blob: faa431a9d194434f279ab45a283ed4a61d2d1336 [file] [log] [blame]
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflectdata
import (
"fmt"
"sort"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/objw"
"cmd/compile/internal/typecheck"
"cmd/compile/internal/types"
"cmd/internal/obj"
)
// isRegularMemory reports whether t can be compared/hashed as regular memory.
func isRegularMemory(t *types.Type) bool {
a, _ := types.AlgType(t)
return a == types.AMEM
}
// eqCanPanic reports whether == on type t could panic (has an interface somewhere).
// t must be comparable.
func eqCanPanic(t *types.Type) bool {
switch t.Kind() {
default:
return false
case types.TINTER:
return true
case types.TARRAY:
return eqCanPanic(t.Elem())
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
if !f.Sym.IsBlank() && eqCanPanic(f.Type) {
return true
}
}
return false
}
}
// AlgType returns the fixed-width AMEMxx variants instead of the general
// AMEM kind when possible.
func AlgType(t *types.Type) types.AlgKind {
a, _ := types.AlgType(t)
if a == types.AMEM {
switch t.Width {
case 0:
return types.AMEM0
case 1:
return types.AMEM8
case 2:
return types.AMEM16
case 4:
return types.AMEM32
case 8:
return types.AMEM64
case 16:
return types.AMEM128
}
}
return a
}
// genhash returns a symbol which is the closure used to compute
// the hash of a value of type t.
// Note: the generated function must match runtime.typehash exactly.
func genhash(t *types.Type) *obj.LSym {
switch AlgType(t) {
default:
// genhash is only called for types that have equality
base.Fatalf("genhash %v", t)
case types.AMEM0:
return sysClosure("memhash0")
case types.AMEM8:
return sysClosure("memhash8")
case types.AMEM16:
return sysClosure("memhash16")
case types.AMEM32:
return sysClosure("memhash32")
case types.AMEM64:
return sysClosure("memhash64")
case types.AMEM128:
return sysClosure("memhash128")
case types.ASTRING:
return sysClosure("strhash")
case types.AINTER:
return sysClosure("interhash")
case types.ANILINTER:
return sysClosure("nilinterhash")
case types.AFLOAT32:
return sysClosure("f32hash")
case types.AFLOAT64:
return sysClosure("f64hash")
case types.ACPLX64:
return sysClosure("c64hash")
case types.ACPLX128:
return sysClosure("c128hash")
case types.AMEM:
// For other sizes of plain memory, we build a closure
// that calls memhash_varlen. The size of the memory is
// encoded in the first slot of the closure.
closure := TypeLinksymLookup(fmt.Sprintf(".hashfunc%d", t.Width))
if len(closure.P) > 0 { // already generated
return closure
}
if memhashvarlen == nil {
memhashvarlen = typecheck.LookupRuntimeFunc("memhash_varlen")
}
ot := 0
ot = objw.SymPtr(closure, ot, memhashvarlen, 0)
ot = objw.Uintptr(closure, ot, uint64(t.Width)) // size encoded in closure
objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA)
return closure
case types.ASPECIAL:
break
}
closure := TypeLinksymPrefix(".hashfunc", t)
if len(closure.P) > 0 { // already generated
return closure
}
// Generate hash functions for subtypes.
// There are cases where we might not use these hashes,
// but in that case they will get dead-code eliminated.
// (And the closure generated by genhash will also get
// dead-code eliminated, as we call the subtype hashers
// directly.)
switch t.Kind() {
case types.TARRAY:
genhash(t.Elem())
case types.TSTRUCT:
for _, f := range t.FieldSlice() {
genhash(f.Type)
}
}
sym := TypeSymPrefix(".hash", t)
if base.Flag.LowerR != 0 {
fmt.Printf("genhash %v %v %v\n", closure, sym, t)
}
base.Pos = base.AutogeneratedPos // less confusing than end of input
typecheck.DeclContext = ir.PEXTERN
// func sym(p *T, h uintptr) uintptr
args := []*ir.Field{
ir.NewField(base.Pos, typecheck.Lookup("p"), nil, types.NewPtr(t)),
ir.NewField(base.Pos, typecheck.Lookup("h"), nil, types.Types[types.TUINTPTR]),
}
results := []*ir.Field{ir.NewField(base.Pos, nil, nil, types.Types[types.TUINTPTR])}
tfn := ir.NewFuncType(base.Pos, nil, args, results)
fn := typecheck.DeclFunc(sym, tfn)
np := ir.AsNode(tfn.Type().Params().Field(0).Nname)
nh := ir.AsNode(tfn.Type().Params().Field(1).Nname)
switch t.Kind() {
case types.TARRAY:
// An array of pure memory would be handled by the
// standard algorithm, so the element type must not be
// pure memory.
