| // Copyright 2010 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // This file implements multi-precision rational numbers. | 
 |  | 
 | package big | 
 |  | 
 | import ( | 
 | 	"encoding/binary" | 
 | 	"errors" | 
 | 	"fmt" | 
 | 	"math" | 
 | ) | 
 |  | 
 | // A Rat represents a quotient a/b of arbitrary precision. | 
 | // The zero value for a Rat represents the value 0. | 
 | type Rat struct { | 
 | 	// To make zero values for Rat work w/o initialization, | 
 | 	// a zero value of b (len(b) == 0) acts like b == 1. | 
 | 	// a.neg determines the sign of the Rat, b.neg is ignored. | 
 | 	a, b Int | 
 | } | 
 |  | 
 | // NewRat creates a new Rat with numerator a and denominator b. | 
 | func NewRat(a, b int64) *Rat { | 
 | 	return new(Rat).SetFrac64(a, b) | 
 | } | 
 |  | 
 | // SetFloat64 sets z to exactly f and returns z. | 
 | // If f is not finite, SetFloat returns nil. | 
 | func (z *Rat) SetFloat64(f float64) *Rat { | 
 | 	const expMask = 1<<11 - 1 | 
 | 	bits := math.Float64bits(f) | 
 | 	mantissa := bits & (1<<52 - 1) | 
 | 	exp := int((bits >> 52) & expMask) | 
 | 	switch exp { | 
 | 	case expMask: // non-finite | 
 | 		return nil | 
 | 	case 0: // denormal | 
 | 		exp -= 1022 | 
 | 	default: // normal | 
 | 		mantissa |= 1 << 52 | 
 | 		exp -= 1023 | 
 | 	} | 
 |  | 
 | 	shift := 52 - exp | 
 |  | 
 | 	// Optimization (?): partially pre-normalise. | 
 | 	for mantissa&1 == 0 && shift > 0 { | 
 | 		mantissa >>= 1 | 
 | 		shift-- | 
 | 	} | 
 |  | 
 | 	z.a.SetUint64(mantissa) | 
 | 	z.a.neg = f < 0 | 
 | 	z.b.Set(intOne) | 
 | 	if shift > 0 { | 
 | 		z.b.Lsh(&z.b, uint(shift)) | 
 | 	} else { | 
 | 		z.a.Lsh(&z.a, uint(-shift)) | 
 | 	} | 
 | 	return z.norm() | 
 | } | 
 |  | 
 | // quotToFloat32 returns the non-negative float32 value | 
 | // nearest to the quotient a/b, using round-to-even in | 
 | // halfway cases.  It does not mutate its arguments. | 
 | // Preconditions: b is non-zero; a and b have no common factors. | 
 | func quotToFloat32(a, b nat) (f float32, exact bool) { | 
 | 	const ( | 
 | 		// float size in bits | 
 | 		Fsize = 32 | 
 |  | 
 | 		// mantissa | 
 | 		Msize  = 23 | 
 | 		Msize1 = Msize + 1 // incl. implicit 1 | 
 | 		Msize2 = Msize1 + 1 | 
 |  | 
 | 		// exponent | 
 | 		Esize = Fsize - Msize1 | 
 | 		Ebias = 1<<(Esize-1) - 1 | 
 | 		Emin  = 1 - Ebias | 
 | 		Emax  = Ebias | 
 | 	) | 
 |  | 
 | 	// TODO(adonovan): specialize common degenerate cases: 1.0, integers. | 
 | 	alen := a.bitLen() | 
 | 	if alen == 0 { | 
 | 		return 0, true | 
 | 	} | 
 | 	blen := b.bitLen() | 
 | 	if blen == 0 { | 
 | 		panic("division by zero") | 
 | 	} | 
 |  | 
 | 	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) | 
 | 	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). | 
 | 	// This is 2 or 3 more than the float32 mantissa field width of Msize: | 
 | 	// - the optional extra bit is shifted away in step 3 below. | 
