blob: 46188c1e300639aec971695ce382eb8329ffb155 [file] [log] [blame]
// Copyright © 2015 The Go Authors. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
package riscv
import (
"cmd/internal/obj"
"cmd/internal/sys"
"fmt"
)
// TODO(jsing): Populate.
var RISCV64DWARFRegisters = map[int16]int16{}
func buildop(ctxt *obj.Link) {}
// progedit is called individually for each *obj.Prog. It normalizes instruction
// formats and eliminates as many pseudo-instructions as possible.
func progedit(ctxt *obj.Link, p *obj.Prog, newprog obj.ProgAlloc) {
// Expand binary instructions to ternary ones.
if p.Reg == 0 {
switch p.As {
case AADDI, ASLTI, ASLTIU, AANDI, AORI, AXORI, ASLLI, ASRLI, ASRAI,
AADD, AAND, AOR, AXOR, ASLL, ASRL, ASUB, ASRA:
p.Reg = p.To.Reg
}
}
// Rewrite instructions with constant operands to refer to the immediate
// form of the instruction.
if p.From.Type == obj.TYPE_CONST {
switch p.As {
case AADD:
p.As = AADDI
case ASLT:
p.As = ASLTI
case ASLTU:
p.As = ASLTIU
case AAND:
p.As = AANDI
case AOR:
p.As = AORI
case AXOR:
p.As = AXORI
case ASLL:
p.As = ASLLI
case ASRL:
p.As = ASRLI
case ASRA:
p.As = ASRAI
}
}
switch p.As {
case obj.AUNDEF, AECALL, AEBREAK, ASCALL, ASBREAK, ARDCYCLE, ARDTIME, ARDINSTRET:
switch p.As {
case obj.AUNDEF:
p.As = AEBREAK
case ASCALL:
// SCALL is the old name for ECALL.
p.As = AECALL
case ASBREAK:
// SBREAK is the old name for EBREAK.
p.As = AEBREAK
}
ins := encode(p.As)
if ins == nil {
panic("progedit: tried to rewrite nonexistent instruction")
}
// The CSR isn't exactly an offset, but it winds up in the
// immediate area of the encoded instruction, so record it in
// the Offset field.
p.From.Type = obj.TYPE_CONST
p.From.Offset = ins.csr
p.Reg = REG_ZERO
if p.To.Type == obj.TYPE_NONE {
p.To.Type, p.To.Reg = obj.TYPE_REG, REG_ZERO
}
}
}
// setPCs sets the Pc field in all instructions reachable from p.
// It uses pc as the initial value.
func setPCs(p *obj.Prog, pc int64) {
for ; p != nil; p = p.Link {
p.Pc = pc
pc += int64(encodingForProg(p).length)
}
}
func preprocess(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
if cursym.Func.Text == nil || cursym.Func.Text.Link == nil {
return
}
text := cursym.Func.Text
if text.As != obj.ATEXT {
ctxt.Diag("preprocess: found symbol that does not start with TEXT directive")
return
}
stacksize := text.To.Offset
if stacksize == -8 {
// Historical way to mark NOFRAME.
text.From.Sym.Set(obj.AttrNoFrame, true)
stacksize = 0
}
if stacksize < 0 {
ctxt.Diag("negative frame size %d - did you mean NOFRAME?", stacksize)
}
if text.From.Sym.NoFrame() {
if stacksize != 0 {
ctxt.Diag("NOFRAME functions must have a frame size of 0, not %d", stacksize)
}
}
cursym.Func.Args = text.To.Val.(int32)
cursym.Func.Locals = int32(stacksize)
// TODO(jsing): Implement.
setPCs(cursym.Func.Text, 0)
// Validate all instructions - this provides nice error messages.
for p := cursym.Func.Text; p != nil; p = p.Link {
encodingForProg(p).validate(p)
}
}
func regVal(r, min, max int16) uint32 {
if r < min || r > max {
panic(fmt.Sprintf("register out of range, want %d < %d < %d", min, r, max))
}
return uint32(r - min)
}
// regI returns an integer register.
func regI(r int16) uint32 {
return regVal(r, REG_X0, REG_X31)
}
// regAddr extracts a register from an Addr.
func regAddr(a obj.Addr, min, max int16) uint32 {
if a.Type != obj.TYPE_REG {
panic(fmt.Sprintf("ill typed: %+v", a))
}
return regVal(a.Reg, min, max)
}
// regIAddr extracts the integer register from an Addr.