hashel := hashfor(t.Elem())
// for i := 0; i < nelem; i++
ni := typecheck.Temp(types.Types[types.TINT])
init := ir.NewAssignStmt(base.Pos, ni, ir.NewInt(0))
cond := ir.NewBinaryExpr(base.Pos, ir.OLT, ni, ir.NewInt(t.NumElem()))
post := ir.NewAssignStmt(base.Pos, ni, ir.NewBinaryExpr(base.Pos, ir.OADD, ni, ir.NewInt(1)))
loop := ir.NewForStmt(base.Pos, nil, cond, post, nil)
loop.PtrInit().Append(init)
// h = hashel(&p[i], h)
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
nx := ir.NewIndexExpr(base.Pos, np, ni)
nx.SetBounded(true)
na := typecheck.NodAddr(nx)
call.Args.Append(na)
call.Args.Append(nh)
loop.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
fn.Body.Append(loop)
case types.TSTRUCT:
// Walk the struct using memhash for runs of AMEM
// and calling specific hash functions for the others.
for i, fields := 0, t.FieldSlice(); i < len(fields); {
f := fields[i]
// Skip blank fields.
if f.Sym.IsBlank() {
i++
continue
}
// Hash non-memory fields with appropriate hash function.
if !isRegularMemory(f.Type) {
hashel := hashfor(f.Type)
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) // TODO: fields from other packages?
na := typecheck.NodAddr(nx)
call.Args.Append(na)
call.Args.Append(nh)
fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
i++
continue
}
// Otherwise, hash a maximal length run of raw memory.
size, next := memrun(t, i)
// h = hashel(&p.first, size, h)
hashel := hashmem(f.Type)
call := ir.NewCallExpr(base.Pos, ir.OCALL, hashel, nil)
nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym) // TODO: fields from other packages?
na := typecheck.NodAddr(nx)
call.Args.Append(na)
call.Args.Append(nh)
call.Args.Append(ir.NewInt(size))
fn.Body.Append(ir.NewAssignStmt(base.Pos, nh, call))
i = next
}
}
r := ir.NewReturnStmt(base.Pos, nil)
r.Results.Append(nh)
fn.Body.Append(r)
if base.Flag.LowerR != 0 {
ir.DumpList("genhash body", fn.Body)
}
typecheck.FinishFuncBody()
fn.SetDupok(true)
typecheck.Func(fn)
ir.CurFunc = fn
typecheck.Stmts(fn.Body)
ir.CurFunc = nil
if base.Debug.DclStack != 0 {
types.CheckDclstack()
}
fn.SetNilCheckDisabled(true)
typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
// Build closure. It doesn't close over any variables, so
// it contains just the function pointer.
objw.SymPtr(closure, 0, fn.Linksym(), 0)
objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
return closure
}
func hashfor(t *types.Type) ir.Node {
var sym *types.Sym
switch a, _ := types.AlgType(t); a {
case types.AMEM:
base.Fatalf("hashfor with AMEM type")
case types.AINTER:
sym = ir.Pkgs.Runtime.Lookup("interhash")
case types.ANILINTER:
sym = ir.Pkgs.Runtime.Lookup("nilinterhash")
case types.ASTRING:
sym = ir.Pkgs.Runtime.Lookup("strhash")
case types.AFLOAT32:
sym = ir.Pkgs.Runtime.Lookup("f32hash")
case types.AFLOAT64:
sym = ir.Pkgs.Runtime.Lookup("f64hash")
case types.ACPLX64:
sym = ir.Pkgs.Runtime.Lookup("c64hash")
case types.ACPLX128:
sym = ir.Pkgs.Runtime.Lookup("c128hash")
default:
// Note: the caller of hashfor ensured that this symbol
// exists and has a body by calling genhash for t.
