blob: abf159d5a26f7e0eae527ebe3253ac8a4135fd57 [file] [log] [blame]
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type unification.
package types2
import (
"bytes"
"fmt"
"strings"
)
const (
// Upper limit for recursion depth. Used to catch infinite recursions
// due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656).
unificationDepthLimit = 50
// Whether to panic when unificationDepthLimit is reached.
// If disabled, a recursion depth overflow results in a (quiet)
// unification failure.
panicAtUnificationDepthLimit = true
// If enableCoreTypeUnification is set, unification will consider
// the core types, if any, of non-local (unbound) type parameters.
enableCoreTypeUnification = true
// If traceInference is set, unification will print a trace of its operation.
// Interpretation of trace:
// x ≡ y attempt to unify types x and y
// p ➞ y type parameter p is set to type y (p is inferred to be y)
// p ⇄ q type parameters p and q match (p is inferred to be q and vice versa)
// x ≢ y types x and y cannot be unified
// [p, q, ...] ➞ [x, y, ...] mapping from type parameters to types
traceInference = false
)
// A unifier maintains a list of type parameters and
// corresponding types inferred for each type parameter.
// A unifier is created by calling newUnifier.
type unifier struct {
// tparams is the initial list of type parameters provided.
// Only used to print/return types in reproducible order.
tparams []*TypeParam
// handles maps each type parameter to its inferred type through
// an indirection *Type called (inferred type) "handle".
// Initially, each type parameter has its own, separate handle,
// with a nil (i.e., not yet inferred) type.
// After a type parameter P is unified with a type parameter Q,
// P and Q share the same handle (and thus type). This ensures
// that inferring the type for a given type parameter P will
// automatically infer the same type for all other parameters
// unified (joined) with P.
handles map[*TypeParam]*Type
depth int // recursion depth during unification
}
// newUnifier returns a new unifier initialized with the given type parameter
// and corresponding type argument lists. The type argument list may be shorter
// than the type parameter list, and it may contain nil types. Matching type
// parameters and arguments must have the same index.
func newUnifier(tparams []*TypeParam, targs []Type) *unifier {
assert(len(tparams) >= len(targs))
handles := make(map[*TypeParam]*Type, len(tparams))
// Allocate all handles up-front: in a correct program, all type parameters
// must be resolved and thus eventually will get a handle.
// Also, sharing of handles caused by unified type parameters is rare and
// so it's ok to not optimize for that case (and delay handle allocation).
for i, x := range tparams {
var t Type
if i < len(targs) {
t = targs[i]
}
handles[x] = &t
}
return &unifier{tparams, handles, 0}
}
// unify attempts to unify x and y and reports whether it succeeded.
// As a side-effect, types may be inferred for type parameters.
func (u *unifier) unify(x, y Type) bool {
return u.nify(x, y, nil)
}
func (u *unifier) tracef(format string, args ...interface{}) {
fmt.Println(strings.Repeat(". ", u.depth) + sprintf(nil, true, format, args...))
}
// String returns a string representation of the current mapping
// from type parameters to types.
func (u *unifier) String() string {
var buf bytes.Buffer
w := newTypeWriter(&buf, nil)
w.byte('[')
for i, x := range u.tparams {
if i > 0 {
w.string(", ")
}
w.typ(x)
w.string(": ")
w.typ(u.at(x))
}
w.byte(']')
return buf.String()
}
// join unifies the given type parameters x and y.
// If both type parameters already have a type associated with them
// and they are not joined, join fails and returns false.
func (u *unifier) join(x, y *TypeParam) bool {
if traceInference {
u.tracef("%s ⇄ %s", x, y)
}
switch hx, hy := u.handles[x], u.handles[y]; {
case hx == hy:
// Both type parameters already share the same handle. Nothing to do.
case *hx != nil && *hy != nil:
// Both type parameters have (possibly different) inferred types. Cannot join.
return false
case *hx != nil:
// Only type parameter x has an inferred type. Use handle of x.
u.setHandle(y, hx)
// This case is treated like the default case.
// case *hy != nil:
// // Only type parameter y has an inferred type. Use handle of y.
// u.setHandle(x, hy)
default:
// Neither type parameter has an inferred type. Use handle of y.
u.setHandle(x, hy)
}
return true
}
// asTypeParam returns x.(*TypeParam) if x is a type parameter recorded with u.
