| // Copyright 2015 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package gc |
| |
| import ( |
| "fmt" |
| "strings" |
| |
| "cmd/compile/internal/ssa" |
| "cmd/internal/obj" |
| "cmd/internal/obj/x86" |
| ) |
| |
| // buildssa builds an SSA function |
| // and reports whether it should be used. |
| // Once the SSA implementation is complete, |
| // it will never return nil, and the bool can be removed. |
| func buildssa(fn *Node) (ssafn *ssa.Func, usessa bool) { |
| name := fn.Func.Nname.Sym.Name |
| usessa = strings.HasSuffix(name, "_ssa") |
| |
| if usessa { |
| dumplist("buildssa-enter", fn.Func.Enter) |
| dumplist("buildssa-body", fn.Nbody) |
| } |
| |
| var s state |
| s.pushLine(fn.Lineno) |
| defer s.popLine() |
| |
| // TODO(khr): build config just once at the start of the compiler binary |
| |
| var e ssaExport |
| e.log = usessa |
| s.config = ssa.NewConfig(Thearch.Thestring, &e) |
| s.f = s.config.NewFunc() |
| s.f.Name = name |
| |
| // If SSA support for the function is incomplete, |
| // assume that any panics are due to violated |
| // invariants. Swallow them silently. |
| defer func() { |
| if err := recover(); err != nil { |
| if !e.unimplemented { |
| panic(err) |
| } |
| } |
| }() |
| |
| // We construct SSA using an algorithm similar to |
| // Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau |
| // http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf |
| // TODO: check this comment |
| |
| // Allocate starting block |
| s.f.Entry = s.f.NewBlock(ssa.BlockPlain) |
| |
| // Allocate exit block |
| s.exit = s.f.NewBlock(ssa.BlockExit) |
| |
| // Allocate starting values |
| s.vars = map[*Node]*ssa.Value{} |
| s.labels = map[string]*ssa.Block{} |
| s.startmem = s.entryNewValue0(ssa.OpArg, ssa.TypeMem) |
| s.sp = s.entryNewValue0(ssa.OpSP, s.config.Uintptr) // TODO: use generic pointer type (unsafe.Pointer?) instead |
| s.sb = s.entryNewValue0(ssa.OpSB, s.config.Uintptr) |
| |
| // Generate addresses of local declarations |
| s.decladdrs = map[*Node]*ssa.Value{} |
| for d := fn.Func.Dcl; d != nil; d = d.Next { |
| n := d.N |
| switch n.Class { |
| case PPARAM, PPARAMOUT: |
| aux := &ssa.ArgSymbol{Typ: n.Type, Offset: n.Xoffset, Sym: n.Sym} |
| s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp) |
| case PAUTO: |
| aux := &ssa.AutoSymbol{Typ: n.Type, Offset: -1, Sym: n.Sym} // offset TBD by SSA pass |
| s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp) |
| default: |
| str := "" |
| if n.Class&PHEAP != 0 { |
| str = ",heap" |
| } |
| s.Unimplementedf("local variable %v with class %s%s unimplemented", n, classnames[n.Class&^PHEAP], str) |
| } |
| } |
| // nodfp is a special argument which is the function's FP. |
| aux := &ssa.ArgSymbol{Typ: s.config.Uintptr, Offset: 0, Sym: nodfp.Sym} |
| s.decladdrs[nodfp] = s.entryNewValue1A(ssa.OpAddr, s.config.Uintptr, aux, s.sp) |
| |
| // Convert the AST-based IR to the SSA-based IR |
| s.startBlock(s.f.Entry) |
| s.stmtList(fn.Func.Enter) |
| s.stmtList(fn.Nbody) |
| |
| // fallthrough to exit |
| if b := s.endBlock(); b != nil { |
| addEdge(b, s.exit) |
| } |
| |
| // Finish up exit block |
| s.startBlock(s.exit) |
| s.exit.Control = s.mem() |
| s.endBlock() |
| |
| // Link up variable uses to variable definitions |
| s.linkForwardReferences() |
| |
| // Main call to ssa package to compile function |
| ssa.Compile(s.f) |
| |
| // Calculate stats about what percentage of functions SSA handles. |
| if false { |
| fmt.Printf("SSA implemented: %t\n", !e.unimplemented) |
| } |
| |
| if e.unimplemented { |
| return nil, false |
| } |
| return s.f, usessa // TODO: return s.f, true once runtime support is in (gc maps, write barriers, etc.) |
| } |
| |
| type state struct { |
| // configuration (arch) information |
| config *ssa.Config |
| |
| // function we're building |
| f *ssa.Func |
| |
| // exit block that "return" jumps to (and panics jump to) |
| exit *ssa.Block |
| |
| // the target block for each label in f |
| labels map[string]*ssa.Block |
| |
| // current location where we're interpreting the AST |
| curBlock *ssa.Block |
| |
| // variable assignments in the current block (map from variable symbol to ssa value) |
| // *Node is the unique identifier (an ONAME Node) for the variable. |
| vars map[*Node]*ssa.Value |
| |
| // all defined variables at the end of each block. Indexed by block ID. |
| defvars []map[*Node]*ssa.Value |
| |
| // addresses of PPARAM, PPARAMOUT, and PAUTO variables. |
| decladdrs map[*Node]*ssa.Value |
| |
| // starting values. Memory, frame pointer, and stack pointer |
| startmem *ssa.Value |
| sp *ssa.Value |
| sb *ssa.Value |
| |
| // line number stack. The current line number is top of stack |
| line []int32 |
| } |
| |
| func (s *state) Logf(msg string, args ...interface{}) { s.config.Logf(msg, args...) } |
| func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(msg, args...) } |
| func (s *state) Unimplementedf(msg string, args ...interface{}) { s.config.Unimplementedf(msg, args...) } |
| |
| // dummy node for the memory variable |
| var memvar = Node{Op: ONAME, Sym: &Sym{Name: "mem"}} |
| |
| // startBlock sets the current block we're generating code in to b. |