 | 	// - the high-order 1 is omitted in "normal" representation; | 
 | 	// - the low-order 1 will be used during rounding then discarded. | 
 | 	exp := alen - blen | 
 | 	var a2, b2 nat | 
 | 	a2 = a2.set(a) | 
 | 	b2 = b2.set(b) | 
 | 	if shift := Msize2 - exp; shift > 0 { | 
 | 		a2 = a2.shl(a2, uint(shift)) | 
 | 	} else if shift < 0 { | 
 | 		b2 = b2.shl(b2, uint(-shift)) | 
 | 	} | 
 |  | 
 | 	// 2. Compute quotient and remainder (q, r).  NB: due to the | 
 | 	// extra shift, the low-order bit of q is logically the | 
 | 	// high-order bit of r. | 
 | 	var q nat | 
 | 	q, r := q.div(a2, a2, b2) // (recycle a2) | 
 | 	mantissa := low32(q) | 
 | 	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half | 
 |  | 
 | 	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 | 
 | 	// (in effect---we accomplish this incrementally). | 
 | 	if mantissa>>Msize2 == 1 { | 
 | 		if mantissa&1 == 1 { | 
 | 			haveRem = true | 
 | 		} | 
 | 		mantissa >>= 1 | 
 | 		exp++ | 
 | 	} | 
 | 	if mantissa>>Msize1 != 1 { | 
 | 		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) | 
 | 	} | 
 |  | 
 | 	// 4. Rounding. | 
 | 	if Emin-Msize <= exp && exp <= Emin { | 
 | 		// Denormal case; lose 'shift' bits of precision. | 
 | 		shift := uint(Emin - (exp - 1)) // [1..Esize1) | 
 | 		lostbits := mantissa & (1<<shift - 1) | 
 | 		haveRem = haveRem || lostbits != 0 | 
 | 		mantissa >>= shift | 
 | 		exp = 2 - Ebias // == exp + shift | 
 | 	} | 
 | 	// Round q using round-half-to-even. | 
 | 	exact = !haveRem | 
 | 	if mantissa&1 != 0 { | 
 | 		exact = false | 
 | 		if haveRem || mantissa&2 != 0 { | 
 | 			if mantissa++; mantissa >= 1<<Msize2 { | 
 | 				// Complete rollover 11...1 => 100...0, so shift is safe | 
 | 				mantissa >>= 1 | 
 | 				exp++ | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1. | 
 |  | 
 | 	f = float32(math.Ldexp(float64(mantissa), exp-Msize1)) | 
 | 	if math.IsInf(float64(f), 0) { | 
 | 		exact = false | 
 | 	} | 
 | 	return | 
 | } | 
 |  | 
 | // quotToFloat64 returns the non-negative float64 value | 
 | // nearest to the quotient a/b, using round-to-even in | 
 | // halfway cases.  It does not mutate its arguments. | 
 | // Preconditions: b is non-zero; a and b have no common factors. | 
 | func quotToFloat64(a, b nat) (f float64, exact bool) { | 
 | 	const ( | 
 | 		// float size in bits | 
 | 		Fsize = 64 | 
 |  | 
 | 		// mantissa | 
 | 		Msize  = 52 | 
 | 		Msize1 = Msize + 1 // incl. implicit 1 | 
 | 		Msize2 = Msize1 + 1 | 
 |  | 
 | 		// exponent | 
 | 		Esize = Fsize - Msize1 | 
 | 		Ebias = 1<<(Esize-1) - 1 | 
 | 		Emin  = 1 - Ebias | 
 | 		Emax  = Ebias | 
 | 	) | 
 |  | 
 | 	// TODO(adonovan): specialize common degenerate cases: 1.0, integers. | 
 | 	alen := a.bitLen() | 
 | 	if alen == 0 { | 
 | 		return 0, true | 
 | 	} | 
 | 	blen := b.bitLen() | 
 | 	if blen == 0 { | 
 | 		panic("division by zero") | 
 | 	} | 
 |  | 
 | 	// 1. Left-shift A or B such that quotient A/B is in [1<<Msize1, 1<<(Msize2+1) | 
