blob: 970e9e12e68db84cdfe82e8f5db7fd38d8d9f4ce [file] [log] [blame]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/* A hash table.
Example, hashing nul-terminated char*s:
hash_hash_t str_hash (void *v) {
char *s;
hash_hash_t hash = 0;
for (s = *(char **)v; *s != 0; s++) {
hash = (hash ^ *s) * 2654435769U;
}
return (hash);
}
int str_eq (void *a, void *b) {
return (strcmp (*(char **)a, *(char **)b) == 0);
}
void str_del (void *arg, void *data) {
*(char **)arg = *(char **)data;
}
struct hash *h = hash_new (sizeof (char *), &str_hash, &str_eq, &str_del, 3, 12, 15);
... 3=> 2**3 entries initial size
... 12=> 2**12 entries before sprouting sub-tables
... 15=> number of adjacent probes to attempt before growing
Example lookup:
char *key = "foobar";
char **result_ptr;
if (hash_lookup (h, &key, (void **) &result_ptr)) {
printf ("found in table: %s\n", *result_ptr);
} else {
printf ("not found in table\n");
}
Example insertion:
char *key = strdup ("foobar");
char **result_ptr;
if (hash_lookup (h, &key, (void **) &result_ptr)) {
printf ("found in table: %s\n", *result_ptr);
printf ("to overwrite, do *result_ptr = key\n");
} else {
printf ("not found in table; inserted as %s\n", *result_ptr);
assert (*result_ptr == key);
}
Example deletion:
char *key = "foobar";
char *result;
if (hash_remove (h, &key, &result)) {
printf ("key found and deleted from table\n");
printf ("called str_del (&result, data) to copy data to result: %s\n", result);
} else {
printf ("not found in table\n");
}
Example iteration over the elements of *h:
char **data;
struct hash_iter it;
hash_iter_init (h, &it);
for (data = hash_next (&it); data != 0; data = hash_next (&it)) {
printf ("%s\n", *data);
}
*/
#define malloc mal
#define free(a) USED(a)
#define offsetof(s,m) (uint32)(&(((s*)0)->m))
#define memset(a,b,c) sysยทmemclr((byte*)(a), (uint32)(c))
#define memmove(a,b,c) mmov((byte*)(a),(byte*)(b),(uint32)(c))
#define memcpy(a,b,c) mcpy((byte*)(a),(byte*)(b),(uint32)(c))
#define assert(a) if(!(a)) throw("assert")
struct hash; /* opaque */
struct hash_subtable; /* opaque */
struct hash_entry; /* opaque */
typedef uint64 uintptr_t;
typedef uintptr_t hash_hash_t;
struct hash_iter {
uint8* data; /* returned from next */
int32 elemsize; /* size of elements in table */
int32 changes; /* number of changes observed last time */
int32 i; /* stack pointer in subtable_state */
hash_hash_t last_hash; /* last hash value returned */
struct hash *h; /* the hash table */
struct hash_iter_sub {
struct hash_entry *e; /* pointer into subtable */
struct hash_entry *start; /* start of subtable */
struct hash_entry *end; /* end of subtable */
} subtable_state[4]; /* Should be large enough unless the hashing is
so bad that many distinct data values hash
to the same hash value. */
};
/* Return a hashtable h 2**init_power empty entries, each with
"datasize" data bytes.
(*data_hash)(a) should return the hash value of data element *a.
(*data_eq)(a,b) should return whether the data at "a" and the data at "b"
are equal.
(*data_del)(arg, a) will be invoked when data element *a is about to be removed
from the table. "arg" is the argument passed to "hash_remove()".
Growing is accomplished by resizing if the current tables size is less than
a threshold, and by adding subtables otherwise. hint should be set
the expected maximum size of the table.
"datasize" should be in [sizeof (void*), ..., 255]. If you need a
bigger "datasize", store a pointer to another piece of memory. */
//struct hash *hash_new (int32 datasize,
// hash_hash_t (*data_hash) (void *),
// int32 (*data_eq) (void *, void *),
// void (*data_del) (void *, void *),
// int64 hint);
/* Lookup *data in *h. If the data is found, return 1 and place a pointer to
the found element in *pres. Otherwise return 0 and place 0 in *pres. */
int32 hash_lookup (struct hash *h, void *data, void **pres);
/* Lookup *data in *h. If the data is found, execute (*data_del) (arg, p)
where p points to the data in the table, then remove it from *h and return
1. Otherwise return 0. */
int32 hash_remove (struct hash *h, void *data, void *arg);
/* Lookup *data in *h. If the data is found, return 1, and place a pointer
to the found element in *pres. Otherwise, return 0, allocate a region
for the data to be inserted, and place a pointer to the inserted element
in *pres; it is the caller's responsibility to copy the data to be
inserted to the pointer returned in *pres in this case.
If using garbage collection, it is the caller's responsibility to
add references for **pres if HASH_ADDED is returned. */
int32 hash_insert (struct hash *h, void *data, void **pres);
/* Return the number of elements in the table. */
uint32 hash_count (struct hash *h);
/* The following call is useful only if not using garbage collection on the
table.
Remove all sub-tables associated with *h.
This undoes the effects of hash_init().
If other memory pointed to by user data must be freed, the caller is
responsible for doiing do by iterating over *h first; see
hash_iter_init()/hash_next(). */
void hash_destroy (struct hash *h);
/*----- iteration -----*/
/* Initialize *it from *h. */
void hash_iter_init (struct hash *h, struct hash_iter *it);
/* Return the next used entry in the table which which *it was initialized. */
void *hash_next (struct hash_iter *it);
/*---- test interface ----*/
/* Call (*data_visit) (arg, level, data) for every data entry in the table,
whether used or not. "level" is the subtable level, 0 means first level. */
/* TESTING ONLY: DO NOT USE THIS ROUTINE IN NORMAL CODE */
void hash_visit (struct hash *h, void (*data_visit) (void *arg, int32 level, void *data), void *arg);