sym = TypeSymPrefix(".hash", t)
}
n := typecheck.NewName(sym)
ir.MarkFunc(n)
n.SetType(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{
types.NewField(base.Pos, nil, types.NewPtr(t)),
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
}, []*types.Field{
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
}))
return n
}
// sysClosure returns a closure which will call the
// given runtime function (with no closed-over variables).
func sysClosure(name string) *obj.LSym {
s := typecheck.LookupRuntimeVar(name + "·f")
if len(s.P) == 0 {
f := typecheck.LookupRuntimeFunc(name)
objw.SymPtr(s, 0, f, 0)
objw.Global(s, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
}
return s
}
// geneq returns a symbol which is the closure used to compute
// equality for two objects of type t.
func geneq(t *types.Type) *obj.LSym {
switch AlgType(t) {
case types.ANOEQ:
// The runtime will panic if it tries to compare
// a type with a nil equality function.
return nil
case types.AMEM0:
return sysClosure("memequal0")
case types.AMEM8:
return sysClosure("memequal8")
case types.AMEM16:
return sysClosure("memequal16")
case types.AMEM32:
return sysClosure("memequal32")
case types.AMEM64:
return sysClosure("memequal64")
case types.AMEM128:
return sysClosure("memequal128")
case types.ASTRING:
return sysClosure("strequal")
case types.AINTER:
return sysClosure("interequal")
case types.ANILINTER:
return sysClosure("nilinterequal")
case types.AFLOAT32:
return sysClosure("f32equal")
case types.AFLOAT64:
return sysClosure("f64equal")
case types.ACPLX64:
return sysClosure("c64equal")
case types.ACPLX128:
return sysClosure("c128equal")
case types.AMEM:
// make equality closure. The size of the type
// is encoded in the closure.
closure := TypeLinksymLookup(fmt.Sprintf(".eqfunc%d", t.Width))
if len(closure.P) != 0 {
return closure
}
if memequalvarlen == nil {
memequalvarlen = typecheck.LookupRuntimeVar("memequal_varlen") // asm func
}
ot := 0
ot = objw.SymPtr(closure, ot, memequalvarlen, 0)
ot = objw.Uintptr(closure, ot, uint64(t.Width))
objw.Global(closure, int32(ot), obj.DUPOK|obj.RODATA)
return closure
case types.ASPECIAL:
break
}
closure := TypeLinksymPrefix(".eqfunc", t)
if len(closure.P) > 0 { // already generated
return closure
}
sym := TypeSymPrefix(".eq", t)
if base.Flag.LowerR != 0 {
fmt.Printf("geneq %v\n", t)
}
// Autogenerate code for equality of structs and arrays.
base.Pos = base.AutogeneratedPos // less confusing than end of input
typecheck.DeclContext = ir.PEXTERN
// func sym(p, q *T) bool
tfn := ir.NewFuncType(base.Pos, nil,
[]*ir.Field{ir.NewField(base.Pos, typecheck.Lookup("p"), nil, types.NewPtr(t)), ir.NewField(base.Pos, typecheck.Lookup("q"), nil, types.NewPtr(t))},
[]*ir.Field{ir.NewField(base.Pos, typecheck.Lookup("r"), nil, types.Types[types.TBOOL])})
fn := typecheck.DeclFunc(sym, tfn)
np := ir.AsNode(tfn.Type().Params().Field(0).Nname)
nq := ir.AsNode(tfn.Type().Params().Field(1).Nname)
nr := ir.AsNode(tfn.Type().Results().Field(0).Nname)
// Label to jump to if an equality test fails.
neq := typecheck.AutoLabel(".neq")
// We reach here only for types that have equality but
// cannot be handled by the standard algorithms,
// so t must be either an array or a struct.
switch t.Kind() {
default:
base.Fatalf("geneq %v", t)
case types.TARRAY:
nelem := t.NumElem()
// checkAll generates code to check the equality of all array elements.
// If unroll is greater than nelem, checkAll generates:
//
// if eq(p[0], q[0]) && eq(p[1], q[1]) && ... {
// } else {
// return
// }
//
// And so on.