| func (s *state) startBlock(b *ssa.Block) { |
| if s.curBlock != nil { |
| s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) |
| } |
| s.curBlock = b |
| s.vars = map[*Node]*ssa.Value{} |
| } |
| |
| // endBlock marks the end of generating code for the current block. |
| // Returns the (former) current block. Returns nil if there is no current |
| // block, i.e. if no code flows to the current execution point. |
| func (s *state) endBlock() *ssa.Block { |
| b := s.curBlock |
| if b == nil { |
| return nil |
| } |
| for len(s.defvars) <= int(b.ID) { |
| s.defvars = append(s.defvars, nil) |
| } |
| s.defvars[b.ID] = s.vars |
| s.curBlock = nil |
| s.vars = nil |
| b.Line = s.peekLine() |
| return b |
| } |
| |
| // pushLine pushes a line number on the line number stack. |
| func (s *state) pushLine(line int32) { |
| s.line = append(s.line, line) |
| } |
| |
| // popLine pops the top of the line number stack. |
| func (s *state) popLine() { |
| s.line = s.line[:len(s.line)-1] |
| } |
| |
| // peekLine peek the top of the line number stack. |
| func (s *state) peekLine() int32 { |
| return s.line[len(s.line)-1] |
| } |
| |
| // newValue0 adds a new value with no arguments to the current block. |
| func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value { |
| return s.curBlock.NewValue0(s.peekLine(), op, t) |
| } |
| |
| // newValue0A adds a new value with no arguments and an aux value to the current block. |
| func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { |
| return s.curBlock.NewValue0A(s.peekLine(), op, t, aux) |
| } |
| |
| // newValue1 adds a new value with one argument to the current block. |
| func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1(s.peekLine(), op, t, arg) |
| } |
| |
| // newValue1A adds a new value with one argument and an aux value to the current block. |
| func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg) |
| } |
| |
| // newValue2 adds a new value with two arguments to the current block. |
| func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1) |
| } |
| |
| // newValue2I adds a new value with two arguments and an auxint value to the current block. |
| func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1) |
| } |
| |
| // newValue3 adds a new value with three arguments to the current block. |
| func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { |
| return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2) |
| } |
| |
| // entryNewValue adds a new value with no arguments to the entry block. |
| func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value { |
| return s.f.Entry.NewValue0(s.peekLine(), op, t) |
| } |
| |
| // entryNewValue adds a new value with no arguments and an aux value to the entry block. |
| func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value { |
| return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux) |
| } |
| |
| // entryNewValue1 adds a new value with one argument to the entry block. |
| func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue1(s.peekLine(), op, t, arg) |
| } |
| |
| // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. |
| func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg) |
| } |
| |
| // entryNewValue1A adds a new value with one argument and an aux value to the entry block. |
| func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg) |
| } |
| |
| // entryNewValue2 adds a new value with two arguments to the entry block. |
| func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value { |
| return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1) |
| } |
| |
| // constInt adds a new const int value to the entry block. |
| func (s *state) constInt(t ssa.Type, c int64) *ssa.Value { |
| return s.f.ConstInt(s.peekLine(), t, c) |
| } |
| |
| // ssaStmtList converts the statement n to SSA and adds it to s. |
| func (s *state) stmtList(l *NodeList) { |
| for ; l != nil; l = l.Next { |
| s.stmt(l.N) |
| } |
| } |
| |
| // ssaStmt converts the statement n to SSA and adds it to s. |
| func (s *state) stmt(n *Node) { |
| s.pushLine(n.Lineno) |
| defer s.popLine() |
| |
| s.stmtList(n.Ninit) |
| switch n.Op { |
| |
| case OBLOCK: |
| s.stmtList(n.List) |
| |
| case OEMPTY: |
| |
| case ODCL: |
| if n.Left.Class&PHEAP == 0 { |
| return |
| } |
| if compiling_runtime != 0 { |
| Fatal("%v escapes to heap, not allowed in runtime.", n) |
| } |
| |
| // TODO: the old pass hides the details of PHEAP |
| // variables behind ONAME nodes. Figure out if it's better |
| // to rewrite the tree and make the heapaddr construct explicit |
| // or to keep this detail hidden behind the scenes. |
| palloc := prealloc[n.Left] |
| if palloc == nil { |
| palloc = callnew(n.Left.Type) |
| prealloc[n.Left] = palloc |
| } |
| s.assign(OAS, n.Left.Name.Heapaddr, palloc) |
| |
| case OLABEL, OGOTO: |
| // get block at label, or make one |
| t := s.labels[n.Left.Sym.Name] |
| if t == nil { |
| t = s.f.NewBlock(ssa.BlockPlain) |
| s.labels[n.Left.Sym.Name] = t |
| } |
| // go to that label (we pretend "label:" is preceded by "goto label") |
| if b := s.endBlock(); b != nil { |
| addEdge(b, t) |
| } |
| |
| if n.Op == OLABEL { |