func regIAddr(a obj.Addr) uint32 {
return regAddr(a, REG_X0, REG_X31)
}
// immFits reports whether immediate value x fits in nbits bits as a
// signed integer.
func immFits(x int64, nbits uint) bool {
nbits--
var min int64 = -1 << nbits
var max int64 = 1<<nbits - 1
return min <= x && x <= max
}
// immI extracts the integer literal of the specified size from an Addr.
func immI(a obj.Addr, nbits uint) uint32 {
if a.Type != obj.TYPE_CONST {
panic(fmt.Sprintf("ill typed: %+v", a))
}
if !immFits(a.Offset, nbits) {
panic(fmt.Sprintf("immediate %d in %v cannot fit in %d bits", a.Offset, a, nbits))
}
return uint32(a.Offset)
}
func wantImm(p *obj.Prog, pos string, a obj.Addr, nbits uint) {
if a.Type != obj.TYPE_CONST {
p.Ctxt.Diag("%v\texpected immediate in %s position but got %s", p, pos, obj.Dconv(p, &a))
return
}
if !immFits(a.Offset, nbits) {
p.Ctxt.Diag("%v\timmediate in %s position cannot be larger than %d bits but got %d", p, pos, nbits, a.Offset)
}
}
func wantReg(p *obj.Prog, pos string, descr string, r, min, max int16) {
if r < min || r > max {
p.Ctxt.Diag("%v\texpected %s register in %s position but got non-%s register %s", p, descr, pos, descr, regName(int(r)))
}
}
// wantIntReg checks that r is an integer register.
func wantIntReg(p *obj.Prog, pos string, r int16) {
wantReg(p, pos, "integer", r, REG_X0, REG_X31)
}
func wantRegAddr(p *obj.Prog, pos string, a *obj.Addr, descr string, min int16, max int16) {
if a == nil {
p.Ctxt.Diag("%v\texpected register in %s position but got nothing", p, pos)
return
}
if a.Type != obj.TYPE_REG {
p.Ctxt.Diag("%v\texpected register in %s position but got %s", p, pos, obj.Dconv(p, a))
return
}
if a.Reg < min || a.Reg > max {
p.Ctxt.Diag("%v\texpected %s register in %s position but got non-%s register %s", p, descr, pos, descr, obj.Dconv(p, a))
}
}
// wantIntRegAddr checks that a contains an integer register.
func wantIntRegAddr(p *obj.Prog, pos string, a *obj.Addr) {
wantRegAddr(p, pos, a, "integer", REG_X0, REG_X31)
}
func validateRIII(p *obj.Prog) {
wantIntRegAddr(p, "from", &p.From)
wantIntReg(p, "reg", p.Reg)
wantIntRegAddr(p, "to", &p.To)
}
func validateII(p *obj.Prog) {
wantImm(p, "from", p.From, 12)
wantIntReg(p, "reg", p.Reg)
wantIntRegAddr(p, "to", &p.To)
}
func validateSI(p *obj.Prog) {
wantImm(p, "from", p.From, 12)
wantIntReg(p, "reg", p.Reg)
wantIntRegAddr(p, "to", &p.To)
}
func validateRaw(p *obj.Prog) {
// Treat the raw value specially as a 32-bit unsigned integer.
// Nobody wants to enter negative machine code.
a := p.From
if a.Type != obj.TYPE_CONST {
p.Ctxt.Diag("%v\texpected immediate in raw position but got %s", p, obj.Dconv(p, &a))
return
}
if a.Offset < 0 || 1<<32 <= a.Offset {
p.Ctxt.Diag("%v\timmediate in raw position cannot be larger than 32 bits but got %d", p, a.Offset)
}
}
// encodeR encodes an R-type RISC-V instruction.
func encodeR(p *obj.Prog, rs1 uint32, rs2 uint32, rd uint32) uint32 {
ins := encode(p.As)
if ins == nil {
panic("encodeR: could not encode instruction")
}
if ins.rs2 != 0 && rs2 != 0 {
panic("encodeR: instruction uses rs2, but rs2 was nonzero")
}
// Use Scond for the floating-point rounding mode override.
