argc |
| MOV A1, 16(X2) // argv |
| |
| // create istack out of the given (operating system) stack. |
| // _cgo_init may update stackguard. |
| MOV $runtime·g0(SB), g |
| MOV $(-64*1024), T0 |
| ADD T0, X2, T1 |
| MOV T1, g_stackguard0(g) |
| MOV T1, g_stackguard1(g) |
| MOV T1, (g_stack+stack_lo)(g) |
| MOV X2, (g_stack+stack_hi)(g) |
| |
| // if there is a _cgo_init, call it using the gcc ABI. |
| MOV _cgo_init(SB), T0 |
| BEQ T0, ZERO, nocgo |
| |
| MOV ZERO, A3 // arg 3: not used |
| MOV ZERO, A2 // arg 2: not used |
| MOV $setg_gcc<>(SB), A1 // arg 1: setg |
| MOV g, A0 // arg 0: G |
| JALR RA, T0 |
| |
| nocgo: |
| // update stackguard after _cgo_init |
| MOV (g_stack+stack_lo)(g), T0 |
| ADD $const__StackGuard, T0 |
| MOV T0, g_stackguard0(g) |
| MOV T0, g_stackguard1(g) |
| |
| // set the per-goroutine and per-mach "registers" |
| MOV $runtime·m0(SB), T0 |
| |
| // save m->g0 = g0 |
| MOV g, m_g0(T0) |
| // save m0 to g0->m |
| MOV T0, g_m(g) |
| |
| CALL runtime·check(SB) |
| |
| // args are already prepared |
| CALL runtime·args(SB) |
| CALL runtime·osinit(SB) |
| CALL runtime·schedinit(SB) |
| |
| // create a new goroutine to start program |
| MOV $runtime·mainPC(SB), T0 // entry |
| ADD $-16, X2 |
| MOV T0, 8(X2) |
| MOV ZERO, 0(X2) |
| CALL runtime·newproc(SB) |
| ADD $16, X2 |
| |
| // start this M |
| CALL runtime·mstart(SB) |
| |
| WORD $0 // crash if reached |
| RET |
| |
| TEXT runtime·mstart(SB),NOSPLIT|TOPFRAME,$0 |
| CALL runtime·mstart0(SB) |
| RET // not reached |
| |
| // void setg_gcc(G*); set g called from gcc with g in A0 |
| TEXT setg_gcc<>(SB),NOSPLIT,$0-0 |
| MOV A0, g |
| CALL runtime·save_g(SB) |
| RET |
| |
| // func cputicks() int64 |
| TEXT runtime·cputicks(SB),NOSPLIT,$0-8 |
| // RDTIME to emulate cpu ticks |
| // RDCYCLE reads counter that is per HART(core) based |
| // according to the riscv manual, see issue 46737 |
| RDTIME A0 |
| MOV A0, ret+0(FP) |
| RET |
| |
| // systemstack_switch is a dummy routine that systemstack leaves at the bottom |
| // of the G stack. We need to distinguish the routine that |
| // lives at the bottom of the G stack from the one that lives |
| // at the top of the system stack because the one at the top of |
| // the system stack terminates the stack walk (see topofstack()). |
| TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0 |
| UNDEF |
| JALR RA, ZERO // make sure this function is not leaf |
| RET |
| |
| // func systemstack(fn func()) |
| TEXT runtime·systemstack(SB), NOSPLIT, $0-8 |
| MOV fn+0(FP), CTXT // CTXT = fn |
| MOV g_m(g), T0 // T0 = m |
| |
| MOV m_gsignal(T0), T1 // T1 = gsignal |
| BEQ g, T1, noswitch |
| |
| MOV m_g0(T0), T1 // T1 = g0 |
| BEQ g, T1, noswitch |
| |
| MOV m_curg(T0), T2 |
| BEQ g, T2, switch |
| |
| // Bad: g is not gsignal, not g0, not curg. What is it? |
| // Hide call from linker nosplit analysis. |
| MOV $runtime·badsystemstack(SB), T1 |
| JALR RA, T1 |
| |
| switch: |
| // save our state in g->sched. Pretend to |
| // be systemstack_switch if the G stack is scanned. |
| CALL gosave_systemstack_switch<>(SB) |
| |
| // switch to g0 |
| MOV T1, g |
| CALL runtime·save_g(SB) |
| MOV (g_sched+gobuf_sp)(g), T0 |
| MOV T0, X2 |
| |
| // call target function |
| MOV 0(CTXT), T1 // code pointer |
| JALR RA, T1 |
| |
| // switch back to g |
| MOV g_m(g), T0 |
| MOV m_curg(T0), g |
| CALL runtime·save_g(SB) |
| MOV (g_sched+gobuf_sp)(g), X2 |
| MOV ZERO, (g_sched+gobuf_sp)(g) |
| RET |
| |
| noswitch: |
| // already on m stack, just call directly |