//
// Otherwise it generates:
//
// for i := 0; i < nelem; i++ {
// if eq(p[i], q[i]) {
// } else {
// goto neq
// }
// }
//
// TODO(josharian): consider doing some loop unrolling
// for larger nelem as well, processing a few elements at a time in a loop.
checkAll := func(unroll int64, last bool, eq func(pi, qi ir.Node) ir.Node) {
// checkIdx generates a node to check for equality at index i.
checkIdx := func(i ir.Node) ir.Node {
// pi := p[i]
pi := ir.NewIndexExpr(base.Pos, np, i)
pi.SetBounded(true)
pi.SetType(t.Elem())
// qi := q[i]
qi := ir.NewIndexExpr(base.Pos, nq, i)
qi.SetBounded(true)
qi.SetType(t.Elem())
return eq(pi, qi)
}
if nelem <= unroll {
if last {
// Do last comparison in a different manner.
nelem--
}
// Generate a series of checks.
for i := int64(0); i < nelem; i++ {
// if check {} else { goto neq }
nif := ir.NewIfStmt(base.Pos, checkIdx(ir.NewInt(i)), nil, nil)
nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
fn.Body.Append(nif)
}
if last {
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, checkIdx(ir.NewInt(nelem))))
}
} else {
// Generate a for loop.
// for i := 0; i < nelem; i++
i := typecheck.Temp(types.Types[types.TINT])
init := ir.NewAssignStmt(base.Pos, i, ir.NewInt(0))
cond := ir.NewBinaryExpr(base.Pos, ir.OLT, i, ir.NewInt(nelem))
post := ir.NewAssignStmt(base.Pos, i, ir.NewBinaryExpr(base.Pos, ir.OADD, i, ir.NewInt(1)))
loop := ir.NewForStmt(base.Pos, nil, cond, post, nil)
loop.PtrInit().Append(init)
// if eq(pi, qi) {} else { goto neq }
nif := ir.NewIfStmt(base.Pos, checkIdx(i), nil, nil)
nif.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
loop.Body.Append(nif)
fn.Body.Append(loop)
if last {
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(true)))
}
}
}
switch t.Elem().Kind() {
case types.TSTRING:
// Do two loops. First, check that all the lengths match (cheap).
// Second, check that all the contents match (expensive).
// TODO: when the array size is small, unroll the length match checks.
checkAll(3, false, func(pi, qi ir.Node) ir.Node {
// Compare lengths.
eqlen, _ := EqString(pi, qi)
return eqlen
})
checkAll(1, true, func(pi, qi ir.Node) ir.Node {
// Compare contents.
_, eqmem := EqString(pi, qi)
return eqmem
})
case types.TFLOAT32, types.TFLOAT64:
checkAll(2, true, func(pi, qi ir.Node) ir.Node {
// p[i] == q[i]
return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
})
// TODO: pick apart structs, do them piecemeal too
default:
checkAll(1, true, func(pi, qi ir.Node) ir.Node {
// p[i] == q[i]
return ir.NewBinaryExpr(base.Pos, ir.OEQ, pi, qi)
})
}
case types.TSTRUCT:
// Build a list of conditions to satisfy.
// The conditions are a list-of-lists. Conditions are reorderable
// within each inner list. The outer lists must be evaluated in order.
var conds [][]ir.Node
conds = append(conds, []ir.Node{})
and := func(n ir.Node) {
i := len(conds) - 1
conds[i] = append(conds[i], n)
}
// Walk the struct using memequal for runs of AMEM
// and calling specific equality tests for the others.
for i, fields := 0, t.FieldSlice(); i < len(fields); {
f := fields[i]
// Skip blank-named fields.
if f.Sym.IsBlank() {
i++
continue
}
// Compare non-memory fields with field equality.
if !isRegularMemory(f.Type) {
if eqCanPanic(f.Type) {
// Enforce ordering by starting a new set of reorderable conditions.
conds = append(conds, []ir.Node{})
}
p := ir.NewSelectorExpr(base.Pos, ir.OXDOT, np, f.Sym)
q := ir.NewSelectorExpr(base.Pos, ir.OXDOT, nq, f.Sym)
switch {
case f.Type.IsString():
eqlen, eqmem := EqString(p, q)
and(eqlen)
and(eqmem)
default:
and(ir.NewBinaryExpr(base.Pos, ir.OEQ, p, q))
}
if eqCanPanic(f.Type) {
// Also enforce ordering after something that can panic.
conds = append(conds, []ir.Node{})
}
i++
continue
}
// Find maximal length run of memory-only fields.
size, next := memrun(t, i)
// TODO(rsc): All the calls to newname are wrong for
// cross-package unexported fields.
if s := fields[i:next]; len(s) <= 2 {
// Two or fewer fields: use plain field equality.
for _, f := range s {
and(eqfield(np, nq, f.Sym))
}
} else {
// More than two fields: use memequal.
and(eqmem(np, nq, f.Sym, size))
}
i = next
}
// Sort conditions to put runtime calls last.