// TODO(sorear): Is there a more appropriate way to handle opcode extension bits like this?
return ins.funct7<<25 | ins.rs2<<20 | rs2<<20 | rs1<<15 | ins.funct3<<12 | uint32(p.Scond)<<12 | rd<<7 | ins.opcode
}
func encodeRIII(p *obj.Prog) uint32 {
return encodeR(p, regI(p.Reg), regIAddr(p.From), regIAddr(p.To))
}
// encodeI encodes an I-type RISC-V instruction.
func encodeI(p *obj.Prog, rd uint32) uint32 {
imm := immI(p.From, 12)
rs1 := regI(p.Reg)
ins := encode(p.As)
if ins == nil {
panic("encodeI: could not encode instruction")
}
imm |= uint32(ins.csr)
return imm<<20 | rs1<<15 | ins.funct3<<12 | rd<<7 | ins.opcode
}
func encodeII(p *obj.Prog) uint32 {
return encodeI(p, regIAddr(p.To))
}
// encodeS encodes an S-type RISC-V instruction.
func encodeS(p *obj.Prog, rs2 uint32) uint32 {
imm := immI(p.From, 12)
rs1 := regIAddr(p.To)
i := encode(p.As)
if i == nil {
panic("encodeS: could not encode instruction")
}
return (imm>>5)<<25 | rs2<<20 | rs1<<15 | i.funct3<<12 | (imm&0x1f)<<7 | i.opcode
}
func encodeSI(p *obj.Prog) uint32 {
return encodeS(p, regI(p.Reg))
}
// encodeRaw encodes a raw instruction value.
func encodeRaw(p *obj.Prog) uint32 {
// Treat the raw value specially as a 32-bit unsigned integer.
// Nobody wants to enter negative machine code.
a := p.From
if a.Type != obj.TYPE_CONST {
panic(fmt.Sprintf("ill typed: %+v", a))
}
if a.Offset < 0 || 1<<32 <= a.Offset {
panic(fmt.Sprintf("immediate %d in %v cannot fit in 32 bits", a.Offset, a))
}
return uint32(a.Offset)
}
type encoding struct {
encode func(*obj.Prog) uint32 // encode returns the machine code for an *obj.Prog
validate func(*obj.Prog) // validate validates an *obj.Prog, calling ctxt.Diag for any issues
length int // length of encoded instruction; 0 for pseudo-ops, 4 otherwise
}
var (
// Encodings have the following naming convention:
//
// 1. the instruction encoding (R/I/S/SB/U/UJ), in lowercase
// 2. zero or more register operand identifiers (I = integer
// register, F = float register), in uppercase
// 3. the word "Encoding"
//
// For example, rIIIEncoding indicates an R-type instruction with two
// integer register inputs and an integer register output; sFEncoding
// indicates an S-type instruction with rs2 being a float register.
rIIIEncoding = encoding{encode: encodeRIII, validate: validateRIII, length: 4}
iIEncoding = encoding{encode: encodeII, validate: validateII, length: 4}
sIEncoding = encoding{encode: encodeSI, validate: validateSI, length: 4}
// rawEncoding encodes a raw instruction byte sequence.
rawEncoding = encoding{encode: encodeRaw, validate: validateRaw, length: 4}
// pseudoOpEncoding panics if encoding is attempted, but does no validation.
pseudoOpEncoding = encoding{encode: nil, validate: func(*obj.Prog) {}, length: 0}
// badEncoding is used when an invalid op is encountered.
// An error has already been generated, so let anything else through.
badEncoding = encoding{encode: func(*obj.Prog) uint32 { return 0 }, validate: func(*obj.Prog) {}, length: 0}
)
// encodingForAs contains the encoding for a RISC-V instruction.
// Instructions are masked with obj.AMask to keep indices small.
var encodingForAs = [ALAST & obj.AMask]encoding{
// TODO(jsing): Implement remaining instructions.