| // Using a tail call here cleans up tracebacks since we won't stop |
| // at an intermediate systemstack. |
| MOV 0(CTXT), T1 // code pointer |
| ADD $8, X2 |
| JMP (T1) |
| |
| TEXT runtime·getcallerpc(SB),NOSPLIT|NOFRAME,$0-8 |
| MOV 0(X2), T0 // LR saved by caller |
| MOV T0, ret+0(FP) |
| RET |
| |
| /* |
| * support for morestack |
| */ |
| |
| // Called during function prolog when more stack is needed. |
| // Called with return address (i.e. caller's PC) in X5 (aka T0), |
| // and the LR register contains the caller's LR. |
| // |
| // The traceback routines see morestack on a g0 as being |
| // the top of a stack (for example, morestack calling newstack |
| // calling the scheduler calling newm calling gc), so we must |
| // record an argument size. For that purpose, it has no arguments. |
| |
| // func morestack() |
| TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0 |
| // Cannot grow scheduler stack (m->g0). |
| MOV g_m(g), A0 |
| MOV m_g0(A0), A1 |
| BNE g, A1, 3(PC) |
| CALL runtime·badmorestackg0(SB) |
| CALL runtime·abort(SB) |
| |
| // Cannot grow signal stack (m->gsignal). |
| MOV m_gsignal(A0), A1 |
| BNE g, A1, 3(PC) |
| CALL runtime·badmorestackgsignal(SB) |
| CALL runtime·abort(SB) |
| |
| // Called from f. |
| // Set g->sched to context in f. |
| MOV X2, (g_sched+gobuf_sp)(g) |
| MOV T0, (g_sched+gobuf_pc)(g) |
| MOV RA, (g_sched+gobuf_lr)(g) |
| MOV CTXT, (g_sched+gobuf_ctxt)(g) |
| |
| // Called from f. |
| // Set m->morebuf to f's caller. |
| MOV RA, (m_morebuf+gobuf_pc)(A0) // f's caller's PC |
| MOV X2, (m_morebuf+gobuf_sp)(A0) // f's caller's SP |
| MOV g, (m_morebuf+gobuf_g)(A0) |
| |
| // Call newstack on m->g0's stack. |
| MOV m_g0(A0), g |
| CALL runtime·save_g(SB) |
| MOV (g_sched+gobuf_sp)(g), X2 |
| // Create a stack frame on g0 to call newstack. |
| MOV ZERO, -8(X2) // Zero saved LR in frame |
| ADD $-8, X2 |
| CALL runtime·newstack(SB) |
| |
| // Not reached, but make sure the return PC from the call to newstack |
| // is still in this function, and not the beginning of the next. |
| UNDEF |
| |
| // func morestack_noctxt() |
| TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0 |
| // Force SPWRITE. This function doesn't actually write SP, |
| // but it is called with a special calling convention where |
| // the caller doesn't save LR on stack but passes it as a |
| // register, and the unwinder currently doesn't understand. |
| // Make it SPWRITE to stop unwinding. (See issue 54332) |
| MOV X2, X2 |
| |
| MOV ZERO, CTXT |
| JMP runtime·morestack(SB) |
| |
| // AES hashing not implemented for riscv64 |
| TEXT runtime·memhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-32 |
| JMP runtime·memhashFallback<ABIInternal>(SB) |
| TEXT runtime·strhash<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24 |
| JMP runtime·strhashFallback<ABIInternal>(SB) |
| TEXT runtime·memhash32<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24 |
| JMP runtime·memhash32Fallback<ABIInternal>(SB) |
| TEXT runtime·memhash64<ABIInternal>(SB),NOSPLIT|NOFRAME,$0-24 |
| JMP runtime·memhash64Fallback<ABIInternal>(SB) |
| |
| // func return0() |
| TEXT runtime·return0(SB), NOSPLIT, $0 |
| MOV $0, A0 |
| RET |
| |
| // restore state from Gobuf; longjmp |
| |
| // func gogo(buf *gobuf) |
| TEXT runtime·gogo(SB), NOSPLIT|NOFRAME, $0-8 |
| MOV buf+0(FP), T0 |
| MOV gobuf_g(T0), T1 |
| MOV 0(T1), ZERO // make sure g != nil |
| JMP gogo<>(SB) |
| |
| TEXT gogo<>(SB), NOSPLIT|NOFRAME, $0 |
| MOV T1, g |