// Preserve the rest of the ordering.
var flatConds []ir.Node
for _, c := range conds {
isCall := func(n ir.Node) bool {
return n.Op() == ir.OCALL || n.Op() == ir.OCALLFUNC
}
sort.SliceStable(c, func(i, j int) bool {
return !isCall(c[i]) && isCall(c[j])
})
flatConds = append(flatConds, c...)
}
if len(flatConds) == 0 {
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(true)))
} else {
for _, c := range flatConds[:len(flatConds)-1] {
// if cond {} else { goto neq }
n := ir.NewIfStmt(base.Pos, c, nil, nil)
n.Else.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, neq))
fn.Body.Append(n)
}
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, flatConds[len(flatConds)-1]))
}
}
// ret:
// return
ret := typecheck.AutoLabel(".ret")
fn.Body.Append(ir.NewLabelStmt(base.Pos, ret))
fn.Body.Append(ir.NewReturnStmt(base.Pos, nil))
// neq:
// r = false
// return (or goto ret)
fn.Body.Append(ir.NewLabelStmt(base.Pos, neq))
fn.Body.Append(ir.NewAssignStmt(base.Pos, nr, ir.NewBool(false)))
if eqCanPanic(t) || anyCall(fn) {
// Epilogue is large, so share it with the equal case.
fn.Body.Append(ir.NewBranchStmt(base.Pos, ir.OGOTO, ret))
} else {
// Epilogue is small, so don't bother sharing.
fn.Body.Append(ir.NewReturnStmt(base.Pos, nil))
}
// TODO(khr): the epilogue size detection condition above isn't perfect.
// We should really do a generic CL that shares epilogues across
// the board. See #24936.
if base.Flag.LowerR != 0 {
ir.DumpList("geneq body", fn.Body)
}
typecheck.FinishFuncBody()
fn.SetDupok(true)
typecheck.Func(fn)
ir.CurFunc = fn
typecheck.Stmts(fn.Body)
ir.CurFunc = nil
if base.Debug.DclStack != 0 {
types.CheckDclstack()
}
// Disable checknils while compiling this code.
// We are comparing a struct or an array,
// neither of which can be nil, and our comparisons
// are shallow.
fn.SetNilCheckDisabled(true)
typecheck.Target.Decls = append(typecheck.Target.Decls, fn)
// Generate a closure which points at the function we just generated.
objw.SymPtr(closure, 0, fn.Linksym(), 0)
objw.Global(closure, int32(types.PtrSize), obj.DUPOK|obj.RODATA)
return closure
}
func anyCall(fn *ir.Func) bool {
return ir.Any(fn, func(n ir.Node) bool {
// TODO(rsc): No methods?
op := n.Op()
return op == ir.OCALL || op == ir.OCALLFUNC
})
}
// eqfield returns the node
// p.field == q.field
func eqfield(p ir.Node, q ir.Node, field *types.Sym) ir.Node {
nx := ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field)
ny := ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field)
ne := ir.NewBinaryExpr(base.Pos, ir.OEQ, nx, ny)
return ne
}
// EqString returns the nodes
// len(s) == len(t)
// and
// memequal(s.ptr, t.ptr, len(s))
// which can be used to construct string equality comparison.
// eqlen must be evaluated before eqmem, and shortcircuiting is required.
func EqString(s, t ir.Node) (eqlen *ir.BinaryExpr, eqmem *ir.CallExpr) {
s = typecheck.Conv(s, types.Types[types.TSTRING])
t = typecheck.Conv(t, types.Types[types.TSTRING])
sptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, s)
tptr := ir.NewUnaryExpr(base.Pos, ir.OSPTR, t)
slen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, s), types.Types[types.TUINTPTR])
tlen := typecheck.Conv(ir.NewUnaryExpr(base.Pos, ir.OLEN, t), types.Types[types.TUINTPTR])
fn := typecheck.LookupRuntime("memequal")
fn = typecheck.SubstArgTypes(fn, types.Types[types.TUINT8], types.Types[types.TUINT8])
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, []ir.Node{sptr, tptr, ir.Copy(slen)})
typecheck.Call(call)
cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, slen, tlen)
cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
cmp.SetType(types.Types[types.TBOOL])
return cmp, call
}
// EqInterface returns the nodes
// s.tab == t.tab (or s.typ == t.typ, as appropriate)
// and
// ifaceeq(s.tab, s.data, t.data) (or efaceeq(s.typ, s.data, t.data), as appropriate)
// which can be used to construct interface equality comparison.