// Unprivileged ISA
// 2.4: Integer Computational Instructions
AADDI & obj.AMask: iIEncoding,
ASLTI & obj.AMask: iIEncoding,
ASLTIU & obj.AMask: iIEncoding,
AANDI & obj.AMask: iIEncoding,
AORI & obj.AMask: iIEncoding,
AXORI & obj.AMask: iIEncoding,
ASLLI & obj.AMask: iIEncoding,
ASRLI & obj.AMask: iIEncoding,
ASRAI & obj.AMask: iIEncoding,
AADD & obj.AMask: rIIIEncoding,
ASLT & obj.AMask: rIIIEncoding,
ASLTU & obj.AMask: rIIIEncoding,
AAND & obj.AMask: rIIIEncoding,
AOR & obj.AMask: rIIIEncoding,
AXOR & obj.AMask: rIIIEncoding,
ASLL & obj.AMask: rIIIEncoding,
ASRL & obj.AMask: rIIIEncoding,
ASUB & obj.AMask: rIIIEncoding,
ASRA & obj.AMask: rIIIEncoding,
// 2.6: Load and Store Instructions
ALW & obj.AMask: iIEncoding,
ALWU & obj.AMask: iIEncoding,
ALH & obj.AMask: iIEncoding,
ALHU & obj.AMask: iIEncoding,
ALB & obj.AMask: iIEncoding,
ALBU & obj.AMask: iIEncoding,
ASW & obj.AMask: sIEncoding,
ASH & obj.AMask: sIEncoding,
ASB & obj.AMask: sIEncoding,
// 5.2: Integer Computational Instructions (RV64I)
AADDIW & obj.AMask: iIEncoding,
ASLLIW & obj.AMask: iIEncoding,
ASRLIW & obj.AMask: iIEncoding,
ASRAIW & obj.AMask: iIEncoding,
AADDW & obj.AMask: rIIIEncoding,
ASLLW & obj.AMask: rIIIEncoding,
ASRLW & obj.AMask: rIIIEncoding,
ASUBW & obj.AMask: rIIIEncoding,
ASRAW & obj.AMask: rIIIEncoding,
// 5.3: Load and Store Instructions (RV64I)
ALD & obj.AMask: iIEncoding,
ASD & obj.AMask: sIEncoding,
// 7.1: Multiplication Operations
AMUL & obj.AMask: rIIIEncoding,
AMULH & obj.AMask: rIIIEncoding,
AMULHU & obj.AMask: rIIIEncoding,
AMULHSU & obj.AMask: rIIIEncoding,
AMULW & obj.AMask: rIIIEncoding,
ADIV & obj.AMask: rIIIEncoding,
ADIVU & obj.AMask: rIIIEncoding,
AREM & obj.AMask: rIIIEncoding,
AREMU & obj.AMask: rIIIEncoding,
ADIVW & obj.AMask: rIIIEncoding,
ADIVUW & obj.AMask: rIIIEncoding,
AREMW & obj.AMask: rIIIEncoding,
AREMUW & obj.AMask: rIIIEncoding,
// 10.1: Base Counters and Timers
ARDCYCLE & obj.AMask: iIEncoding,
ARDTIME & obj.AMask: iIEncoding,
ARDINSTRET & obj.AMask: iIEncoding,
// Privileged ISA
// 3.2.1: Environment Call and Breakpoint
AECALL & obj.AMask: iIEncoding,
AEBREAK & obj.AMask: iIEncoding,
// Escape hatch
AWORD & obj.AMask: rawEncoding,
// Pseudo-operations
obj.AFUNCDATA: pseudoOpEncoding,
obj.APCDATA: pseudoOpEncoding,
obj.ATEXT: pseudoOpEncoding,
obj.ANOP: pseudoOpEncoding,
}
// encodingForProg returns the encoding (encode+validate funcs) for an *obj.Prog.
func encodingForProg(p *obj.Prog) encoding {
if base := p.As &^ obj.AMask; base != obj.ABaseRISCV && base != 0 {
p.Ctxt.Diag("encodingForProg: not a RISC-V instruction %s", p.As)
return badEncoding
}
as := p.As & obj.AMask
if int(as) >= len(encodingForAs) {
p.Ctxt.Diag("encodingForProg: bad RISC-V instruction %s", p.As)
return badEncoding
}
enc := encodingForAs[as]
if enc.validate == nil {
p.Ctxt.Diag("encodingForProg: no encoding for instruction %s", p.As)
return badEncoding
}
return enc
}
// assemble emits machine code.
// It is called at the very end of the assembly process.
func assemble(ctxt *obj.Link, cursym *obj.LSym, newprog obj.ProgAlloc) {
var symcode []uint32
for p := cursym.Func.Text; p != nil; p = p.Link {
enc := encodingForProg(p)
if enc.length > 0 {
symcode = append(symcode, enc.encode(p))
}
}
cursym.Size = int64(4 * len(symcode))
cursym.Grow(cursym.Size)
for p, i := cursym.P, 0; i < len(symcode); p, i = p[4:], i+1 {
ctxt.Arch.ByteOrder.PutUint32(p, symcode[i])
}
}
var LinkRISCV64 = obj.LinkArch{
Arch: sys.ArchRISCV64,
Init: buildop,
Preprocess: preprocess,
Assemble: assemble,
Progedit: progedit,
UnaryDst: unaryDst,
DWARFRegisters: RISCV64DWARFRegisters,
}