| CALL runtime·save_g(SB) |
| |
| MOV gobuf_sp(T0), X2 |
| MOV gobuf_lr(T0), RA |
| MOV gobuf_ret(T0), A0 |
| MOV gobuf_ctxt(T0), CTXT |
| MOV ZERO, gobuf_sp(T0) |
| MOV ZERO, gobuf_ret(T0) |
| MOV ZERO, gobuf_lr(T0) |
| MOV ZERO, gobuf_ctxt(T0) |
| MOV gobuf_pc(T0), T0 |
| JALR ZERO, T0 |
| |
| // func procyield(cycles uint32) |
| TEXT runtime·procyield(SB),NOSPLIT,$0-0 |
| RET |
| |
| // Switch to m->g0's stack, call fn(g). |
| // Fn must never return. It should gogo(&g->sched) |
| // to keep running g. |
| |
| // func mcall(fn func(*g)) |
| TEXT runtime·mcall<ABIInternal>(SB), NOSPLIT|NOFRAME, $0-8 |
| MOV X10, CTXT |
| |
| // Save caller state in g->sched |
| MOV X2, (g_sched+gobuf_sp)(g) |
| MOV RA, (g_sched+gobuf_pc)(g) |
| MOV ZERO, (g_sched+gobuf_lr)(g) |
| |
| // Switch to m->g0 & its stack, call fn. |
| MOV g, X10 |
| MOV g_m(g), T1 |
| MOV m_g0(T1), g |
| CALL runtime·save_g(SB) |
| BNE g, X10, 2(PC) |
| JMP runtime·badmcall(SB) |
| MOV 0(CTXT), T1 // code pointer |
| MOV (g_sched+gobuf_sp)(g), X2 // sp = m->g0->sched.sp |
| // we don't need special macro for regabi since arg0(X10) = g |
| ADD $-16, X2 |
| MOV X10, 8(X2) // setup g |
| MOV ZERO, 0(X2) // clear return address |
| JALR RA, T1 |
| JMP runtime·badmcall2(SB) |
| |
| // Save state of caller into g->sched, |
| // but using fake PC from systemstack_switch. |
| // Must only be called from functions with no locals ($0) |
| // or else unwinding from systemstack_switch is incorrect. |
| // Smashes X31. |
| TEXT gosave_systemstack_switch<>(SB),NOSPLIT|NOFRAME,$0 |
| MOV $runtime·systemstack_switch(SB), X31 |
| ADD $8, X31 // get past prologue |
| MOV X31, (g_sched+gobuf_pc)(g) |
| MOV X2, (g_sched+gobuf_sp)(g) |
| MOV ZERO, (g_sched+gobuf_lr)(g) |
| MOV ZERO, (g_sched+gobuf_ret)(g) |
| // Assert ctxt is zero. See func save. |
| MOV (g_sched+gobuf_ctxt)(g), X31 |
| BEQ ZERO, X31, 2(PC) |
| CALL runtime·abort(SB) |
| RET |
| |
| // func asmcgocall(fn, arg unsafe.Pointer) int32 |
| // Call fn(arg) on the scheduler stack, |
| // aligned appropriately for the gcc ABI. |
| // See cgocall.go for more details. |
| TEXT ·asmcgocall(SB),NOSPLIT,$0-20 |
| MOV fn+0(FP), X5 |
| MOV arg+8(FP), X10 |
| |
| MOV X2, X8 // save original stack pointer |
| MOV g, X9 |
| |
| // Figure out if we need to switch to m->g0 stack. |
| // We get called to create new OS threads too, and those |
| // come in on the m->g0 stack already. Or we might already |
| // be on the m->gsignal stack. |
| MOV g_m(g), X6 |
| MOV m_gsignal(X6), X7 |
| BEQ X7, g, g0 |
| MOV m_g0(X6), X7 |
| BEQ X7, g, g0 |
| |
| CALL gosave_systemstack_switch<>(SB) |
| MOV X7, g |
| CALL runtime·save_g(SB) |
| MOV (g_sched+gobuf_sp)(g), X2 |
| |
| // Now on a scheduling stack (a pthread-created stack). |
| g0: |
| // Save room for two of our pointers. |
| ADD $-16, X2 |
| MOV X9, 0(X2) // save old g on stack |
| MOV (g_stack+stack_hi)(X9), X9 |
| SUB X8, X9, X8 |
| MOV X8, 8(X2) // save depth in old g stack (can't just save SP, as stack might be copied during a callback) |
| |
| JALR RA, (X5) |
| |
| // Restore g, stack pointer. X10 is return value. |
| MOV 0(X2), g |
| CALL runtime·save_g(SB) |
| MOV (g_stack+stack_hi)(g), X5 |
| MOV 8(X2), X6 |
| SUB X6, X5, X6 |
| MOV X6, X2 |
| |
| MOVW X10, ret+16(FP) |
| RET |
| |
| // func asminit() |
| TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0 |
| RET |
| |
| // reflectcall: call a function with the given argument list |