| // next we work on the label's target block |
| s.startBlock(t) |
| } |
| if n.Op == OGOTO && s.curBlock == nil { |
| s.Unimplementedf("goto at start of function; see test/goto.go") |
| panic("stop compiling here, on pain of infinite loops") |
| } |
| |
| case OAS, OASWB: |
| s.assign(n.Op, n.Left, n.Right) |
| |
| case OIF: |
| cond := s.expr(n.Left) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = cond |
| // TODO(khr): likely direction |
| |
| bThen := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| var bElse *ssa.Block |
| |
| if n.Rlist == nil { |
| addEdge(b, bThen) |
| addEdge(b, bEnd) |
| } else { |
| bElse = s.f.NewBlock(ssa.BlockPlain) |
| addEdge(b, bThen) |
| addEdge(b, bElse) |
| } |
| |
| s.startBlock(bThen) |
| s.stmtList(n.Nbody) |
| b = s.endBlock() |
| if b != nil { |
| addEdge(b, bEnd) |
| } |
| |
| if n.Rlist != nil { |
| s.startBlock(bElse) |
| s.stmtList(n.Rlist) |
| b = s.endBlock() |
| if b != nil { |
| addEdge(b, bEnd) |
| } |
| } |
| s.startBlock(bEnd) |
| |
| case ORETURN: |
| s.stmtList(n.List) |
| b := s.endBlock() |
| addEdge(b, s.exit) |
| |
| case OFOR: |
| // OFOR: for Ninit; Left; Right { Nbody } |
| bCond := s.f.NewBlock(ssa.BlockPlain) |
| bBody := s.f.NewBlock(ssa.BlockPlain) |
| bIncr := s.f.NewBlock(ssa.BlockPlain) |
| bEnd := s.f.NewBlock(ssa.BlockPlain) |
| |
| // first, jump to condition test |
| b := s.endBlock() |
| addEdge(b, bCond) |
| |
| // generate code to test condition |
| s.startBlock(bCond) |
| var cond *ssa.Value |
| if n.Left != nil { |
| cond = s.expr(n.Left) |
| } else { |
| cond = s.entryNewValue0A(ssa.OpConst, Types[TBOOL], true) |
| } |
| b = s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = cond |
| // TODO(khr): likely direction |
| addEdge(b, bBody) |
| addEdge(b, bEnd) |
| |
| // generate body |
| s.startBlock(bBody) |
| s.stmtList(n.Nbody) |
| if b := s.endBlock(); b != nil { |
| addEdge(b, bIncr) |
| } |
| |
| // generate incr |
| s.startBlock(bIncr) |
| if n.Right != nil { |
| s.stmt(n.Right) |
| } |
| if b := s.endBlock(); b != nil { |
| addEdge(b, bCond) |
| } |
| s.startBlock(bEnd) |
| |
| case OCALLFUNC: |
| s.expr(n) |
| |
| case OVARKILL: |
| // TODO(khr): ??? anything to do here? Only for addrtaken variables? |
| // Maybe just link it in the store chain? |
| default: |
| s.Unimplementedf("unhandled stmt %s", opnames[n.Op]) |
| } |
| } |
| |
| var binOpToSSA = [...]ssa.Op{ |
| // Comparisons |
| OEQ: ssa.OpEq, |
| ONE: ssa.OpNeq, |
| OLT: ssa.OpLess, |
| OLE: ssa.OpLeq, |
| OGT: ssa.OpGreater, |
| OGE: ssa.OpGeq, |
| // Arithmetic |
| OADD: ssa.OpAdd, |
| OSUB: ssa.OpSub, |
| OLSH: ssa.OpLsh, |
| ORSH: ssa.OpRsh, |
| } |
| |
| // expr converts the expression n to ssa, adds it to s and returns the ssa result. |
| func (s *state) expr(n *Node) *ssa.Value { |
| s.pushLine(n.Lineno) |
| defer s.popLine() |
| |
| s.stmtList(n.Ninit) |
| switch n.Op { |
| case ONAME: |
| if n.Class == PFUNC { |
| // "value" of a function is the address of the function's closure |
| sym := funcsym(n.Sym) |
| aux := &ssa.ExternSymbol{n.Type, sym} |
| return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb) |
| } |
| if canSSA(n) { |
| return s.variable(n, n.Type) |
| } |
| addr := s.addr(n) |
| return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem()) |
| case OLITERAL: |
| switch n.Val().Ctype() { |
| case CTINT: |
| return s.constInt(n.Type, Mpgetfix(n.Val().U.(*Mpint))) |
| case CTSTR, CTBOOL: |
| return s.entryNewValue0A(ssa.OpConst, n.Type, n.Val().U) |
| default: |
| s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype()) |
| return nil |
| } |
| case OCONVNOP: |
| x := s.expr(n.Left) |
| return s.newValue1(ssa.OpConvNop, n.Type, x) |
| case OCONV: |
| x := s.expr(n.Left) |
| return s.newValue1(ssa.OpConvert, n.Type, x) |
| |
| // binary ops |
| case OLT, OEQ, ONE, OLE, OGE, OGT: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| return s.newValue2(binOpToSSA[n.Op], ssa.TypeBool, a, b) |
| case OADD, OSUB, OLSH, ORSH: |
| a := s.expr(n.Left) |
| b := s.expr(n.Right) |
| return s.newValue2(binOpToSSA[n.Op], a.Type, a, b) |
| |
| // unary ops |
| case ONOT: |
| a := s.expr(n.Left) |
| return s.newValue1(ssa.OpNot, a.Type, a) |
| |
| case OADDR: |
| return s.addr(n.Left) |
| |
| case OIND: |
| p := s.expr(n.Left) |
| s.nilCheck(p) |
| return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) |
| |
| case ODOTPTR: |
| p := s.expr(n.Left) |
| s.nilCheck(p) |
| p = s.newValue2(ssa.OpAdd, p.Type, p, s.constInt(s.config.Uintptr, n.Xoffset)) |
| return s.newValue2(ssa.OpLoad, n.Type, p, s.mem()) |
| |
| case OINDEX: |
| if n.Left.Type.Bound >= 0 { // array or string |
| a := s.expr(n.Left) |
| i := s.expr(n.Right) |
| var elemtype *Type |
| var len *ssa.Value |
| if n.Left.Type.IsString() { |
| len = s.newValue1(ssa.OpStringLen, s.config.Uintptr, a) |
| elemtype = Types[TUINT8] |
| } else { |
| len = s.constInt(s.config.Uintptr, n.Left.Type.Bound) |
| elemtype = n.Left.Type.Type |
| } |
| s.boundsCheck(i, len) |
| return s.newValue2(ssa.OpArrayIndex, elemtype, a, i) |
| } else { // slice |
| p := s.addr(n) |
| return s.newValue2(ssa.OpLoad, n.Left.Type.Type, p, s.mem()) |
| } |
| |
| case OLEN, OCAP: |