 | 	// (Msize2 bits if A < B when they are left-aligned, Msize2+1 bits if A >= B). | 
 | 	// This is 2 or 3 more than the float64 mantissa field width of Msize: | 
 | 	// - the optional extra bit is shifted away in step 3 below. | 
 | 	// - the high-order 1 is omitted in "normal" representation; | 
 | 	// - the low-order 1 will be used during rounding then discarded. | 
 | 	exp := alen - blen | 
 | 	var a2, b2 nat | 
 | 	a2 = a2.set(a) | 
 | 	b2 = b2.set(b) | 
 | 	if shift := Msize2 - exp; shift > 0 { | 
 | 		a2 = a2.shl(a2, uint(shift)) | 
 | 	} else if shift < 0 { | 
 | 		b2 = b2.shl(b2, uint(-shift)) | 
 | 	} | 
 |  | 
 | 	// 2. Compute quotient and remainder (q, r).  NB: due to the | 
 | 	// extra shift, the low-order bit of q is logically the | 
 | 	// high-order bit of r. | 
 | 	var q nat | 
 | 	q, r := q.div(a2, a2, b2) // (recycle a2) | 
 | 	mantissa := low64(q) | 
 | 	haveRem := len(r) > 0 // mantissa&1 && !haveRem => remainder is exactly half | 
 |  | 
 | 	// 3. If quotient didn't fit in Msize2 bits, redo division by b2<<1 | 
 | 	// (in effect---we accomplish this incrementally). | 
 | 	if mantissa>>Msize2 == 1 { | 
 | 		if mantissa&1 == 1 { | 
 | 			haveRem = true | 
 | 		} | 
 | 		mantissa >>= 1 | 
 | 		exp++ | 
 | 	} | 
 | 	if mantissa>>Msize1 != 1 { | 
 | 		panic(fmt.Sprintf("expected exactly %d bits of result", Msize2)) | 
 | 	} | 
 |  | 
 | 	// 4. Rounding. | 
 | 	if Emin-Msize <= exp && exp <= Emin { | 
 | 		// Denormal case; lose 'shift' bits of precision. | 
 | 		shift := uint(Emin - (exp - 1)) // [1..Esize1) | 
 | 		lostbits := mantissa & (1<<shift - 1) | 
 | 		haveRem = haveRem || lostbits != 0 | 
 | 		mantissa >>= shift | 
 | 		exp = 2 - Ebias // == exp + shift | 
 | 	} | 
 | 	// Round q using round-half-to-even. | 
 | 	exact = !haveRem | 
 | 	if mantissa&1 != 0 { | 
 | 		exact = false | 
 | 		if haveRem || mantissa&2 != 0 { | 
 | 			if mantissa++; mantissa >= 1<<Msize2 { | 
 | 				// Complete rollover 11...1 => 100...0, so shift is safe | 
 | 				mantissa >>= 1 | 
 | 				exp++ | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	mantissa >>= 1 // discard rounding bit.  Mantissa now scaled by 1<<Msize1. | 
 |  | 
 | 	f = math.Ldexp(float64(mantissa), exp-Msize1) | 
 | 	if math.IsInf(f, 0) { | 
 | 		exact = false | 
 | 	} | 
 | 	return | 
 | } | 
 |  | 
 | // Float32 returns the nearest float32 value for x and a bool indicating | 
 | // whether f represents x exactly. If the magnitude of x is too large to | 
 | // be represented by a float32, f is an infinity and exact is false. | 
 | // The sign of f always matches the sign of x, even if f == 0. | 
 | func (x *Rat) Float32() (f float32, exact bool) { | 
 | 	b := x.b.abs | 
 | 	if len(b) == 0 { | 
 | 		b = b.set(natOne) // materialize denominator | 
 | 	} | 
 | 	f, exact = quotToFloat32(x.a.abs, b) | 
 | 	if x.a.neg { | 
 | 		f = -f | 
 | 	} | 
 | 	return | 
 | } | 
 |  | 