// Otherwise, the result is nil.
func (u *unifier) asTypeParam(x Type) *TypeParam {
if x, _ := x.(*TypeParam); x != nil {
if _, found := u.handles[x]; found {
return x
}
}
return nil
}
// setHandle sets the handle for type parameter x
// (and all its joined type parameters) to h.
func (u *unifier) setHandle(x *TypeParam, h *Type) {
hx := u.handles[x]
assert(hx != nil)
for y, hy := range u.handles {
if hy == hx {
u.handles[y] = h
}
}
}
// at returns the (possibly nil) type for type parameter x.
func (u *unifier) at(x *TypeParam) Type {
return *u.handles[x]
}
// set sets the type t for type parameter x;
// t must not be nil and it must not have been set before.
func (u *unifier) set(x *TypeParam, t Type) {
assert(t != nil)
if traceInference {
u.tracef("%s ➞ %s", x, t)
}
h := u.handles[x]
assert(*h == nil)
*h = t
}
// unknowns returns the number of type parameters for which no type has been set yet.
func (u *unifier) unknowns() int {
n := 0
for _, h := range u.handles {
if *h == nil {
n++
}
}
return n
}
// inferred returns the list of inferred types (via unification) for the type parameters
// recorded with u, and an index. If all types were inferred, the returned index is < 0.
// Otherwise, it is the index of the first type parameter which couldn't be inferred;
// i.e., for which list[index] is nil.
func (u *unifier) inferred() (list []Type, index int) {
list = make([]Type, len(u.tparams))
index = -1
for i, x := range u.tparams {
t := u.at(x)
list[i] = t
if index < 0 && t == nil {
index = i
}
}
return
}
func (u *unifier) nifyEq(x, y Type, p *ifacePair) bool {
return x == y || u.nify(x, y, p)
}
// nify implements the core unification algorithm which is an
// adapted version of Checker.identical. For changes to that
// code the corresponding changes should be made here.
// Must not be called directly from outside the unifier.
func (u *unifier) nify(x, y Type, p *ifacePair) (result bool) {
if traceInference {
u.tracef("%s ≡ %s", x, y)
}
// Stop gap for cases where unification fails.
if u.depth >= unificationDepthLimit {
if traceInference {
u.tracef("depth %d >= %d", u.depth, unificationDepthLimit)
}
if panicAtUnificationDepthLimit {
panic("unification reached recursion depth limit")
}
return false
}
u.depth++
defer func() {
u.depth--
if traceInference && !result {
u.tracef("%s ≢ %s", x, y)
}
}()
// If exact unification is known to fail because we attempt to
// match a type name against an unnamed type literal, consider
// the underlying type of the named type.
// (We use !hasName to exclude any type with a name, including
// basic types and type parameters; the rest are unamed types.)
if nx, _ := x.(*Named); nx != nil && !hasName(y) {
if traceInference {
u.tracef("under %s ≡ %s", nx, y)
}
x = nx.under()
// Per the spec, a defined type cannot have an underlying type
// that is a type parameter.
assert(!isTypeParam(x))
} else if ny, _ := y.(*Named); ny != nil && !hasName(x) {
if traceInference {
u.tracef("%s ≡ under %s", x, ny)
}
y = ny.under()
assert(!isTypeParam(y))
}
// Cases where at least one of x or y is a type parameter recorded with u.
switch px, py := u.asTypeParam(x), u.asTypeParam(y); {
case px != nil && py != nil:
// both x and y are type parameters
if u.join(px, py) {
return true
}
// both x and y have an inferred type - they must match
return u.nifyEq(u.at(px), u.at(py), p)
case px != nil:
// x is a type parameter, y is not
if tx := u.at(px); tx != nil {
return u.nifyEq(tx, y, p)
}
// otherwise, infer type from y
u.set(px, y)
return true
case py != nil:
// y is a type parameter, x is not
if ty := u.at(py); ty != nil {
return u.nifyEq(x, ty, p)
}
// otherwise, infer type from x
u.set(py, x)
return true
}
// If we get here and x or y is a type parameter, they are type parameters
// from outside our declaration list. Try to unify their core types, if any
// (see go.dev/issue/50755 for a test case).
if enableCoreTypeUnification {
if isTypeParam(x) && !hasName(y) {
// When considering the type parameter for unification
// we look at the adjusted core term (adjusted core type
// with tilde information).
// If the adjusted core type is a named type N; the
// corresponding core type is under(N).
// Since y doesn't have a name, unification will end up
// comparing under(N) to y, so we can just use the core
// type instead. And we can ignore the tilde because we
// already look at the underlying types on both sides
// and we have known types on both sides.