| switch { |
| case n.Left.Type.IsSlice(): |
| op := ssa.OpSliceLen |
| if n.Op == OCAP { |
| op = ssa.OpSliceCap |
| } |
| return s.newValue1(op, s.config.Int, s.expr(n.Left)) |
| case n.Left.Type.IsString(): // string; not reachable for OCAP |
| return s.newValue1(ssa.OpStringLen, s.config.Int, s.expr(n.Left)) |
| default: // array |
| return s.constInt(s.config.Int, n.Left.Type.Bound) |
| } |
| |
| case OCALLFUNC: |
| static := n.Left.Op == ONAME && n.Left.Class == PFUNC |
| |
| // evaluate closure |
| var closure *ssa.Value |
| if !static { |
| closure = s.expr(n.Left) |
| } |
| |
| // run all argument assignments |
| s.stmtList(n.List) |
| |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| var call *ssa.Value |
| if static { |
| call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, n.Left.Sym, s.mem()) |
| } else { |
| entry := s.newValue2(ssa.OpLoad, s.config.Uintptr, closure, s.mem()) |
| call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, entry, closure, s.mem()) |
| } |
| b := s.endBlock() |
| b.Kind = ssa.BlockCall |
| b.Control = call |
| addEdge(b, bNext) |
| addEdge(b, s.exit) |
| |
| // read result from stack at the start of the fallthrough block |
| s.startBlock(bNext) |
| var titer Iter |
| fp := Structfirst(&titer, Getoutarg(n.Left.Type)) |
| if fp == nil { |
| // CALLFUNC has no return value. Continue with the next statement. |
| return nil |
| } |
| a := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Width, s.sp) |
| return s.newValue2(ssa.OpLoad, fp.Type, a, call) |
| default: |
| s.Unimplementedf("unhandled expr %s", opnames[n.Op]) |
| return nil |
| } |
| } |
| |
| func (s *state) assign(op uint8, left *Node, right *Node) { |
| // TODO: do write barrier |
| // if op == OASWB |
| var val *ssa.Value |
| if right == nil { |
| // right == nil means use the zero value of the assigned type. |
| t := left.Type |
| if !canSSA(left) { |
| // if we can't ssa this memory, treat it as just zeroing out the backing memory |
| addr := s.addr(left) |
| s.vars[&memvar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, t.Size(), addr, s.mem()) |
| return |
| } |
| switch { |
| case t.IsString(): |
| val = s.entryNewValue0A(ssa.OpConst, left.Type, "") |
| case t.IsInteger(): |
| val = s.entryNewValue0(ssa.OpConst, left.Type) |
| case t.IsBoolean(): |
| val = s.entryNewValue0A(ssa.OpConst, left.Type, false) // TODO: store bools as 0/1 in AuxInt? |
| default: |
| s.Unimplementedf("zero for type %v not implemented", t) |
| } |
| } else { |
| val = s.expr(right) |
| } |
| if left.Op == ONAME && canSSA(left) { |
| // Update variable assignment. |
| s.vars[left] = val |
| return |
| } |
| // not ssa-able. Treat as a store. |
| addr := s.addr(left) |
| s.vars[&memvar] = s.newValue3(ssa.OpStore, ssa.TypeMem, addr, val, s.mem()) |
| } |
| |
| // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. |
| func (s *state) addr(n *Node) *ssa.Value { |
| switch n.Op { |
| case ONAME: |
| switch n.Class { |
| case PEXTERN: |
| // global variable |
| aux := &ssa.ExternSymbol{n.Type, n.Sym} |
| return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb) |
| case PPARAM, PPARAMOUT, PAUTO: |
| // parameter/result slot or local variable |
| v := s.decladdrs[n] |
| if v == nil { |
| if flag_race != 0 && n.String() == ".fp" { |
| s.Unimplementedf("race detector mishandles nodfp") |
| } |
| s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) |
| } |
| return v |
| case PAUTO | PHEAP: |
| return s.expr(n.Name.Heapaddr) |
| default: |
| s.Unimplementedf("variable address of %v not implemented", n) |
| return nil |
| } |
| case OINDREG: |
| // indirect off a register (TODO: always SP?) |
| // used for storing/loading arguments/returns to/from callees |
| return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp) |
| case OINDEX: |
| if n.Left.Type.IsSlice() { |
| a := s.expr(n.Left) |
| i := s.expr(n.Right) |
| len := s.newValue1(ssa.OpSliceLen, s.config.Uintptr, a) |
| s.boundsCheck(i, len) |
| p := s.newValue1(ssa.OpSlicePtr, Ptrto(n.Left.Type.Type), a) |
| return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), p, i) |
| } else { // array |
| a := s.addr(n.Left) |
| i := s.expr(n.Right) |
| len := s.constInt(s.config.Uintptr, n.Left.Type.Bound) |
| s.boundsCheck(i, len) |
| return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Type), a, i) |
| } |
| default: |
| s.Unimplementedf("addr: bad op %v", Oconv(int(n.Op), 0)) |
| return nil |
| } |
| } |
| |
| // canSSA reports whether n is SSA-able. |
| // n must be an ONAME. |
| func canSSA(n *Node) bool { |
| if n.Op != ONAME { |
| return false |
| } |
| if n.Addrtaken { |
| return false |
| } |
| if n.Class&PHEAP != 0 { |
| return false |
| } |
| if n.Class == PEXTERN { |
| return false |
| } |
| if n.Class == PPARAMOUT { |
| return false |
| } |
| if Isfat(n.Type) { |
| return false |
| } |
| return true |
| // TODO: try to make more variables SSAable. |
| } |
| |
| // nilCheck generates nil pointer checking code. |
| // Starts a new block on return. |
| func (s *state) nilCheck(ptr *ssa.Value) { |
| c := s.newValue1(ssa.OpIsNonNil, ssa.TypeBool, ptr) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = c |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| addEdge(b, bNext) |