| // func call(stackArgsType *_type, f *FuncVal, stackArgs *byte, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). |
| // we don't have variable-sized frames, so we use a small number |
| // of constant-sized-frame functions to encode a few bits of size in the pc. |
| // Caution: ugly multiline assembly macros in your future! |
| |
| #define DISPATCH(NAME,MAXSIZE) \ |
| MOV $MAXSIZE, T1 \ |
| BLTU T1, T0, 3(PC) \ |
| MOV $NAME(SB), T2; \ |
| JALR ZERO, T2 |
| // Note: can't just "BR NAME(SB)" - bad inlining results. |
| |
| // func call(stackArgsType *rtype, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). |
| TEXT reflect·call(SB), NOSPLIT, $0-0 |
| JMP ·reflectcall(SB) |
| |
| // func call(stackArgsType *_type, fn, stackArgs unsafe.Pointer, stackArgsSize, stackRetOffset, frameSize uint32, regArgs *abi.RegArgs). |
| TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-48 |
| MOVWU frameSize+32(FP), T0 |
| DISPATCH(runtime·call16, 16) |
| DISPATCH(runtime·call32, 32) |
| DISPATCH(runtime·call64, 64) |
| DISPATCH(runtime·call128, 128) |
| DISPATCH(runtime·call256, 256) |
| DISPATCH(runtime·call512, 512) |
| DISPATCH(runtime·call1024, 1024) |
| DISPATCH(runtime·call2048, 2048) |
| DISPATCH(runtime·call4096, 4096) |
| DISPATCH(runtime·call8192, 8192) |
| DISPATCH(runtime·call16384, 16384) |
| DISPATCH(runtime·call32768, 32768) |
| DISPATCH(runtime·call65536, 65536) |
| DISPATCH(runtime·call131072, 131072) |
| DISPATCH(runtime·call262144, 262144) |
| DISPATCH(runtime·call524288, 524288) |
| DISPATCH(runtime·call1048576, 1048576) |
| DISPATCH(runtime·call2097152, 2097152) |
| DISPATCH(runtime·call4194304, 4194304) |
| DISPATCH(runtime·call8388608, 8388608) |
| DISPATCH(runtime·call16777216, 16777216) |
| DISPATCH(runtime·call33554432, 33554432) |
| DISPATCH(runtime·call67108864, 67108864) |
| DISPATCH(runtime·call134217728, 134217728) |
| DISPATCH(runtime·call268435456, 268435456) |
| DISPATCH(runtime·call536870912, 536870912) |
| DISPATCH(runtime·call1073741824, 1073741824) |
| MOV $runtime·badreflectcall(SB), T2 |
| JALR ZERO, T2 |
| |
| #define CALLFN(NAME,MAXSIZE) \ |
| TEXT NAME(SB), WRAPPER, $MAXSIZE-48; \ |
| NO_LOCAL_POINTERS; \ |
| /* copy arguments to stack */ \ |
| MOV stackArgs+16(FP), A1; \ |
| MOVWU stackArgsSize+24(FP), A2; \ |
| MOV X2, A3; \ |
| ADD $8, A3; \ |
| ADD A3, A2; \ |
| BEQ A3, A2, 6(PC); \ |
| MOVBU (A1), A4; \ |
| ADD $1, A1; \ |
| MOVB A4, (A3); \ |
| ADD $1, A3; \ |
| JMP -5(PC); \ |
| /* set up argument registers */ \ |
| MOV regArgs+40(FP), X25; \ |
| CALL ·unspillArgs(SB); \ |
| /* call function */ \ |
| MOV f+8(FP), CTXT; \ |
| MOV (CTXT), X25; \ |
| PCDATA $PCDATA_StackMapIndex, $0; \ |
| JALR RA, X25; \ |
| /* copy return values back */ \ |
| MOV regArgs+40(FP), X25; \ |
| CALL ·spillArgs(SB); \ |
| MOV stackArgsType+0(FP), A5; \ |
| MOV stackArgs+16(FP), A1; \ |
| MOVWU stackArgsSize+24(FP), A2; \ |
| MOVWU stackRetOffset+28(FP), A4; \ |
| ADD $8, X2, A3; \ |
| ADD A4, A3; \ |
| ADD A4, A1; \ |
| SUB A4, A2; \ |
| CALL callRet<>(SB); \ |
| RET |
| |
| // callRet copies return values back at the end of call*. This is a |
| // separate function so it can allocate stack space for the arguments |
| // to reflectcallmove. It does not follow the Go ABI; it expects its |
| // arguments in registers. |
| TEXT callRet<>(SB), NOSPLIT, $40-0 |
| NO_LOCAL_POINTERS |
| MOV A5, 8(X2) |
| MOV A1, 16(X2) |
| MOV A3, 24(X2) |
| MOV A2, 32(X2) |
| MOV X25, 40(X2) |
| CALL runtime·reflectcallmove(SB) |
| RET |
| |
| CALLFN(·call16, 16) |
| CALLFN(·call32, 32) |