 | // Float64 returns the nearest float64 value for x and a bool indicating | 
 | // whether f represents x exactly. If the magnitude of x is too large to | 
 | // be represented by a float64, f is an infinity and exact is false. | 
 | // The sign of f always matches the sign of x, even if f == 0. | 
 | func (x *Rat) Float64() (f float64, exact bool) { | 
 | 	b := x.b.abs | 
 | 	if len(b) == 0 { | 
 | 		b = b.set(natOne) // materialize denominator | 
 | 	} | 
 | 	f, exact = quotToFloat64(x.a.abs, b) | 
 | 	if x.a.neg { | 
 | 		f = -f | 
 | 	} | 
 | 	return | 
 | } | 
 |  | 
 | // SetFrac sets z to a/b and returns z. | 
 | func (z *Rat) SetFrac(a, b *Int) *Rat { | 
 | 	z.a.neg = a.neg != b.neg | 
 | 	babs := b.abs | 
 | 	if len(babs) == 0 { | 
 | 		panic("division by zero") | 
 | 	} | 
 | 	if &z.a == b || alias(z.a.abs, babs) { | 
 | 		babs = nat(nil).set(babs) // make a copy | 
 | 	} | 
 | 	z.a.abs = z.a.abs.set(a.abs) | 
 | 	z.b.abs = z.b.abs.set(babs) | 
 | 	return z.norm() | 
 | } | 
 |  | 
 | // SetFrac64 sets z to a/b and returns z. | 
 | func (z *Rat) SetFrac64(a, b int64) *Rat { | 
 | 	z.a.SetInt64(a) | 
 | 	if b == 0 { | 
 | 		panic("division by zero") | 
 | 	} | 
 | 	if b < 0 { | 
 | 		b = -b | 
 | 		z.a.neg = !z.a.neg | 
 | 	} | 
 | 	z.b.abs = z.b.abs.setUint64(uint64(b)) | 
 | 	return z.norm() | 
 | } | 
 |  | 
 | // SetInt sets z to x (by making a copy of x) and returns z. | 
 | func (z *Rat) SetInt(x *Int) *Rat { | 
 | 	z.a.Set(x) | 
 | 	z.b.abs = z.b.abs[:0] | 
 | 	return z | 
 | } | 
 |  | 
 | // SetInt64 sets z to x and returns z. | 
 | func (z *Rat) SetInt64(x int64) *Rat { | 
 | 	z.a.SetInt64(x) | 
 | 	z.b.abs = z.b.abs[:0] | 
 | 	return z | 
 | } | 
 |  | 
 | // Set sets z to x (by making a copy of x) and returns z. | 
 | func (z *Rat) Set(x *Rat) *Rat { | 
 | 	if z != x { | 
 | 		z.a.Set(&x.a) | 
 | 		z.b.Set(&x.b) | 
 | 	} | 
 | 	return z | 
 | } | 
 |  | 
 | // Abs sets z to |x| (the absolute value of x) and returns z. | 
 | func (z *Rat) Abs(x *Rat) *Rat { | 
 | 	z.Set(x) | 
 | 	z.a.neg = false | 
 | 	return z | 
 | } | 
 |  | 
 | // Neg sets z to -x and returns z. | 
 | func (z *Rat) Neg(x *Rat) *Rat { | 
 | 	z.Set(x) | 
 | 	z.a.neg = len(z.a.abs) > 0 && !z.a.neg // 0 has no sign | 
 | 	return z | 
 | } | 
 |  | 
 | // Inv sets z to 1/x and returns z. | 
 | func (z *Rat) Inv(x *Rat) *Rat { | 
 | 	if len(x.a.abs) == 0 { | 
 | 		panic("division by zero") | 
 | 	} | 
 | 	z.Set(x) | 
 | 	a := z.b.abs | 
 | 	if len(a) == 0 { | 
 | 		a = a.set(natOne) // materialize numerator | 
 | 	} | 
 | 	b := z.a.abs | 
 | 	if b.cmp(natOne) == 0 { | 
 | 		b = b[:0] // normalize denominator | 
 | 	} | 
 | 	z.a.abs, z.b.abs = a, b // sign doesn't change | 
 | 	return z | 
 | } | 
 |  | 
 | // Sign returns: | 
 | // | 
 | //	-1 if x <  0 | 
 | //	 0 if x == 0 | 
 | //	+1 if x >  0 | 
 | // | 
 | func (x *Rat) Sign() int { | 
 | 	return x.a.Sign() | 
 | } | 
 |  | 