| addEdge(b, s.exit) |
| s.startBlock(bNext) |
| // TODO(khr): Don't go directly to exit. Go to a stub that calls panicmem first. |
| // TODO: implicit nil checks somehow? |
| } |
| |
| // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not. |
| // Starts a new block on return. |
| func (s *state) boundsCheck(idx, len *ssa.Value) { |
| // TODO: convert index to full width? |
| // TODO: if index is 64-bit and we're compiling to 32-bit, check that high 32 bits are zero. |
| |
| // bounds check |
| cmp := s.newValue2(ssa.OpIsInBounds, ssa.TypeBool, idx, len) |
| b := s.endBlock() |
| b.Kind = ssa.BlockIf |
| b.Control = cmp |
| bNext := s.f.NewBlock(ssa.BlockPlain) |
| addEdge(b, bNext) |
| addEdge(b, s.exit) |
| // TODO: don't go directly to s.exit. Go to a stub that calls panicindex first. |
| s.startBlock(bNext) |
| } |
| |
| // variable returns the value of a variable at the current location. |
| func (s *state) variable(name *Node, t ssa.Type) *ssa.Value { |
| if s.curBlock == nil { |
| // Unimplemented instead of Fatal because fixedbugs/bug303.go |
| // demonstrates a case in which this appears to happen legitimately. |
| // TODO: decide on the correct behavior here. |
| s.Unimplementedf("nil curblock adding variable %v (%v)", name, t) |
| } |
| v := s.vars[name] |
| if v == nil { |
| // TODO: get type? Take Sym as arg? |
| v = s.newValue0A(ssa.OpFwdRef, t, name) |
| s.vars[name] = v |
| } |
| return v |
| } |
| |
| func (s *state) mem() *ssa.Value { |
| return s.variable(&memvar, ssa.TypeMem) |
| } |
| |
| func (s *state) linkForwardReferences() { |
| // Build ssa graph. Each variable on its first use in a basic block |
| // leaves a FwdRef in that block representing the incoming value |
| // of that variable. This function links that ref up with possible definitions, |
| // inserting Phi values as needed. This is essentially the algorithm |
| // described by Brau, Buchwald, Hack, Leißa, Mallon, and Zwinkau: |
| // http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf |
| for _, b := range s.f.Blocks { |
| for _, v := range b.Values { |
| if v.Op != ssa.OpFwdRef { |
| continue |
| } |
| name := v.Aux.(*Node) |
| v.Op = ssa.OpCopy |
| v.Aux = nil |
| v.SetArgs1(s.lookupVarIncoming(b, v.Type, name)) |
| } |
| } |
| } |
| |
| // lookupVarIncoming finds the variable's value at the start of block b. |
| func (s *state) lookupVarIncoming(b *ssa.Block, t ssa.Type, name *Node) *ssa.Value { |
| // TODO(khr): have lookupVarIncoming overwrite the fwdRef or copy it |
| // will be used in, instead of having the result used in a copy value. |
| if b == s.f.Entry { |
| if name == &memvar { |
| return s.startmem |
| } |
| // variable is live at the entry block. Load it. |
| addr := s.decladdrs[name] |
| if addr == nil { |
| // TODO: closure args reach here. |
| s.Unimplementedf("variable %s not found", name) |
| } |
| if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok { |
| s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name) |
| } |
| return s.entryNewValue2(ssa.OpLoad, t, addr, s.startmem) |
| } |
| var vals []*ssa.Value |
| for _, p := range b.Preds { |
| vals = append(vals, s.lookupVarOutgoing(p, t, name)) |
| } |
| if len(vals) == 0 { |
| s.Unimplementedf("TODO: Handle fixedbugs/bug076.go") |
| return nil |
| } |
| v0 := vals[0] |
| for i := 1; i < len(vals); i++ { |
| if vals[i] != v0 { |
| // need a phi value |
| v := b.NewValue0(s.peekLine(), ssa.OpPhi, t) |
| v.AddArgs(vals...) |
| return v |
| } |
| } |
| return v0 |
| } |
| |
| // lookupVarOutgoing finds the variable's value at the end of block b. |
| func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node) *ssa.Value { |
| m := s.defvars[b.ID] |
| if v, ok := m[name]; ok { |
| return v |
| } |
| // The variable is not defined by b and we haven't |
| // looked it up yet. Generate v, a copy value which |
| // will be the outgoing value of the variable. Then |
| // look up w, the incoming value of the variable. |
| // Make v = copy(w). We need the extra copy to |
| // prevent infinite recursion when looking up the |
| // incoming value of the variable. |
| v := b.NewValue0(s.peekLine(), ssa.OpCopy, t) |
| m[name] = v |
| v.AddArg(s.lookupVarIncoming(b, t, name)) |
| return v |
| } |
| |
| // TODO: the above mutually recursive functions can lead to very deep stacks. Fix that. |
| |
| // addEdge adds an edge from b to c. |
| func addEdge(b, c *ssa.Block) { |
| b.Succs = append(b.Succs, c) |
| c.Preds = append(c.Preds, b) |
| } |
| |
| // an unresolved branch |
| type branch struct { |
| p *obj.Prog // branch instruction |
| b *ssa.Block // target |
| } |
| |
| // genssa appends entries to ptxt for each instruction in f. |
| // gcargs and gclocals are filled in with pointer maps for the frame. |
| func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) { |
| // TODO: line numbers |
| |
| if f.FrameSize > 1<<31 { |
| Yyerror("stack frame too large (>2GB)") |
| return |
| } |
| |
| ptxt.To.Type = obj.TYPE_TEXTSIZE |
| ptxt.To.Val = int32(Rnd(Curfn.Type.Argwid, int64(Widthptr))) // arg size |
| ptxt.To.Offset = f.FrameSize - 8 // TODO: arch-dependent |