| CALLFN(·call64, 64) |
| CALLFN(·call128, 128) |
| CALLFN(·call256, 256) |
| CALLFN(·call512, 512) |
| CALLFN(·call1024, 1024) |
| CALLFN(·call2048, 2048) |
| CALLFN(·call4096, 4096) |
| CALLFN(·call8192, 8192) |
| CALLFN(·call16384, 16384) |
| CALLFN(·call32768, 32768) |
| CALLFN(·call65536, 65536) |
| CALLFN(·call131072, 131072) |
| CALLFN(·call262144, 262144) |
| CALLFN(·call524288, 524288) |
| CALLFN(·call1048576, 1048576) |
| CALLFN(·call2097152, 2097152) |
| CALLFN(·call4194304, 4194304) |
| CALLFN(·call8388608, 8388608) |
| CALLFN(·call16777216, 16777216) |
| CALLFN(·call33554432, 33554432) |
| CALLFN(·call67108864, 67108864) |
| CALLFN(·call134217728, 134217728) |
| CALLFN(·call268435456, 268435456) |
| CALLFN(·call536870912, 536870912) |
| CALLFN(·call1073741824, 1073741824) |
| |
| // Called from cgo wrappers, this function returns g->m->curg.stack.hi. |
| // Must obey the gcc calling convention. |
| TEXT _cgo_topofstack(SB),NOSPLIT,$8 |
| // g (X27) and REG_TMP (X31) might be clobbered by load_g. |
| // X27 is callee-save in the gcc calling convention, so save it. |
| MOV g, savedX27-8(SP) |
| |
| CALL runtime·load_g(SB) |
| MOV g_m(g), X5 |
| MOV m_curg(X5), X5 |
| MOV (g_stack+stack_hi)(X5), X10 // return value in X10 |
| |
| MOV savedX27-8(SP), g |
| RET |
| |
| // func goexit(neverCallThisFunction) |
| // The top-most function running on a goroutine |
| // returns to goexit+PCQuantum. |
| TEXT runtime·goexit(SB),NOSPLIT|NOFRAME|TOPFRAME,$0-0 |
| MOV ZERO, ZERO // NOP |
| JMP runtime·goexit1(SB) // does not return |
| // traceback from goexit1 must hit code range of goexit |
| MOV ZERO, ZERO // NOP |
| |
| // func cgocallback(fn, frame unsafe.Pointer, ctxt uintptr) |
| // See cgocall.go for more details. |
| TEXT ·cgocallback(SB),NOSPLIT,$24-24 |
| NO_LOCAL_POINTERS |
| |
| // Load m and g from thread-local storage. |
| MOVBU runtime·iscgo(SB), X5 |
| BEQ ZERO, X5, nocgo |
| CALL runtime·load_g(SB) |
| nocgo: |
| |
| // If g is nil, Go did not create the current thread. |
| // Call needm to obtain one for temporary use. |
| // In this case, we're running on the thread stack, so there's |
| // lots of space, but the linker doesn't know. Hide the call from |
| // the linker analysis by using an indirect call. |
| BEQ ZERO, g, needm |
| |
| MOV g_m(g), X5 |
| MOV X5, savedm-8(SP) |
| JMP havem |
| |
| needm: |
| MOV g, savedm-8(SP) // g is zero, so is m. |
| MOV $runtime·needm(SB), X6 |
| JALR RA, X6 |
| |
| // Set m->sched.sp = SP, so that if a panic happens |
| // during the function we are about to execute, it will |
| // have a valid SP to run on the g0 stack. |
| // The next few lines (after the havem label) |
| // will save this SP onto the stack and then write |
| // the same SP back to m->sched.sp. That seems redundant, |
| // but if an unrecovered panic happens, unwindm will |
| // restore the g->sched.sp from the stack location |
| // and then systemstack will try to use it. If we don't set it here, |
| // that restored SP will be uninitialized (typically 0) and |
| // will not be usable. |
| MOV g_m(g), X5 |
| MOV m_g0(X5), X6 |
| MOV X2, (g_sched+gobuf_sp)(X6) |
| |
| havem: |
| // Now there's a valid m, and we're running on its m->g0. |
| // Save current m->g0->sched.sp on stack and then set it to SP. |
| // Save current sp in m->g0->sched.sp in preparation for |
| // switch back to m->curg stack. |
| // NOTE: unwindm knows that the saved g->sched.sp is at 8(X2) aka savedsp-24(SP). |
| MOV m_g0(X5), X6 |
| MOV (g_sched+gobuf_sp)(X6), X7 |