// Optimization.
if cx := coreType(x); cx != nil {
if traceInference {
u.tracef("core %s ≡ %s", x, y)
}
return u.nify(cx, y, p)
}
} else if isTypeParam(y) && !hasName(x) {
// see comment above
if cy := coreType(y); cy != nil {
if traceInference {
u.tracef("%s ≡ core %s", x, y)
}
return u.nify(x, cy, p)
}
}
}
// For type unification, do not shortcut (x == y) for identical
// types. Instead keep comparing them element-wise to unify the
// matching (and equal type parameter types). A simple test case
// where this matters is: func f[P any](a P) { f(a) } .
switch x := x.(type) {
case *Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if y, ok := y.(*Basic); ok {
return x.kind == y.kind
}
case *Array:
// Two array types are identical if they have identical element types
// and the same array length.
if y, ok := y.(*Array); ok {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (x.len < 0 || y.len < 0 || x.len == y.len) && u.nify(x.elem, y.elem, p)
}
case *Slice:
// Two slice types are identical if they have identical element types.
if y, ok := y.(*Slice); ok {
return u.nify(x.elem, y.elem, p)
}
case *Struct:
// Two struct types are identical if they have the same sequence of fields,
// and if corresponding fields have the same names, and identical types,
// and identical tags. Two embedded fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*Struct); ok {
if x.NumFields() == y.NumFields() {
for i, f := range x.fields {
g := y.fields[i]
if f.embedded != g.embedded ||
x.Tag(i) != y.Tag(i) ||
!f.sameId(g.pkg, g.name) ||
!u.nify(f.typ, g.typ, p) {
return false
}
}
return true
}
}
case *Pointer:
// Two pointer types are identical if they have identical base types.
if y, ok := y.(*Pointer); ok {
return u.nify(x.base, y.base, p)
}
case *Tuple:
// Two tuples types are identical if they have the same number of elements
// and corresponding elements have identical types.
if y, ok := y.(*Tuple); ok {
if x.Len() == y.Len() {
if x != nil {
for i, v := range x.vars {
w := y.vars[i]
if !u.nify(v.typ, w.typ, p) {
return false
}
}
}
return true
}
}
case *Signature:
// Two function types are identical if they have the same number of parameters
// and result values, corresponding parameter and result types are identical,
// and either both functions are variadic or neither is. Parameter and result
// names are not required to match.
// TODO(gri) handle type parameters or document why we can ignore them.
if y, ok := y.(*Signature); ok {
return x.variadic == y.variadic &&
u.nify(x.params, y.params, p) &&
u.nify(x.results, y.results, p)
}
case *Interface:
// Two interface types are identical if they have the same set of methods with
// the same names and identical function types. Lower-case method names from
// different packages are always different. The order of the methods is irrelevant.
if y, ok := y.(*Interface); ok {
xset := x.typeSet()
yset := y.typeSet()
if xset.comparable != yset.comparable {
return false
}
if !xset.terms.equal(yset.terms) {
return false
}
a := xset.methods
b := yset.methods
if len(a) == len(b) {
// Interface types are the only types where cycles can occur
// that are not "terminated" via named types; and such cycles
// can only be created via method parameter types that are
// anonymous interfaces (directly or indirectly) embedding
// the current interface. Example:
//
// type T interface {
// m() interface{T}
// }
//
// If two such (differently named) interfaces are compared,
// endless recursion occurs if the cycle is not detected.
//
// If x and y were compared before, they must be equal
// (if they were not, the recursion would have stopped);
// search the ifacePair stack for the same pair.
//
// This is a quadratic algorithm, but in practice these stacks
// are extremely short (bounded by the nesting depth of interface
// type declarations that recur via parameter types, an extremely
// rare occurrence). An alternative implementation might use a
// "visited" map, but that is probably less efficient overall.
q := &ifacePair{x, y, p}
for p != nil {
if p.identical(q) {
return true // same pair was compared before
}
p = p.prev
}
if debug {
assertSortedMethods(a)
assertSortedMethods(b)
}
for i, f := range a {
g := b[i]
if f.Id() != g.Id() || !u.nify(f.typ, g.typ, q) {
return false
}
}
return true
}
}
case *Map:
// Two map types are identical if they have identical key and value types.
if y, ok := y.(*Map); ok {
return u.nify(x.key, y.key, p) && u.nify(x.elem, y.elem, p)
}
case *Chan:
// Two channel types are identical if they have identical value types.
if y, ok := y.(*Chan); ok {
return u.nify(x.elem, y.elem, p)
}
case *Named:
// TODO(gri) This code differs now from the parallel code in Checker.identical. Investigate.
if y, ok := y.(*Named); ok {
xargs := x.TypeArgs().list()
yargs := y.TypeArgs().list()
if len(xargs) != len(yargs) {
return false
}
// TODO(gri) This is not always correct: two types may have the same names
// in the same package if one of them is nested in a function.
// Extremely unlikely but we need an always correct solution.
if x.obj.pkg == y.obj.pkg && x.obj.name == y.obj.name {
for i, x := range xargs {
if !u.nify(x, yargs[i], p) {
return false
}
}
return true
}
}
case *TypeParam:
// Two type parameters (which are not part of the type parameters of the
// enclosing type as those are handled in the beginning of this function)
// are identical if they originate in the same declaration.
return x == y
case nil:
// avoid a crash in case of nil type
default:
panic(sprintf(nil, true, "u.nify(%s, %s), u.tparams = %s", x, y, u.tparams))
}
return false
}