| |
| // Remember where each block starts. |
| bstart := make([]*obj.Prog, f.NumBlocks()) |
| |
| // Remember all the branch instructions we've seen |
| // and where they would like to go |
| var branches []branch |
| |
| // Emit basic blocks |
| for i, b := range f.Blocks { |
| bstart[b.ID] = Pc |
| // Emit values in block |
| for _, v := range b.Values { |
| genValue(v) |
| } |
| // Emit control flow instructions for block |
| var next *ssa.Block |
| if i < len(f.Blocks)-1 { |
| next = f.Blocks[i+1] |
| } |
| branches = genBlock(b, next, branches) |
| } |
| |
| // Resolve branches |
| for _, br := range branches { |
| br.p.To.Val = bstart[br.b.ID] |
| } |
| |
| Pc.As = obj.ARET // overwrite AEND |
| |
| // TODO: liveness |
| // TODO: gcargs |
| // TODO: gclocals |
| |
| // TODO: dump frame if -f |
| |
| // Emit garbage collection symbols. TODO: put something in them |
| //liveness(Curfn, ptxt, gcargs, gclocals) |
| duint32(gcargs, 0, 0) |
| ggloblsym(gcargs, 4, obj.RODATA|obj.DUPOK) |
| duint32(gclocals, 0, 0) |
| ggloblsym(gclocals, 4, obj.RODATA|obj.DUPOK) |
| } |
| |
| func genValue(v *ssa.Value) { |
| lineno = v.Line |
| switch v.Op { |
| case ssa.OpAMD64ADDQ: |
| // TODO: use addq instead of leaq if target is in the right register. |
| p := Prog(x86.ALEAQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| p.From.Scale = 1 |
| p.From.Index = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64ADDL: |
| p := Prog(x86.ALEAL) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| p.From.Scale = 1 |
| p.From.Index = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64ADDW: |
| p := Prog(x86.ALEAW) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| p.From.Scale = 1 |
| p.From.Index = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64ADDB, ssa.OpAMD64ANDQ: |
| r := regnum(v) |
| x := regnum(v.Args[0]) |
| y := regnum(v.Args[1]) |
| if x != r && y != r { |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| x = r |
| } |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| if x == r { |
| p.From.Reg = y |
| } else { |
| p.From.Reg = x |
| } |
| case ssa.OpAMD64ADDQconst: |
| // TODO: use addq instead of leaq if target is in the right register. |
| p := Prog(x86.ALEAQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| p.From.Offset = v.AuxInt |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64MULQconst: |
| v.Unimplementedf("IMULQ doasm") |
| return |
| // TODO: this isn't right. doasm fails on it. I don't think obj |
| // has ever been taught to compile imul $c, r1, r2. |
| p := Prog(x86.AIMULQ) |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = v.AuxInt |
| p.From3 = new(obj.Addr) |
| p.From3.Type = obj.TYPE_REG |
| p.From3.Reg = regnum(v.Args[0]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64SUBQconst: |
| // This code compensates for the fact that the register allocator |
| // doesn't understand 2-address instructions yet. TODO: fix that. |
| x := regnum(v.Args[0]) |
| r := regnum(v) |
| if x != r { |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| x = r |
| } |
| p := Prog(x86.ASUBQ) |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = v.AuxInt |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| case ssa.OpAMD64SHLQ, ssa.OpAMD64SHRQ, ssa.OpAMD64SARQ: |
| x := regnum(v.Args[0]) |
| r := regnum(v) |
| if x != r { |
| if r == x86.REG_CX { |
| v.Fatalf("can't implement %s, target and shift both in CX", v.LongString()) |
| } |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| x = r |
| } |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[1]) // should be CX |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| case ssa.OpAMD64SHLQconst, ssa.OpAMD64SHRQconst, ssa.OpAMD64SARQconst: |
| x := regnum(v.Args[0]) |
| r := regnum(v) |
| if x != r { |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| x = r |
| } |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = v.AuxInt |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| case ssa.OpAMD64SBBQcarrymask: |
| r := regnum(v) |
| p := Prog(x86.ASBBQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = r |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| case ssa.OpAMD64CMOVQCC: |
| r := regnum(v) |
| x := regnum(v.Args[1]) |
| y := regnum(v.Args[2]) |
| if x != r && y != r { |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| x = r |
| } |
| var p *obj.Prog |
| if x == r { |
| p = Prog(x86.ACMOVQCS) |
| p.From.Reg = y |
| } else { |
| p = Prog(x86.ACMOVQCC) |
| p.From.Reg = x |
| } |
| p.From.Type = obj.TYPE_REG |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = r |
| case ssa.OpAMD64LEAQ1: |
| p := Prog(x86.ALEAQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| p.From.Scale = 1 |
| p.From.Index = regnum(v.Args[1]) |
| addAux(&p.From, v) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64LEAQ: |
| p := Prog(x86.ALEAQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| addAux(&p.From, v) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64CMPQ, ssa.OpAMD64TESTB, ssa.OpAMD64TESTQ: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[0]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v.Args[1]) |
| case ssa.OpAMD64CMPQconst: |