| MOV X7, savedsp-24(SP) // must match frame size |
| MOV X2, (g_sched+gobuf_sp)(X6) |
| |
| // Switch to m->curg stack and call runtime.cgocallbackg. |
| // Because we are taking over the execution of m->curg |
| // but *not* resuming what had been running, we need to |
| // save that information (m->curg->sched) so we can restore it. |
| // We can restore m->curg->sched.sp easily, because calling |
| // runtime.cgocallbackg leaves SP unchanged upon return. |
| // To save m->curg->sched.pc, we push it onto the curg stack and |
| // open a frame the same size as cgocallback's g0 frame. |
| // Once we switch to the curg stack, the pushed PC will appear |
| // to be the return PC of cgocallback, so that the traceback |
| // will seamlessly trace back into the earlier calls. |
| MOV m_curg(X5), g |
| CALL runtime·save_g(SB) |
| MOV (g_sched+gobuf_sp)(g), X6 // prepare stack as X6 |
| MOV (g_sched+gobuf_pc)(g), X7 |
| MOV X7, -(24+8)(X6) // "saved LR"; must match frame size |
| // Gather our arguments into registers. |
| MOV fn+0(FP), X7 |
| MOV frame+8(FP), X8 |
| MOV ctxt+16(FP), X9 |
| MOV $-(24+8)(X6), X2 // switch stack; must match frame size |
| MOV X7, 8(X2) |
| MOV X8, 16(X2) |
| MOV X9, 24(X2) |
| CALL runtime·cgocallbackg(SB) |
| |
| // Restore g->sched (== m->curg->sched) from saved values. |
| MOV 0(X2), X7 |
| MOV X7, (g_sched+gobuf_pc)(g) |
| MOV $(24+8)(X2), X6 // must match frame size |
| MOV X6, (g_sched+gobuf_sp)(g) |
| |
| // Switch back to m->g0's stack and restore m->g0->sched.sp. |
| // (Unlike m->curg, the g0 goroutine never uses sched.pc, |
| // so we do not have to restore it.) |
| MOV g_m(g), X5 |
| MOV m_g0(X5), g |
| CALL runtime·save_g(SB) |
| MOV (g_sched+gobuf_sp)(g), X2 |
| MOV savedsp-24(SP), X6 // must match frame size |
| MOV X6, (g_sched+gobuf_sp)(g) |
| |
| // If the m on entry was nil, we called needm above to borrow an m |
| // for the duration of the call. Since the call is over, return it with dropm. |
| MOV savedm-8(SP), X5 |
| BNE ZERO, X5, droppedm |
| MOV $runtime·dropm(SB), X6 |
| JALR RA, X6 |
| droppedm: |
| |
| // Done! |
| RET |
| |
| TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0 |
| EBREAK |
| RET |
| |
| TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0 |
| EBREAK |
| RET |
| |
| // void setg(G*); set g. for use by needm. |
| TEXT runtime·setg(SB), NOSPLIT, $0-8 |
| MOV gg+0(FP), g |
| // This only happens if iscgo, so jump straight to save_g |
| CALL runtime·save_g(SB) |
| RET |
| |
| TEXT ·checkASM(SB),NOSPLIT,$0-1 |
| MOV $1, T0 |
| MOV T0, ret+0(FP) |
| RET |
| |
| // spillArgs stores return values from registers to a *internal/abi.RegArgs in X25. |
| TEXT ·spillArgs(SB),NOSPLIT,$0-0 |
| MOV X10, (0*8)(X25) |
| MOV X11, (1*8)(X25) |
| MOV X12, (2*8)(X25) |
| MOV X13, (3*8)(X25) |
| MOV X14, (4*8)(X25) |
| MOV X15, (5*8)(X25) |
| MOV X16, (6*8)(X25) |
| MOV X17, (7*8)(X25) |
| MOV X8, (8*8)(X25) |
| MOV X9, (9*8)(X25) |
| MOV X18, (10*8)(X25) |
| MOV X19, (11*8)(X25) |
| MOV X20, (12*8)(X25) |
| MOV X21, (13*8)(X25) |
| MOV X22, (14*8)(X25) |
| MOV X23, (15*8)(X25) |
| MOVD F10, (16*8)(X25) |
| MOVD F11, (17*8)(X25) |
| MOVD F12, (18*8)(X25) |
| MOVD F13, (19*8)(X25) |
| MOVD F14, (20*8)(X25) |
| MOVD F15, (21*8)(X25) |
| MOVD F16, (22*8)(X25) |
| MOVD F17, (23*8)(X25) |
| MOVD F8, (24*8)(X25) |
| MOVD F9, (25*8)(X25) |
| MOVD F18, (26*8)(X25) |
| MOVD F19, (27*8)(X25) |
| MOVD F20, (28*8)(X25) |
| MOVD F21, (29*8)(X25) |
| MOVD F22, (30*8)(X25) |