 | // IsInt reports whether the denominator of x is 1. | 
 | func (x *Rat) IsInt() bool { | 
 | 	return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0 | 
 | } | 
 |  | 
 | // Num returns the numerator of x; it may be <= 0. | 
 | // The result is a reference to x's numerator; it | 
 | // may change if a new value is assigned to x, and vice versa. | 
 | // The sign of the numerator corresponds to the sign of x. | 
 | func (x *Rat) Num() *Int { | 
 | 	return &x.a | 
 | } | 
 |  | 
 | // Denom returns the denominator of x; it is always > 0. | 
 | // The result is a reference to x's denominator; it | 
 | // may change if a new value is assigned to x, and vice versa. | 
 | func (x *Rat) Denom() *Int { | 
 | 	x.b.neg = false // the result is always >= 0 | 
 | 	if len(x.b.abs) == 0 { | 
 | 		x.b.abs = x.b.abs.set(natOne) // materialize denominator | 
 | 	} | 
 | 	return &x.b | 
 | } | 
 |  | 
 | func (z *Rat) norm() *Rat { | 
 | 	switch { | 
 | 	case len(z.a.abs) == 0: | 
 | 		// z == 0 - normalize sign and denominator | 
 | 		z.a.neg = false | 
 | 		z.b.abs = z.b.abs[:0] | 
 | 	case len(z.b.abs) == 0: | 
 | 		// z is normalized int - nothing to do | 
 | 	case z.b.abs.cmp(natOne) == 0: | 
 | 		// z is int - normalize denominator | 
 | 		z.b.abs = z.b.abs[:0] | 
 | 	default: | 
 | 		neg := z.a.neg | 
 | 		z.a.neg = false | 
 | 		z.b.neg = false | 
 | 		if f := NewInt(0).binaryGCD(&z.a, &z.b); f.Cmp(intOne) != 0 { | 
 | 			z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f.abs) | 
 | 			z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f.abs) | 
 | 			if z.b.abs.cmp(natOne) == 0 { | 
 | 				// z is int - normalize denominator | 
 | 				z.b.abs = z.b.abs[:0] | 
 | 			} | 
 | 		} | 
 | 		z.a.neg = neg | 
 | 	} | 
 | 	return z | 
 | } | 
 |  | 
 | // mulDenom sets z to the denominator product x*y (by taking into | 
 | // account that 0 values for x or y must be interpreted as 1) and | 
 | // returns z. | 
 | func mulDenom(z, x, y nat) nat { | 
 | 	switch { | 
 | 	case len(x) == 0: | 
 | 		return z.set(y) | 
 | 	case len(y) == 0: | 
 | 		return z.set(x) | 
 | 	} | 
 | 	return z.mul(x, y) | 
 | } | 
 |  | 
 | // scaleDenom computes x*f. | 
 | // If f == 0 (zero value of denominator), the result is (a copy of) x. | 
 | func scaleDenom(x *Int, f nat) *Int { | 
 | 	var z Int | 
 | 	if len(f) == 0 { | 
 | 		return z.Set(x) | 
 | 	} | 
 | 	z.abs = z.abs.mul(x.abs, f) | 
 | 	z.neg = x.neg | 
 | 	return &z | 
 | } | 
 |  | 
 | // Cmp compares x and y and returns: | 
 | // | 
 | //   -1 if x <  y | 
 | //    0 if x == y | 
 | //   +1 if x >  y | 
 | // | 
 | func (x *Rat) Cmp(y *Rat) int { | 
 | 	return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs)) | 
 | } | 
 |  | 
 | // Add sets z to the sum x+y and returns z. | 
 | func (z *Rat) Add(x, y *Rat) *Rat { | 
 | 	a1 := scaleDenom(&x.a, y.b.abs) | 
 | 	a2 := scaleDenom(&y.a, x.b.abs) | 
 | 	z.a.Add(a1, a2) | 