| p := Prog(x86.ACMPQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[0]) |
| p.To.Type = obj.TYPE_CONST |
| p.To.Offset = v.AuxInt |
| case ssa.OpAMD64MOVQconst: |
| x := regnum(v) |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = v.AuxInt |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = x |
| case ssa.OpAMD64MOVQload, ssa.OpAMD64MOVLload, ssa.OpAMD64MOVWload, ssa.OpAMD64MOVBload: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| addAux(&p.From, v) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64MOVQloadidx8: |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = regnum(v.Args[0]) |
| addAux(&p.From, v) |
| p.From.Scale = 8 |
| p.From.Index = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64MOVQstore, ssa.OpAMD64MOVLstore, ssa.OpAMD64MOVWstore, ssa.OpAMD64MOVBstore: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[1]) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Reg = regnum(v.Args[0]) |
| addAux(&p.To, v) |
| case ssa.OpAMD64MOVLQSX, ssa.OpAMD64MOVWQSX, ssa.OpAMD64MOVBQSX: |
| p := Prog(v.Op.Asm()) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[0]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpAMD64MOVXzero: |
| nb := v.AuxInt |
| offset := int64(0) |
| reg := regnum(v.Args[0]) |
| for nb >= 8 { |
| nb, offset = movZero(x86.AMOVQ, 8, nb, offset, reg) |
| } |
| for nb >= 4 { |
| nb, offset = movZero(x86.AMOVL, 4, nb, offset, reg) |
| } |
| for nb >= 2 { |
| nb, offset = movZero(x86.AMOVW, 2, nb, offset, reg) |
| } |
| for nb >= 1 { |
| nb, offset = movZero(x86.AMOVB, 1, nb, offset, reg) |
| } |
| case ssa.OpCopy: // TODO: lower to MOVQ earlier? |
| if v.Type.IsMemory() { |
| return |
| } |
| x := regnum(v.Args[0]) |
| y := regnum(v) |
| if x != y { |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = x |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = y |
| } |
| case ssa.OpLoadReg8: |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_MEM |
| p.From.Reg = x86.REG_SP |
| p.From.Offset = localOffset(v.Args[0]) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v) |
| case ssa.OpStoreReg8: |
| p := Prog(x86.AMOVQ) |
| p.From.Type = obj.TYPE_REG |
| p.From.Reg = regnum(v.Args[0]) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Reg = x86.REG_SP |
| p.To.Offset = localOffset(v) |
| case ssa.OpPhi: |
| // just check to make sure regalloc did it right |
| f := v.Block.Func |
| loc := f.RegAlloc[v.ID] |
| for _, a := range v.Args { |
| if f.RegAlloc[a.ID] != loc { // TODO: .Equal() instead? |
| v.Fatalf("phi arg at different location than phi %v %v %v %v", v, loc, a, f.RegAlloc[a.ID]) |
| } |
| } |
| case ssa.OpConst: |
| if v.Block.Func.RegAlloc[v.ID] != nil { |
| v.Fatalf("const value %v shouldn't have a location", v) |
| } |
| case ssa.OpArg: |
| // memory arg needs no code |
| // TODO: check that only mem arg goes here. |
| case ssa.OpAMD64CALLstatic: |
| p := Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_MEM |
| p.To.Name = obj.NAME_EXTERN |
| p.To.Sym = Linksym(v.Aux.(*Sym)) |
| case ssa.OpAMD64CALLclosure: |
| p := Prog(obj.ACALL) |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v.Args[0]) |
| case ssa.OpAMD64XORQconst: |
| p := Prog(x86.AXORQ) |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = v.AuxInt |
| p.To.Type = obj.TYPE_REG |
| p.To.Reg = regnum(v.Args[0]) |
| case ssa.OpSP, ssa.OpSB: |
| // nothing to do |
| default: |
| v.Unimplementedf("value %s not implemented", v.LongString()) |
| } |
| } |
| |
| // movZero generates a register indirect move with a 0 immediate and keeps track of bytes left and next offset |
| func movZero(as int, width int64, nbytes int64, offset int64, regnum int16) (nleft int64, noff int64) { |
| p := Prog(as) |
| // TODO: use zero register on archs that support it. |
| p.From.Type = obj.TYPE_CONST |
| p.From.Offset = 0 |
| p.To.Type = obj.TYPE_MEM |
| p.To.Reg = regnum |
| p.To.Offset = offset |
| offset += width |
| nleft = nbytes - width |
| return nleft, offset |
| } |
| |
| func genBlock(b, next *ssa.Block, branches []branch) []branch { |
| lineno = b.Line |
| switch b.Kind { |
| case ssa.BlockPlain: |
| if b.Succs[0] != next { |
| p := Prog(obj.AJMP) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| } |
| case ssa.BlockExit: |
| Prog(obj.ARET) |
| case ssa.BlockCall: |
| if b.Succs[0] != next { |
| p := Prog(obj.AJMP) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| } |
| case ssa.BlockAMD64EQ: |
| if b.Succs[0] == next { |
| p := Prog(x86.AJNE) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[1]}) |
| } else if b.Succs[1] == next { |
| p := Prog(x86.AJEQ) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| } else { |
| p := Prog(x86.AJEQ) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| q := Prog(obj.AJMP) |
| q.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{q, b.Succs[1]}) |
| } |
| case ssa.BlockAMD64NE: |
| if b.Succs[0] == next { |
| p := Prog(x86.AJEQ) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[1]}) |
| } else if b.Succs[1] == next { |
| p := Prog(x86.AJNE) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| } else { |
| p := Prog(x86.AJNE) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| q := Prog(obj.AJMP) |