// eqtab must be evaluated before eqdata, and shortcircuiting is required.
func EqInterface(s, t ir.Node) (eqtab *ir.BinaryExpr, eqdata *ir.CallExpr) {
if !types.Identical(s.Type(), t.Type()) {
base.Fatalf("EqInterface %v %v", s.Type(), t.Type())
}
// func ifaceeq(tab *uintptr, x, y unsafe.Pointer) (ret bool)
// func efaceeq(typ *uintptr, x, y unsafe.Pointer) (ret bool)
var fn ir.Node
if s.Type().IsEmptyInterface() {
fn = typecheck.LookupRuntime("efaceeq")
} else {
fn = typecheck.LookupRuntime("ifaceeq")
}
stab := ir.NewUnaryExpr(base.Pos, ir.OITAB, s)
ttab := ir.NewUnaryExpr(base.Pos, ir.OITAB, t)
sdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, s)
tdata := ir.NewUnaryExpr(base.Pos, ir.OIDATA, t)
sdata.SetType(types.Types[types.TUNSAFEPTR])
tdata.SetType(types.Types[types.TUNSAFEPTR])
sdata.SetTypecheck(1)
tdata.SetTypecheck(1)
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, []ir.Node{stab, sdata, tdata})
typecheck.Call(call)
cmp := ir.NewBinaryExpr(base.Pos, ir.OEQ, stab, ttab)
cmp = typecheck.Expr(cmp).(*ir.BinaryExpr)
cmp.SetType(types.Types[types.TBOOL])
return cmp, call
}
// eqmem returns the node
// memequal(&p.field, &q.field [, size])
func eqmem(p ir.Node, q ir.Node, field *types.Sym, size int64) ir.Node {
nx := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, p, field)))
ny := typecheck.Expr(typecheck.NodAddr(ir.NewSelectorExpr(base.Pos, ir.OXDOT, q, field)))
fn, needsize := eqmemfunc(size, nx.Type().Elem())
call := ir.NewCallExpr(base.Pos, ir.OCALL, fn, nil)
call.Args.Append(nx)
call.Args.Append(ny)
if needsize {
call.Args.Append(ir.NewInt(size))
}
return call
}
func eqmemfunc(size int64, t *types.Type) (fn *ir.Name, needsize bool) {
switch size {
default:
fn = typecheck.LookupRuntime("memequal")
needsize = true
case 1, 2, 4, 8, 16:
buf := fmt.Sprintf("memequal%d", int(size)*8)
fn = typecheck.LookupRuntime(buf)
}
fn = typecheck.SubstArgTypes(fn, t, t)
return fn, needsize
}
// memrun finds runs of struct fields for which memory-only algs are appropriate.
// t is the parent struct type, and start is the field index at which to start the run.
// size is the length in bytes of the memory included in the run.
// next is the index just after the end of the memory run.
func memrun(t *types.Type, start int) (size int64, next int) {
next = start
for {
next++
if next == t.NumFields() {
break
}
// Stop run after a padded field.
if types.IsPaddedField(t, next-1) {
break
}
// Also, stop before a blank or non-memory field.
if f := t.Field(next); f.Sym.IsBlank() || !isRegularMemory(f.Type) {
break
}
}
return t.Field(next-1).End() - t.Field(start).Offset, next
}
func hashmem(t *types.Type) ir.Node {
sym := ir.Pkgs.Runtime.Lookup("memhash")
n := typecheck.NewName(sym)
ir.MarkFunc(n)
n.SetType(types.NewSignature(types.NoPkg, nil, nil, []*types.Field{
types.NewField(base.Pos, nil, types.NewPtr(t)),
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
}, []*types.Field{
types.NewField(base.Pos, nil, types.Types[types.TUINTPTR]),
}))
return n
}