 | 	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) | 
 | 	return z.norm() | 
 | } | 
 |  | 
 | // Sub sets z to the difference x-y and returns z. | 
 | func (z *Rat) Sub(x, y *Rat) *Rat { | 
 | 	a1 := scaleDenom(&x.a, y.b.abs) | 
 | 	a2 := scaleDenom(&y.a, x.b.abs) | 
 | 	z.a.Sub(a1, a2) | 
 | 	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) | 
 | 	return z.norm() | 
 | } | 
 |  | 
 | // Mul sets z to the product x*y and returns z. | 
 | func (z *Rat) Mul(x, y *Rat) *Rat { | 
 | 	z.a.Mul(&x.a, &y.a) | 
 | 	z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs) | 
 | 	return z.norm() | 
 | } | 
 |  | 
 | // Quo sets z to the quotient x/y and returns z. | 
 | // If y == 0, a division-by-zero run-time panic occurs. | 
 | func (z *Rat) Quo(x, y *Rat) *Rat { | 
 | 	if len(y.a.abs) == 0 { | 
 | 		panic("division by zero") | 
 | 	} | 
 | 	a := scaleDenom(&x.a, y.b.abs) | 
 | 	b := scaleDenom(&y.a, x.b.abs) | 
 | 	z.a.abs = a.abs | 
 | 	z.b.abs = b.abs | 
 | 	z.a.neg = a.neg != b.neg | 
 | 	return z.norm() | 
 | } | 
 |  | 
 | // Gob codec version. Permits backward-compatible changes to the encoding. | 
 | const ratGobVersion byte = 1 | 
 |  | 
 | // GobEncode implements the gob.GobEncoder interface. | 
 | func (x *Rat) GobEncode() ([]byte, error) { | 
 | 	if x == nil { | 
 | 		return nil, nil | 
 | 	} | 
 | 	buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4) | 
 | 	i := x.b.abs.bytes(buf) | 
 | 	j := x.a.abs.bytes(buf[:i]) | 
 | 	n := i - j | 
 | 	if int(uint32(n)) != n { | 
 | 		// this should never happen | 
 | 		return nil, errors.New("Rat.GobEncode: numerator too large") | 
 | 	} | 
 | 	binary.BigEndian.PutUint32(buf[j-4:j], uint32(n)) | 
 | 	j -= 1 + 4 | 
 | 	b := ratGobVersion << 1 // make space for sign bit | 
 | 	if x.a.neg { | 
 | 		b |= 1 | 
 | 	} | 
 | 	buf[j] = b | 
 | 	return buf[j:], nil | 
 | } | 
 |  | 
 | // GobDecode implements the gob.GobDecoder interface. | 
 | func (z *Rat) GobDecode(buf []byte) error { | 
 | 	if len(buf) == 0 { | 
 | 		// Other side sent a nil or default value. | 
 | 		*z = Rat{} | 
 | 		return nil | 
 | 	} | 
 | 	b := buf[0] | 
 | 	if b>>1 != ratGobVersion { | 
 | 		return fmt.Errorf("Rat.GobDecode: encoding version %d not supported", b>>1) | 
 | 	} | 
 | 	const j = 1 + 4 | 
 | 	i := j + binary.BigEndian.Uint32(buf[j-4:j]) | 
 | 	z.a.neg = b&1 != 0 | 
 | 	z.a.abs = z.a.abs.setBytes(buf[j:i]) | 
 | 	z.b.abs = z.b.abs.setBytes(buf[i:]) | 
 | 	return nil | 
 | } | 
 |  | 
 | // MarshalText implements the encoding.TextMarshaler interface. | 
 | func (r *Rat) MarshalText() (text []byte, err error) { | 
 | 	return []byte(r.RatString()), nil | 
 | } | 
 |  | 
 | // UnmarshalText implements the encoding.TextUnmarshaler interface. | 
 | func (r *Rat) UnmarshalText(text []byte) error { | 
 | 	if _, ok := r.SetString(string(text)); !ok { | 
 | 		return fmt.Errorf("math/big: cannot unmarshal %q into a *big.Rat", text) | 
 | 	} | 
 | 	return nil | 
 | } |