| MOVD F23, (31*8)(X25) |
| RET |
| |
| // unspillArgs loads args into registers from a *internal/abi.RegArgs in X25. |
| TEXT ·unspillArgs(SB),NOSPLIT,$0-0 |
| MOV (0*8)(X25), X10 |
| MOV (1*8)(X25), X11 |
| MOV (2*8)(X25), X12 |
| MOV (3*8)(X25), X13 |
| MOV (4*8)(X25), X14 |
| MOV (5*8)(X25), X15 |
| MOV (6*8)(X25), X16 |
| MOV (7*8)(X25), X17 |
| MOV (8*8)(X25), X8 |
| MOV (9*8)(X25), X9 |
| MOV (10*8)(X25), X18 |
| MOV (11*8)(X25), X19 |
| MOV (12*8)(X25), X20 |
| MOV (13*8)(X25), X21 |
| MOV (14*8)(X25), X22 |
| MOV (15*8)(X25), X23 |
| MOVD (16*8)(X25), F10 |
| MOVD (17*8)(X25), F11 |
| MOVD (18*8)(X25), F12 |
| MOVD (19*8)(X25), F13 |
| MOVD (20*8)(X25), F14 |
| MOVD (21*8)(X25), F15 |
| MOVD (22*8)(X25), F16 |
| MOVD (23*8)(X25), F17 |
| MOVD (24*8)(X25), F8 |
| MOVD (25*8)(X25), F9 |
| MOVD (26*8)(X25), F18 |
| MOVD (27*8)(X25), F19 |
| MOVD (28*8)(X25), F20 |
| MOVD (29*8)(X25), F21 |
| MOVD (30*8)(X25), F22 |
| MOVD (31*8)(X25), F23 |
| RET |
| |
| // gcWriteBarrier performs a heap pointer write and informs the GC. |
| // |
| // gcWriteBarrier does NOT follow the Go ABI. It takes two arguments: |
| // - T0 is the destination of the write |
| // - T1 is the value being written at T0. |
| // It clobbers R30 (the linker temp register - REG_TMP). |
| // The act of CALLing gcWriteBarrier will clobber RA (LR). |
| // It does not clobber any other general-purpose registers, |
| // but may clobber others (e.g., floating point registers). |
| TEXT runtime·gcWriteBarrier<ABIInternal>(SB),NOSPLIT,$208 |
| // Save the registers clobbered by the fast path. |
| MOV A0, 24*8(X2) |
| MOV A1, 25*8(X2) |
| MOV g_m(g), A0 |
| MOV m_p(A0), A0 |
| MOV (p_wbBuf+wbBuf_next)(A0), A1 |
| // Increment wbBuf.next position. |
| ADD $16, A1 |
| MOV A1, (p_wbBuf+wbBuf_next)(A0) |
| MOV (p_wbBuf+wbBuf_end)(A0), A0 |
| MOV A0, T6 // T6 is linker temp register (REG_TMP) |
| // Record the write. |
| MOV T1, -16(A1) // Record value |
| MOV (T0), A0 // TODO: This turns bad writes into bad reads. |
| MOV A0, -8(A1) // Record *slot |
| // Is the buffer full? |
| BEQ A1, T6, flush |
| ret: |
| MOV 24*8(X2), A0 |
| MOV 25*8(X2), A1 |
| // Do the write. |
| MOV T1, (T0) |
| RET |
| |
| flush: |
| // Save all general purpose registers since these could be |
| // clobbered by wbBufFlush and were not saved by the caller. |
| MOV T0, 1*8(X2) // Also first argument to wbBufFlush |
| MOV T1, 2*8(X2) // Also second argument to wbBufFlush |
| // X0 is zero register |
| // X1 is LR, saved by prologue |
| // X2 is SP |
| // X3 is GP |
| // X4 is TP |
| // X5 is first arg to wbBufFlush (T0) |
| // X6 is second arg to wbBufFlush (T1) |
| MOV X7, 3*8(X2) |
| MOV X8, 4*8(X2) |
| MOV X9, 5*8(X2) |
| // X10 already saved (A0) |
| // X11 already saved (A1) |
| MOV X12, 6*8(X2) |
| MOV X13, 7*8(X2) |
| MOV X14, 8*8(X2) |
| MOV X15, 9*8(X2) |
| MOV X16, 10*8(X2) |
| MOV X17, 11*8(X2) |
| MOV X18, 12*8(X2) |
| MOV X19, 13*8(X2) |
| MOV X20, 14*8(X2) |
| MOV X21, 15*8(X2) |
| MOV X22, 16*8(X2) |
| MOV X23, 17*8(X2) |
| MOV X24, 18*8(X2) |
| MOV X25, 19*8(X2) |
| MOV X26, 20*8(X2) |
| // X27 is g. |
| MOV X28, 21*8(X2) |
| MOV X29, 22*8(X2) |
| MOV X30, 23*8(X2) |
| // X31 is tmp register. |
| |
| // This takes arguments T0 and T1. |
| CALL runtime·wbBufFlush(SB) |
| |
| MOV 1*8(X2), T0 |
| MOV 2*8(X2), T1 |
| MOV 3*8(X2), X7 |
| MOV 4*8(X2), X8 |
| MOV 5*8(X2), X9 |
| MOV 6*8(X2), X12 |
| MOV 7*8(X2), X13 |
| MOV 8*8(X2), X14 |
| MOV 9*8(X2), X15 |
| MOV 10*8(X2), X16 |
| MOV 11*8(X2), X17 |