| q.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{q, b.Succs[1]}) |
| } |
| case ssa.BlockAMD64LT: |
| if b.Succs[0] == next { |
| p := Prog(x86.AJGE) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[1]}) |
| } else if b.Succs[1] == next { |
| p := Prog(x86.AJLT) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| } else { |
| p := Prog(x86.AJLT) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| q := Prog(obj.AJMP) |
| q.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{q, b.Succs[1]}) |
| } |
| case ssa.BlockAMD64ULT: |
| if b.Succs[0] == next { |
| p := Prog(x86.AJCC) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[1]}) |
| } else if b.Succs[1] == next { |
| p := Prog(x86.AJCS) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| } else { |
| p := Prog(x86.AJCS) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| q := Prog(obj.AJMP) |
| q.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{q, b.Succs[1]}) |
| } |
| case ssa.BlockAMD64UGT: |
| if b.Succs[0] == next { |
| p := Prog(x86.AJLS) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[1]}) |
| } else if b.Succs[1] == next { |
| p := Prog(x86.AJHI) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| } else { |
| p := Prog(x86.AJHI) |
| p.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{p, b.Succs[0]}) |
| q := Prog(obj.AJMP) |
| q.To.Type = obj.TYPE_BRANCH |
| branches = append(branches, branch{q, b.Succs[1]}) |
| } |
| |
| default: |
| b.Unimplementedf("branch %s not implemented", b.LongString()) |
| } |
| return branches |
| } |
| |
| // addAux adds the offset in the aux fields (AuxInt and Aux) of v to a. |
| func addAux(a *obj.Addr, v *ssa.Value) { |
| if a.Type != obj.TYPE_MEM { |
| v.Fatalf("bad addAux addr %s", a) |
| } |
| // add integer offset |
| a.Offset += v.AuxInt |
| |
| // If no additional symbol offset, we're done. |
| if v.Aux == nil { |
| return |
| } |
| // Add symbol's offset from its base register. |
| switch sym := v.Aux.(type) { |
| case *ssa.ExternSymbol: |
| a.Name = obj.NAME_EXTERN |
| a.Sym = Linksym(sym.Sym.(*Sym)) |
| case *ssa.ArgSymbol: |
| a.Offset += v.Block.Func.FrameSize + sym.Offset |
| case *ssa.AutoSymbol: |
| if sym.Offset == -1 { |
| v.Fatalf("auto symbol %s offset not calculated", sym.Sym) |
| } |
| a.Offset += sym.Offset |
| default: |
| v.Fatalf("aux in %s not implemented %#v", v, v.Aux) |
| } |
| } |
| |
| // ssaRegToReg maps ssa register numbers to obj register numbers. |
| var ssaRegToReg = [...]int16{ |
| x86.REG_AX, |
| x86.REG_CX, |
| x86.REG_DX, |
| x86.REG_BX, |
| x86.REG_SP, |
| x86.REG_BP, |
| x86.REG_SI, |
| x86.REG_DI, |
| x86.REG_R8, |
| x86.REG_R9, |
| x86.REG_R10, |
| x86.REG_R11, |
| x86.REG_R12, |
| x86.REG_R13, |
| x86.REG_R14, |
| x86.REG_R15, |
| x86.REG_X0, |
| x86.REG_X1, |
| x86.REG_X2, |
| x86.REG_X3, |
| x86.REG_X4, |
| x86.REG_X5, |
| x86.REG_X6, |
| x86.REG_X7, |
| x86.REG_X8, |
| x86.REG_X9, |
| x86.REG_X10, |
| x86.REG_X11, |
| x86.REG_X12, |
| x86.REG_X13, |
| x86.REG_X14, |
| x86.REG_X15, |
| 0, // SB isn't a real register. We fill an Addr.Reg field with 0 in this case. |
| // TODO: arch-dependent |
| } |
| |
| // regnum returns the register (in cmd/internal/obj numbering) to |
| // which v has been allocated. Panics if v is not assigned to a |
| // register. |
| func regnum(v *ssa.Value) int16 { |
| return ssaRegToReg[v.Block.Func.RegAlloc[v.ID].(*ssa.Register).Num] |
| } |
| |
| // localOffset returns the offset below the frame pointer where |
| // a stack-allocated local has been allocated. Panics if v |
| // is not assigned to a local slot. |
| func localOffset(v *ssa.Value) int64 { |
| return v.Block.Func.RegAlloc[v.ID].(*ssa.LocalSlot).Idx |
| } |
| |
| // ssaExport exports a bunch of compiler services for the ssa backend. |
| type ssaExport struct { |
| log bool |
| unimplemented bool |
| } |
| |
| // StringSym returns a symbol (a *Sym wrapped in an interface) which |
| // is a global string constant containing s. |
| func (*ssaExport) StringSym(s string) interface{} { |
| // TODO: is idealstring correct? It might not matter... |
| hdr, _ := stringsym(s) |
| return &ssa.ExternSymbol{Typ: idealstring, Sym: hdr} |
| } |
| |
| // Log logs a message from the compiler. |
| func (e *ssaExport) Logf(msg string, args ...interface{}) { |
| // If e was marked as unimplemented, anything could happen. Ignore. |
| if e.log && !e.unimplemented { |
| fmt.Printf(msg, args...) |
| } |
| } |
| |
| // Fatal reports a compiler error and exits. |
| func (e *ssaExport) Fatalf(msg string, args ...interface{}) { |
| // If e was marked as unimplemented, anything could happen. Ignore. |
| if !e.unimplemented { |
| Fatal(msg, args...) |
| } |
| } |
| |
| // Unimplemented reports that the function cannot be compiled. |
| // It will be removed once SSA work is complete. |
| func (e *ssaExport) Unimplementedf(msg string, args ...interface{}) { |
| const alwaysLog = false // enable to calculate top unimplemented features |
| if !e.unimplemented && (e.log || alwaysLog) { |
| // first implementation failure, print explanation |
| fmt.Printf("SSA unimplemented: "+msg+"\n", args...) |
| } |
| e.unimplemented = true |
| } |