| MOV 12*8(X2), X18 |
| MOV 13*8(X2), X19 |
| MOV 14*8(X2), X20 |
| MOV 15*8(X2), X21 |
| MOV 16*8(X2), X22 |
| MOV 17*8(X2), X23 |
| MOV 18*8(X2), X24 |
| MOV 19*8(X2), X25 |
| MOV 20*8(X2), X26 |
| MOV 21*8(X2), X28 |
| MOV 22*8(X2), X29 |
| MOV 23*8(X2), X30 |
| |
| JMP ret |
| |
| // Note: these functions use a special calling convention to save generated code space. |
| // Arguments are passed in registers (ssa/gen/RISCV64Ops.go), but the space for those |
| // arguments are allocated in the caller's stack frame. |
| // These stubs write the args into that stack space and then tail call to the |
| // corresponding runtime handler. |
| // The tail call makes these stubs disappear in backtraces. |
| TEXT runtime·panicIndex<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T0, X10 |
| MOV T1, X11 |
| JMP runtime·goPanicIndex<ABIInternal>(SB) |
| TEXT runtime·panicIndexU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T0, X10 |
| MOV T1, X11 |
| JMP runtime·goPanicIndexU<ABIInternal>(SB) |
| TEXT runtime·panicSliceAlen<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T1, X10 |
| MOV T2, X11 |
| JMP runtime·goPanicSliceAlen<ABIInternal>(SB) |
| TEXT runtime·panicSliceAlenU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T1, X10 |
| MOV T2, X11 |
| JMP runtime·goPanicSliceAlenU<ABIInternal>(SB) |
| TEXT runtime·panicSliceAcap<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T1, X10 |
| MOV T2, X11 |
| JMP runtime·goPanicSliceAcap<ABIInternal>(SB) |
| TEXT runtime·panicSliceAcapU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T1, X10 |
| MOV T2, X11 |
| JMP runtime·goPanicSliceAcapU<ABIInternal>(SB) |
| TEXT runtime·panicSliceB<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T0, X10 |
| MOV T1, X11 |
| JMP runtime·goPanicSliceB<ABIInternal>(SB) |
| TEXT runtime·panicSliceBU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T0, X10 |
| MOV T1, X11 |
| JMP runtime·goPanicSliceBU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3Alen<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T2, X10 |
| MOV T3, X11 |
| JMP runtime·goPanicSlice3Alen<ABIInternal>(SB) |
| TEXT runtime·panicSlice3AlenU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T2, X10 |
| MOV T3, X11 |
| JMP runtime·goPanicSlice3AlenU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3Acap<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T2, X10 |
| MOV T3, X11 |
| JMP runtime·goPanicSlice3Acap<ABIInternal>(SB) |
| TEXT runtime·panicSlice3AcapU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T2, X10 |
| MOV T3, X11 |
| JMP runtime·goPanicSlice3AcapU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3B<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T1, X10 |
| MOV T2, X11 |
| JMP runtime·goPanicSlice3B<ABIInternal>(SB) |
| TEXT runtime·panicSlice3BU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T1, X10 |
| MOV T2, X11 |
| JMP runtime·goPanicSlice3BU<ABIInternal>(SB) |
| TEXT runtime·panicSlice3C<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T0, X10 |
| MOV T1, X11 |
| JMP runtime·goPanicSlice3C<ABIInternal>(SB) |
| TEXT runtime·panicSlice3CU<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T0, X10 |
| MOV T1, X11 |
| JMP runtime·goPanicSlice3CU<ABIInternal>(SB) |
| TEXT runtime·panicSliceConvert<ABIInternal>(SB),NOSPLIT,$0-16 |
| MOV T2, X10 |
| MOV T3, X11 |
| JMP runtime·goPanicSliceConvert<ABIInternal>(SB) |
| |
| DATA runtime·mainPC+0(SB)/8,$runtime·main<ABIInternal>(SB) |
| GLOBL runtime·mainPC(SB),RODATA,$8 |